Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Compr Rev Food Sci Food Saf ; 23(5): e13427, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39137002

RESUMO

Colletotrichum spp. is a phytopathogen causing anthracnose in a variety of tropical fruits. Strategies used to control postharvest diseases in tropical fruits typically rely on the use of synthetic fungicides, which have stimulated the emergence of resistant pathogens. Safer alternative strategies to control anthracnose in tropical fruits have been described in the literature. This review presents and discusses the main innovative interventions concerning the application of sustainable alternative strategies in the postharvest control of pathogenic Colletotrichum species in tropical fruits, with a particular emphasis on the studies published in the last 5 years. The available studies have shown the use of various methods, including physical barriers, natural antimicrobials, and biological control with antagonistic microorganisms, to reduce anthracnose lesion severity and incidence in tropical fruits. The available literature showed high inhibitory activity in vitro, reduced anthracnose incidence and lesion diameter, and total disease inhibition in tropical fruits. Most studies focused on the inhibition of Colletotrichum gloeosporioides on avocado, papaya, and mango, as well as of Colletotrichum musae on banana; however, the inhibition of other Colletotrichum species was also demonstrated. The application of emerging sustainable alternative methods, including natural antimicrobial substances, also stimulated the induction of defense systems in tropical fruits, including enzymatic activity, such as polyphenol oxidase, peroxidase, and phenylalanine ammonia-lyase. The retrieved data helped to understand the current state of the research field and reveal new perspectives on developing efficient and sustainable intervention strategies to control pathogenic Colletotrichum species and anthracnose development in tropical fruits.


Assuntos
Colletotrichum , Frutas , Doenças das Plantas , Frutas/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Conservação de Alimentos/métodos , Clima Tropical , Fungicidas Industriais/farmacologia
2.
J Fungi (Basel) ; 10(6)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38921354

RESUMO

Cassava (Manihot esculenta Crantz) is a staple crop widely cultivated by small farmers in tropical countries. However, despite the low level of technology required for its management, it can be affected by several diseases, with anthracnose as the main threat. There is little information about the main species of Colletotrichum that infect cassava in Brazil. Thus, the objective of this work was to study the diversity, prevalence and virulence of Colletotrichum species that cause anthracnose in cassava leaves in northern Brazil. Twenty municipalities of the Pará and Tocantins states were selected, and leaves with symptoms were collected in those locations. Pure cultures were isolated in the laboratory. Species were identified using phylogenetic analyses of multiple loci, and their pathogenicity, aggressivity and virulence levels were assessed. Our results showed the greatest diversity of Colletotrichum associated with anthracnose in cassava plants of the "Formosa" cultivar in the Tocantins and Pará states. We determined the presence of Colletotrichum chrysophilum, C. truncatum, C. siamense, C. fructicola, C. plurivorum, C. musicola and C. karsti, with C. chrysophilum as the most aggressive and virulent. Our findings provide accurate identifications of species of Colletotrichum causing anthracnose in cassava crops, which are of great relevance for cassava breeding programs (e.g., the search for genotypes with polygenic resistance since the pathogen is so diverse) and for developing anthracnose management strategies that can work efficiently against species complexes of Colletotrichum.

3.
Plants (Basel) ; 13(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732460

RESUMO

Anthracnose, caused by the fungus Colletotrichum lindemuthianum, poses a significant and widespread threat to the common bean crop. The use of plant genetic resistance has proven to be the most effective strategy for managing anthracnose disease. The Amendoim Cavalo (AC) Andean cultivar has resistance against multiple races of C. lindemuthianum, which is conferred by the Co-AC gene. Fine mapping of this resistance gene to common bean chromosome Pv01 enabled the identification of Phvul.001G244300, Phvul.001G244400, and Phvul.001G244500 candidate genes for further validation. In this study, the relative expression of Co-AC candidate genes was assessed, as well as other putative genes in the vicinity of this locus and known resistance genes, in the AC cultivar following inoculation with the race 73 of C. lindemuthianum. Gene expression analysis revealed significantly higher expression levels of Phvul.001G244500. Notably, Phvul.001G244500 encodes a putative Basic Helix-Loop-Helix transcription factor, suggesting its involvement in the regulation of defense responses. Furthermore, a significant modulation of the expression of defense-related genes PR1a, PR1b, and PR2 was observed in a time-course experiment. These findings contribute to the development of improved strategies for breeding anthracnose-resistant common bean cultivars, thereby mitigating the impact of this pathogen on crop yields and ensuring sustainable bean production.

4.
Plant Dis ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698519

RESUMO

Bacaba (Oenocarpus bacaba Mart.) is a native palm tree from Brazilian Amazon and Cerrado biomes. This tree produces a small, rounded fruit with dark skin and approximately 1.5 mm thick pulp, extensively utilized for palm heart extraction, juices, and jellies (De Cól et al. 2021). However, several diseases can adversely impact fruit yield and quality. During the 2021 growing season, anthracnose symptoms were observed in Bacaba fruits, with a disease incidence of 58% in fruits collected from the Abreulândia (9°37'15″ S, 49°9'3″ W) and Gurupi (12°25'46" S; 49°16'42" W) municipalities in Tocantins state, Brazil. A total of 198 fruits exhibiting anthracnose symptoms, characterized by deep necrotic spots, were collected. In the laboratory, symptomatic fruits had their external surfaces sterilized for 30 seconds in 70% ethanol, 1 min in 1.5% NaOCl, and then rinsed with sterile distilled water. Sterilized pieces of the fruit tissue were transferred to PDA medium and incubated for 7 days at 28 ºC with a 12 h photoperiod. After this period, two isolates were obtained from the colonies and were identified both macroscopically and microscopically as Colletotrichum sp. The colonies grown at PDA showed a white to grey cottony mycelia, with straight and fusiform conidia, ranging from 14.0 to 21.0 (mean value of 15.8 ± 1.8) µm in length and 4.0 to 7.0 (mean value of 5.5 ± 0.7) µm in width, (n = 50). For species identification, the intergenic spacer between DNA lyase, mating-type locus MAT1-2-1 (APN2/MAT-IGS), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), glutamine synthetase (GS), and ß-tubulin (TUB) loci were amplified and sequenced. Resulting sequences were deposited in GenBank (OR333843, OR333844, OR333845 and OR333846). BLAST analysis of the partial APN2/MAT-IGS (99%), GAPDH (99,48%), GS (99,32%) and TUB (99,48%) sequences showed highly similarity to C. siamense isolates (IIFT223 and CBS130147). Maximum likelihood multilocus analysis placed the isolate UFTC16 within the C. siamense clade with 98% bootstrap support, clearly assigning the isolate to this species. Morphological features were consistent with the description of C. siamense (Prihastuti et al., 2009). Inoculation of Bacaba fruits and seedlings was conducted to confirm pathogenicity. The surface of uninjured Bacaba fruits was inoculated with two drops (20 µL) of conidial suspension (106 conidia mL-1). The same methodology was adopted to placed healthy leaves of 35-day-old seedlings grown in plastic tubes. Two drops of sterile distilled water were inoculated on nonwounded healthy fruits and seedlings as a negative control. The fruits and seedlings were incubated for five days in a controlled chamber at 28 °C, 70-80% humidity and a "12-h photoperiod". The experiment was conducted with five replicates (five fruits and five seedlings inoculated per isolate) and repeated once. Typical symptoms of anthracnose were observed in the fruits and leaves of Bacaba seedlings five days after inoculation. No symptoms were observed in the negative control. The pathogen was reisolated from symptomatic fruits and leaves, showing similar morphological characteristics as the original isolate, fulfilling Koch's postulates. The identification of C. siamense as the causal agent of Bacaba anthracnose helps in the diagnosis and disease control strategies of the disease. Colletotrichum siamense is a cosmopolitan species and easily found in cultivated and non-cultivated species (Batista et al. 2023). However, to the best of our knowledge, this is the first report of C. siamense causing anthracnose on Bacaba.

5.
Pest Manag Sci ; 80(7): 3567-3577, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38459870

RESUMO

In the present study, we identified and characterized two defensin-like peptides in an antifungal fraction obtained from Capsicum chinense pepper fruits and inhibited the growth of Colletotrichum scovillei, which causes anthracnose. AMPs were extracted from the pericarp of C. chinense peppers and subjected to ion exchange, molecular exclusion, and reversed-phase in a high-performance liquid chromatography system. We investigated the endogenous increase in reactive oxygen species (ROS), the loss of mitochondrial functioning, and the ultrastructure of hyphae. The peptides obtained from the G3 fraction through molecular exclusion chromatography were subsequently fractionated using reverse-phase chromatography, resulting in the isolation of fractions F1, F2, F3, F4, and F5. The F1-Fraction suppressed C. scovillei growth by 90, 70.4, and 44% at 100, 50, and 25 µg mL-1, respectively. At 24 h, the IC50 and minimum inhibitory concentration were 21.5 µg mL-1 and 200 µg mL-1, respectively. We found an increase in ROS, which may have resulted in an oxidative burst, loss of mitochondrial functioning, and cytoplasm retraction, as well as an increase in autophagic vacuoles. MS/MS analysis of the F1-Fraction indicated the presence of two defensin-like proteins, and we were able to identify the expression of three defensin sequences in our C. chinense fruit extract. The F1-Fraction was also found to inhibit the activity of insect α-amylases. In summary, the F1-Fraction of C. chinense exhibits antifungal activity against a major pepper pathogen that causes anthracnose. These defensin-like compounds are promising prospects for further research into antifungal and insecticide biotechnology applications. © 2024 Society of Chemical Industry.


Assuntos
Capsicum , Colletotrichum , Defensinas , Mitocôndrias , Espécies Reativas de Oxigênio , Colletotrichum/efeitos dos fármacos , Colletotrichum/crescimento & desenvolvimento , Capsicum/microbiologia , Espécies Reativas de Oxigênio/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Defensinas/farmacologia , Defensinas/química , Antifúngicos/farmacologia , Antifúngicos/química , Proteínas de Plantas/farmacologia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Frutas/microbiologia
6.
Planta ; 259(2): 48, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38285194

RESUMO

MAIN CONCLUSION: This review provides valuable insights into plant molecular regulatory mechanisms during fungus attacks, highlighting potential miRNA candidates for future disease management. Plant defense responses to biotic stress involve intricate regulatory mechanisms, including post-transcriptional regulation of genes mediated by microRNAs (miRNAs). These small RNAs play a vital role in the plant's innate immune system, defending against viral, bacterial, and fungal attacks. Among the plant pathogenic fungi, Colletotrichum spp. are notorious for causing anthracnose, a devastating disease affecting economically important crops worldwide. Understanding the molecular machinery underlying the plant immune response to Colletotrichum spp. is crucial for developing tools to reduce production losses. In this comprehensive review, we examine the current understanding of miRNAs associated with plant defense against Colletotrichum spp. We summarize the modulation patterns of miRNAs and their respective target genes. Depending on the function of their targets, miRNAs can either contribute to host resistance or susceptibility. We explore the multifaceted roles of miRNAs during Colletotrichum infection, including their involvement in R-gene-dependent immune system responses, hormone-dependent defense mechanisms, secondary metabolic pathways, methylation regulation, and biosynthesis of other classes of small RNAs. Furthermore, we employ an integrative approach to correlate the identified miRNAs with various strategies and distinct phases of fungal infection. This study provides valuable insights into the current understanding of plant miRNAs and their regulatory mechanisms during fungus attacks.


Assuntos
Colletotrichum , MicroRNAs , MicroRNAs/genética , Produtos Agrícolas
7.
Front Plant Sci ; 14: 1249555, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37929175

RESUMO

Sweet sorghum is an attractive feedstock for the production of renewable chemicals and fuels due to the readily available fermentable sugars that can be extracted from the juice, and the additional stream of fermentable sugars that can be obtained from the cell wall polysaccharides in the bagasse. An important selection criterion for new sweet sorghum germplasm is resistance to anthracnose, a disease caused by the fungal pathogen Colletotrichum sublineolum. The identification of novel anthracnose-resistance sources present in sweet sorghum germplasm offers a fast track towards the development of new resistant sweet sorghum germplasm. We established a sweet sorghum diversity panel (SWDP) of 272 accessions from the USDA-ARS National Plant Germplasm (NPGS) collection that includes landraces from 22 countries and advanced breeding material, and that represents ~15% of the NPGS sweet sorghum collection. Genomic characterization of the SWDP identified 171,954 single nucleotide polymorphisms (SNPs) with an average of one SNP per 4,071 kb. Population structure analysis revealed that the SWDP could be stratified into four populations and one admixed group, and that this population structure could be aligned to sorghum's racial classification. Results from a two-year replicated trial of the SWDP for anthracnose resistance response in Texas, Georgia, Florida, and Puerto Rico showed 27 accessions to be resistant across locations, while 145 accessions showed variable resistance response against local pathotypes. A genome-wide association study identified 16 novel genomic regions associated with anthracnose resistance. Four resistance loci on chromosomes 3, 6, 8 and 9 were identified against pathotypes from Puerto Rico, and two resistance loci on chromosomes 3 and 8 against pathotypes from Texas. In Georgia and Florida, three resistance loci were detected on chromosomes 4, 5, 6 and four on chromosomes 4, 5 (two loci) and 7, respectively. One resistance locus on chromosome 2 was effective against pathotypes from Texas and Puerto Rico and a genomic region of 41.6 kb at the tip of chromosome 8 was associated with resistance response observed in Georgia, Texas, and Puerto Rico. This publicly available SWDP and the extensive evaluation of anthracnose resistance represent a valuable genomic resource for the improvement of sorghum.

8.
Int J Mol Sci ; 24(22)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38003212

RESUMO

Anthracnose (ANT) and angular leaf spot (ALS) are significant diseases in common bean, leading to considerable yield losses under specific environmental conditions. The California Dark Red Kidney (CDRK) bean cultivar is known for its resistance to multiple races of both pathogens. Previous studies have identified the CoPv01CDRK/PhgPv01CDRK resistance loci on chromosome Pv01. Here, we evaluated the expression levels of ten candidate genes near the CoPv01CDRK/PhgPv01CDRK loci and plant defense genes using quantitative real-time PCR in CDRK cultivar inoculated with races 73 of Colletotrichum lindemuthianum and 63-39 of Pseudocercospora griseola. Gene expression analysis revealed that the Phvul.001G246300 gene exhibited the most elevated levels, showing remarkable 7.8-fold and 8.5-fold increases for ANT and ALS, respectively. The Phvul.001G246300 gene encodes an abscisic acid (ABA) receptor with pyrabactin resistance, PYR1-like (PYL) protein, which plays a central role in the crosstalk between ABA and jasmonic acid responses. Interestingly, our results also showed that the other defense genes were initially activated. These findings provide critical insights into the molecular mechanisms underlying plant defense against these diseases and could contribute to the development of more effective disease management strategies in the future.


Assuntos
Colletotrichum , Phaseolus , Mapeamento Cromossômico , Colletotrichum/genética , Resistência à Doença/genética , Ligação Genética , Marcadores Genéticos , Rim , Phaseolus/genética , Doenças das Plantas/genética
9.
Plant Dis ; 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37822101

RESUMO

Strawberry (Fragaria x ananassa) production in Argentina extends to around 1700 hectares. Coronda city, located in Santa Fe province, is an important strawberry producer due to ideal agroecological conditions for culture and a high specialization for production. In November 2021, anthracnose symptoms were observed on strawberries cvs. 'San Andreas' and 'Splendor' in Coronda (31°58'S, 60°55'W), central Argentina. During these years, the incidence of the disease reached 40% of the production. Symptoms included 2-3 mm circular to irregular dark brown spots which enlarged rapidly and became sunken. Under high humidity conditions, concentric rings of pinhead-size salmon-colored acervuli developed on the lesions. The causal agent was isolated by touching acervuli with a sterile needle and monosporic cultures were obtained on PDA after 10 days at 25°C, with a 12-h light period. Colonies were white to gray on the top and orange on the underside, where concentric rings of salmon acervuli were clearly distinguished. The width and length of one hundred conidia were examined in three isolates (CF1, CF2, and CF3), ranging from 3.27 to 5.53 µm (avg.= 4.3 µm), and from 10.37 to 19.52 µm (avg.= 14.27 µm), respectively. The conidia were hyaline, smooth-walled, aseptate, and cylindric-clavate with one end round and one end acute. These morphological characteristics correspond to species belonging to the C. acutatum complex (Damm et al. 2012; Liu et al. 2022). To accurately identify the species, DNA was extracted from isolates, and ß-tubulin (TUB2), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and histone (HIS3) genes were partially amplified and sequenced (Vieira et al. 2020). TUB2, GAPDH, and HIS3 sequences presented a 100% of identity with species of Colletotrichum nymphaeae. The nucleotide sequences were deposited in GenBank (OR271556-OR271558, TUB2; OR271559-OR271561, GAPDH; and OR271562-OR271564, HIS3). Multilocus phylogenetic analyses performed with reference sequences (Damm et al. 2012) showed that the three isolates clustered with C. nymphaeae, in accordance with BLAST results. To confirm pathogenicity, each isolate was inoculated in eight detached fruits of the cultivar from which it was originally obtained. Two drops of 10 µl of conidial suspension (1x105 conidia per ml) were deposited in non-wounded areas on fruits previously disinfested with 1% sodium hypochlorite solution for 1 min and rinsed twice with sterile distilled water. Drops of sterile water were deposited in eight fruits as control. Pathogenicity tests were repeated twice. Fruits were kept in moist chamber (80+5% relative humidity) at 25°C for ten days. First symptoms appeared 4 days after inoculation. After that, all of the isolates produced symptoms identical to those previously described, whereas the controls remain symptomless. The pathogen was re-isolated from lesions, and identified as C. nymphaeae by morphological characteristics and based on the TUB2 sequences, as previously described. Strawberry anthracnose in Argentina was previously associated with Colletotrichum acutatum, C. gloeosporioides and C. fragariae species based on morphological characteristics (Ramallo et al. 2000; Monaco et al. 2000) but molecular identification was not performed until today. To our knowledge, this is the first report of C. nymphaeae causing anthracnose on strawberry in Argentina. This accurate identification will help to develop more efficient management strategies.

10.
Molecules ; 28(13)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37446855

RESUMO

The seed yield of guarana (Paullinia cupana H.B.K. var. sorbilis) is affected by weeds. Management is difficult for Amazon farmers and ranchers, owing to the hot and humid climate prevailing in the region, which makes mechanical control inefficient and leads farmers to the decision to use herbicides. Herbicide damage to this species is unknown. The objective of this study was to evaluate glyphosate damage to the development and quality of guarana seedlings. The treatments consisted of glyphosate doses at concentrations of 0, 126, 252, 540, 1080, 2160 and 3240 g a.e. ha-1 and were evaluated for 60 days, in two applications. Analyses were performed for biometrics, seedling development, anthracnose and Injury characteristics. Glyphosate caused symptoms of Injury in all doses applied, but lower doses did not interfere with seedling growth and development. There was a correlation between anthracnose severity and increased glyphosate dose. When applied correctly, glyphosate can be an integrated weed management tool for use in guarana crops.


Assuntos
Herbicidas , Paullinia , Plântula , Sementes , Glifosato
11.
J Fungi (Basel) ; 9(6)2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37367558

RESUMO

Fruits and vegetables are constantly affected by postharvest diseases, of which anthracnose is one of the most severe and is caused by diverse Colletotrichum species, mainly C. gloeosporioides. In the last few decades, chemical fungicides have been the primary approach to anthracnose control. However, recent trends and regulations have sought to limit the use of these substances. Greener management includes a group of sustainable alternatives that use natural substances and microorganisms to control postharvest fungi. This comprehensive review of contemporary research presents various sustainable alternatives to C. gloeosporioides postharvest control in vitro and in situ, ranging from the use of biopolymers, essential oils, and antagonistic microorganisms to cultivar resistance. Strategies such as encapsulation, biofilms, coatings, compounds secreted, antibiotics, and lytic enzyme production by microorganisms are revised. Finally, the potential effects of climate change on C. gloeosporioides and anthracnose disease are explored. Greener management can provide a possible replacement for the conventional approach of using chemical fungicides for anthracnose postharvest control. It presents diverse methodologies that are not mutually exclusive and can be in tune with the needs and interests of new consumers and the environment. Overall, developing or using these alternatives has strong potential for improving sustainability and addressing the challenges generated by climate change.

12.
CienciaUAT ; 17(2): 165-180, ene.-jun. 2023. tab, graf
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1447827

RESUMO

RESUMEN La papaya es una fruta climatérica altamente perecedera. La antracnosis, enfermedad provocada por hongos, es una de las principales causas de pérdida poscosecha. La actividad de extractos vegetales ha permitido la inhibición del desarrollo de microorganismos, en particular se ha reportado la actividad antifúngica de aceites esenciales. El objetivo de la presente investigación fue evaluar el efecto de un recubrimiento biodegradable a base de quitosano con aceite esencial de cítricos, aplicado en etapa poscosecha, en las propiedades físicoquímicas, fisiológicas e inhibición del crecimiento del hongo Colletotrichum gloeosporioides en frutos de papaya (Carica papaya L.). El recubrimiento se preparó con quitosano, glicerol, ácido acético, aceite esencial de Citrus reticulata (0.5 %, 1.0 % y 1.5 %) y Tween® 80. La solución se aplicó con una brocha en la epidermis de los frutos de papaya y se almacenaron a temperatura ambiente (24 °C ± 2 °C) por 10 d, junto con los frutos testigo. Las variables evaluadas en los frutos fueron color, pH, sólidos solubles totales (SST), firmeza, pérdida de peso, producción de CO2, de etileno y daño por antracnosis. Se utilizó un modelo estadístico completamente al azar. Los datos se sometieron al análisis de varianza (ANOVA) y comparación de medias por la prueba de Tukey (P < 0.05). El recubrimiento aplicado retrasó el cambio de color de la epidermis de los frutos de papaya, la pérdida de peso, firmeza y SST respecto a los frutos testigo. Los cambios estuvieron asociados a la modificación de la tasa de respiración y de producción de etileno de los frutos con recubrimiento. La matriz del quitosano conteniendo aceites escenciales, usada como recubrimiento, mejoró significativamente la vida de anaquel de la papaya y disminuyó más del 80 % el daño por antracnosis.


ABSTRACT Papaya is a highly perishable climacteric fruit. Anthracnose, a disease provoked by fungus, is one of the main causes of postharvest losses. The activity of plant extracts has allowed the inhibition of the development of microorganisms; in particular, the antifungal activity of essential oils has been reported. The aim of this research was to evaluate the effect of a biodegradable antifungal coating based on chitosan with citrus essential oil in the physicochemical and physiological properties and the antifungal activity of postharvest papaya (Carica papaya L.). The coating was prepared with chitosan, glycerol, acetic acid, essential oil of Citrus reticulata (0.5 %, 1.0 % and 1.5 %) and Tween® 80. The solution was applied with a brush to the epidermis of the postharvest papaya fruits and stored at room temperature (24 °C ± 2 °C) for 10 d. The variables evaluated in the fruits were color, pH, °Brix, firmness, weight loss, production of CO2 and ethylene and anthracnose damage. An analysis of variance (ANOVA) was performed under a completely randomized design and a comparison of Tukey means (P < 0.05). The coating applied delayed the color change of the epidermis of the papaya fruits, these maintained the high firmness values with respect to the control fruits. The changes were associated with the modification of the respiration rate and ethylene production of the coated fruits. The chitosan matrix containing essential oils used as a coating significantly improved shelf life of papaya and decreased anthracnose damage by 80 %.

13.
Plant Dis ; 107(8): 2460-2466, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36723961

RESUMO

Anthracnose has become one of the main threats to soybean production and is considered the most important disease in some soybean-producing areas. Colletotrichum truncatum is the species most commonly associated with anthracnose and produces microsclerotia. However, the role of microsclerotia in the epidemiology of soybean anthracnose disease has not yet been described. The aim of this study was to determine whether C. truncatum microsclerotia can survive and maintain pathogenicity for a period of up to 246 days, corresponding to the off-season period of soybean cultivation in Brazil. Therefore, microsclerotia of two pathogenic isolates of C. truncatum (CMES1059 and LFN0297) were produced and placed in polyester bags, which were kept under field conditions either on the soil surface under maize straw or buried 8-cm deep. The bags were collected monthly for a period of up to 246 days to assess the viability of microsclerotia based on their germination and typical colony growth. The logistic regression model was used for data analysis considering viable and nonviable microsclerotia. In addition, periodic sowing of soybean was done in the soil infested with LFN0297 microsclerotia to test pathogenicity up to 246 days after soil infestation. C. truncatum microsclerotia survived from 92 to 246 days in the field soil, with the highest recovery of viable microsclerotia at 153 days. C. truncatum was reisolated from soybean plants sown in infested soil at 245 days postinoculation. The isolates from the last microsclerotia sampling from the field (246 days) and those obtained from a plant at the last sowing date (245 days) had the same genotypic profile for 12 microsatellite loci as the isolates used to perform the experiments. C. truncatum microsclerotia in soil may serve as the primary inoculum for soybean anthracnose.


Assuntos
Colletotrichum , Solo , Doenças das Plantas , Glycine max
14.
Heliyon ; 9(2): e13082, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36798775

RESUMO

Derivatives of 3,9-dimethoxypterocarpan (1, homopterocarpin) were prepared by nitration, amination, and oxidation reactions, among others, and their antifungal activity was evaluated against the phytopathogenic fungi Colletotrichum gloeosporioides and C. lindemuthianum. Derivatives were purified by chromatographic techniques and identified by nuclear magnetic resonance spectroscopy. Eight derivatives were obtained from 1 corresponding to 3,9-dimethoxy-8-nitropterocarpan (2), 3,9-dimethoxy-2,8-dinitropterocarpan (3), 3,9-dimethoxy-2,8,10-trinitropterocarpan (4), 2,8-diamino-3,9-dimethoxypterocarpan (5), 3,9-dimethylcoumestan (6), medicarpin (7), 2'-hydroxy-4-(2-hydroxyethylsulfanyl)-7,4'-dimethoxyisoflavan (8), and 4-(2-hydroxyethylsulfanyl)-7,2',4'-trimethoxyisoflavan (9). The in vitro antifungal activity of the derivatives was determined at concentrations between 35 and 704 µM. Compounds 7 and 8 at 704 µM, showed an inhibition of radial growth and spore germination close to 100%, exceeding that found for the starting compound 1, which was 46%. Growth inhibition assays were also performed for the derivative 8 on papaya fruits (Carica papaya L. cv. Hawaiana) and mango (Mangifera indica L. cv. Hilacha) infected with C. gloeosporioides. Compound 8 showed fungal growth inhibition in fruits higher than that found for 1 and thymol (a recognized natural antifungal), under the same conditions. In general, derivatives that exhibited greater antifungal activity correspond to the compounds containing hydroxyl groups in the structure. Some of the compounds obtained could be considered promising for the control of phytopathogenic fungi.

15.
Foods ; 12(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36673370

RESUMO

Post-harvest diseases can be a huge problem for the tropical fruit sector. These fruits are generally consumed in natura; thus, their integrity and appearance directly affect commercialization and consumer desire. Anthracnose is caused by fungi of the genus Colletotrichum and affects tropical fruits, resulting in lesions that impair their appearance and consumption. Antifungals generally used to treat anthracnose can be harmful to human health, as well as to the environment. Therefore, essential oils (EO) have been investigated as natural biofungicides, successfully controlling anthracnose symptoms. The hydrophobicity, high volatility, and oxidative instability of essential oils limit their direct application; hence, these oils must be stabilized before food application. Distinct delivery systems have already been proposed to protect/stabilize EOs, and nanotechnology has recently reshaped the food application limits of EOs. This review presents robust data regarding nanotechnology application and EO antifungal properties, providing new perspectives to further improve the results already achieved in the treatment of anthracnose. Additionally, it evaluates the current scenario involving the application of EO directly or incorporated in films and coatings for anthracnose treatment in tropical fruits, which is of great importance, especially for those fruits intended for exportation that may have a prolonged shelf life.

16.
J Chem Ecol ; 49(1-2): 87-102, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36631524

RESUMO

Anthracnose caused by Colletotrichum gloeosporioides affects the leaves, inflorescences, nuts, and peduncles of cashew trees (Anacardium occidentale). The use of genetically improved plants and the insertion of dwarf cashew clones that are more resistant to phytopathogens are strategies to minimize the impact of anthracnose on cashew production. However, resistance mechanisms related to the biosynthesis of secondary metabolites remain unknown. Thus, this study promoted the investigation of the profile of volatile organic compounds of resistant cashew clone leaves ('CCP 76', 'BRS 226' and 'BRS 189') and susceptible ('BRS 265') to C. gloeosporioides, in the periods of non-infection and infection of the pathogen in the field (July-December 2019 - Brazil). Seventy-eight compounds were provisionally identified. Chemometric analyses, such as Principal Component Analysis (PCA), Discriminating Partial Least Squares Analysis (PLS-DA), Discriminating Analysis of Orthogonal Partial Least Squares (OPLS-DA), and Hierarchical Cluster Analysis (HCA), separated the samples into different groups, highlighting hexanal, (E)-hex-2-enal, (Z)-hex-2-en-1-ol, (E)-hex-3-en-1-ol, in addition to α-pinene, α-terpinene, γ-terpinene, ß-pinene, and δ-3-carene, in the samples of the resistant clones in comparison to the susceptible clone. According to the literature, these metabolites have antimicrobial activity and are therefore chemical marker candidates for resistance to C. gloeosporioides in cashew trees.


Assuntos
Anacardium , Compostos Orgânicos Voláteis , Cromatografia Gasosa-Espectrometria de Massas , Anacardium/química , Compostos Orgânicos Voláteis/análise , Microextração em Fase Sólida , Análise por Conglomerados
17.
Mol Ecol ; 32(10): 2428-2442, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-35076152

RESUMO

Invasions by fungal plant pathogens pose a significant threat to the health of agricultural ecosystems. Despite limited standing genetic variation, many invasive fungal species can adapt and spread rapidly, resulting in significant losses to crop yields. Here, we report on the population genomics of Colletotrichum truncatum, a polyphagous pathogen that can infect more than 460 plant species, and an invasive pathogen of soybean in Brazil. We study the whole-genome sequences of 18 isolates representing 10 fields from two major regions of soybean production. We show that Brazilian C. truncatum is subdivided into three phylogenetically distinct lineages that exchange genetic variation through hybridization. Introgression affects 2%-30% of the nucleotides of genomes and varies widely between the lineages. We find that introgressed regions comprise secreted protein-encoding genes, suggesting possible co-evolutionary targets for selection in those regions. We highlight the inherent vulnerability of genetically uniform crops in the agro-ecological environment, particularly when faced with pathogens that can take full advantage of the opportunities offered by an increasingly globalized world. Finally, we discuss "the means, motive and opportunity" of fungal pathogens and how they can become invasive species of crops. We call for more population genomic studies because such analyses can help identify geographical areas and pathogens that pose a risk, thereby helping to inform control strategies to better protect crops in the future.


Assuntos
Ecossistema , Introgressão Genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Evolução Biológica , Glycine max/genética , Glycine max/microbiologia
18.
Plant Dis ; 107(6): 1794-1808, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36415891

RESUMO

Since 2005 in Íxtaro, Michoacán, symptoms of Harzia infection have been observed on immature Annona cherimola fruit with Colletotrichum fragariae-induced anthracnose lesions and mummified fruit. This study aimed to identify the Harzia sp. and evaluate its pathogenicity. Four isolates were obtained from fruit exhibiting symptoms, cultured in four types of agar under various conditions, and characterized based on concatenated internal transcribes spacer (ITS) + large subunit and ITS + small subunit sequences. Additionally, the isolates were compared with two CBS species (two-type strains and two isolates) of Harzia patula and H. tenella under the same conditions as the Harzia isolates, and all known Harzia spp. in culture were included in two phylogenetic analyses. H. ixtarensis sp. nov. was proposed. Compared with H. patula CBS isolate 121524 which was the most closely phylogenetically related species, H. ixtarensis was characterized by slower colony growth (white to salmonish-beige), different percentages of two forms of conidia (elongated and globose; unicellular and hyaline to subhyaline), and smaller conidia. The conidia mainly germinated with two hyaline tubes without an appressorium. In situ inoculations (1 × 106 ml-1 conidia suspension) of fruit showed that fruit with wounds developed larger lesions than those without wounds. Harzia inoculation on anthracnose lesions (induced by prior inoculation with C. fragariae) produced larger anthracnose lesions than C. fragariae alone. When C. fragariae or H. ixtarensis was inoculated alone, the lesion size was 51 and 99% smaller, respectively, indicating synergy between C. fragariae and H. ixtarensis. Thus, H. ixtarensis may have a parasitic-synergistic and necrotrophic lifestyle, and exhibited symptoms on anthracnose lesions.


Assuntos
Annona , México , Frutas , Filogenia , Esporos Fúngicos
19.
Biosci. j. (Online) ; 39: e39099, 2023.
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1567598

RESUMO

Anthracnose is the primary disease in Phaseolus lunatus cultures, causing severe losses. Inoculation techniques are vital for assessing genotype resistance and control methods at the early stages of seedling development. This study aimed to compare inoculation methods and exposure times of a lima bean seed variety to Colletotrichum truncatum using a completely randomized 4x5 factorial design with five replications. Seed inoculation methods by direct contact with mycelium, mannitol water restrictor, and sucrose water restrictor and immersion in conidia suspension were compared and submitted to substrates containing the developed pathogen or not at exposure times of 0, 36, 60, 84, and 108 hours. Evaluations were made by analyzing the severity, incidence, and disease index for anthracnose and seedling physiological quality under greenhouse conditions. The inoculation method by direct contact with sucrose solute for 36 hours was the most suitable for C. truncatum inoculation in lima bean seeds, providing a higher transmission rate but slightly affecting their physiological parameters. C. truncatum damage to lima bean seed performance increased with longer exposure times, regardless of the inoculation method.

20.
Front Plant Sci ; 13: 1046418, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36507428

RESUMO

Introduction: Soybean (Glycine max) is among the most important crops in the world, and its production can be threatened by biotic diseases, such as anthracnose. Soybean anthracnose is a seed-borne disease mainly caused by the hemibiotrophic fungus Colletotrichum truncatum. Typical symptoms are pre- and post-emergence damping off and necrotic lesions on cotyledons, petioles, leaves, and pods. Anthracnose symptoms can appear early in the field, causing major losses to soybean production. Material and Methods: In preliminary experiments, we observed that the same soybean cultivar can have a range of susceptibility towards different strains of C. truncatum, while the same C. truncatum strain can cause varying levels of disease severity in different soybean cultivars. To gain a better understanding of the molecular mechanisms regulating the early response of different soybean cultivars to different C. truncatum strains, we performed pathogenicity assays to select two soybean cultivars with significantly different susceptibility to two different C. truncatum strains and analyzed their transcriptome profiles at different time points of interaction (0, 12, 48, and 120 h post-inoculation, hpi). Results and Discussion: The pathogenicity assays showed that the soybean cultivar Gm1 is more resistant to C. truncatum strain 1080, and it is highly susceptible to strain 1059, while cultivar Gm2 shows the opposite behavior. However, if only trivial anthracnose symptoms appeared in the more resistant phenotype (MRP; Gm1-1080; Gm2-1059) upon 120 hpi, in the more susceptible phenotype (MSP; Gm-1059; Gm2- 1080) plants show mild symptoms already at 72 hpi, after which the disease evolved rapidly to severe necrosis and plant death. Interestingly, several genes related to different cellular responses of the plant immune system (pathogen recognition, signaling events, transcriptional reprogramming, and defense-related genes) were commonly modulated at the same time points only in both MRP. The list of differentially expressed genes (DEGs) specific to the more resistant combinations and related to different cellular responses of the plant immune system may shed light on the important host defense pathways against soybean anthracnose.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA