Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Waste Manag ; 186: 153-165, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38905905

RESUMO

Population growth has driven an increased demand for solid construction materials, leading to higher amounts of construction and demolition waste (C&DW). Efficient strategies to manage this waste include reduction, reuse, and recycling. Technosols-soils engineered from recycled waste-can potentially help with environmental challenges. However, there is a critical need to explore the potential of Technosols constructed with C&DW for land reclamation, through the growth of native vegetation. The objective of this study was to investigate this potential by studying two Brazilian native tree species (Guazuma ulmifolia and Piptadenia gonoacantha). Technosols were created using C&DW, with and without organic compost and a liquid biofertilizer. A soil health index (SHI) was applied to evaluate the soil quality regarding physical, chemical, and biological indicators of Technosols compared to a control soil (Ferralsol). The results showed that P. gonoacantha plants presented the same height and total biomass in all treatments, while G. ulmifolia plants exhibited greater height and total biomass when grown in Technosols. The enhanced plant development in the Technosols was primarily associated with higher cation exchangeable capacity and nutrients concentration in plant tissues. Technosols with added compost provided higher fertility and total organic carbon. Additionally, Technosols presented higher SHI (∼0.68) compared to control (∼0.38) for both studied species. Our experiment reveals that construction and demolition waste (C&DW) have significant potential to form healthy Technosols capable of supporting the growth of native Brazilian trees. This approach offers a promising alternative for addressing C&DW disposal challenges while serving as a nature-based solution for land reclamation.


Assuntos
Materiais de Construção , Reciclagem , Solo , Solo/química , Reciclagem/métodos , Brasil , Compostagem/métodos , Biomassa , Gerenciamento de Resíduos/métodos , Árvores , Resíduos Industriais
2.
Sci Total Environ ; 899: 165407, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37429467

RESUMO

Contaminated soil in urban residential areas is often overlooked as a source of childhood exposure to toxic levels of lead (Pb). We document mean Pb concentrations of 1200 ± 1000 mg/kg, three times the now outdated EPA soil hazard standard of 400 mg/kg, for 370 surface soils collected from 76 homes in the boroughs of Brooklyn and Manhattan of New York City. The mean Pb content of 250 ± 290 mg/kg Pb for 571 surface soils collected from tree pits and public parks was much lower. A subset of 22 surface samples analyzed by EPA Method 1340 extracted 86 ± 21 % (±1SD) of total soil Pb, indicating that it the Pb was highly bioavailable. To investigate the origin of backyard contamination, 49 cores were collected to an average depth of 30 cm from a subset of 27 homes. Twelve soil cores were analyzed for 210Pb and 137Cs to constrain processes that impact contaminant distribution and inventories (particle focusing, soil accumulation, loss, and mixing). Concentrations of Pb declined with depth in 60 % of the cores but usually did not reach background. Mean uncorrected Pb inventories of 340 ± 210 g/m2 Pb (mean ± 1SD, n = 12) were more than five times higher than the radionuclide corrected inventory of 57 g/m2 from Central Park soil cores. Average inventories of 210Pbxs (3.5 ± 0.9 kBq/m2) and 137Cs (0.9 ± 0.6 kBq/m2) corresponded to 71 ± 19 % and 50 ± 30 % of the predicted atmospheric inventories. Elevated Pb concentrations were found both in the fine (<1 mm) and coarse (>1 mm) fractions, the latter suggesting a local non-atmospheric source. This was confirmed by individual grains containing up to 6 % Pb and visible pieces of coal, bricks, and ash. Regardless of the source of contamination in backyard soils, systematic testing is needed to identify contaminated areas and reduce child exposure.


Assuntos
Poluentes do Solo , Solo , Criança , Humanos , Chumbo , Poluentes do Solo/análise , Radioisótopos de Césio , Monitoramento Ambiental
3.
Sci Total Environ ; 856(Pt 2): 159169, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36206907

RESUMO

Since the birth of soil science, climate has been recognized as a soil-forming factor, along with parent rock, time, topography, and organisms (from which humans were later kept distinct), often prevalent on the other factors on the very long term. But the climate is in turns affected by soils and their management. This paper describes the interrelationships between climate - and its current change - and soil, focusing on each single factor of its formation. Parent material governs, primarily through the particle size distribution, the capacity of soil to retain water and organic matter, which are two main soil-related drivers of the climate. Time is the only unmanageable soil-forming factor; however, extreme climatic phenomena can upset the soil or even dismantle it, so as to slow down the pathway of pedogenesis or even make it start from scratch. Topography, which drives the pedogenesis mostly controlling rainfall distribution - with repercussions also on the climate - is not anymore a given factor because humans have often become a shaper of it. Indeed humans now play a key role in affecting in a plethora of ways those soil properties that most deal with climate. The abundance and diversity of the other organisms are generally positive to soil quality and as a buffer for climate, but there are troubling evidences that climate change is decreasing soil biodiversity. The corpus of researches on mutual feedback between climate and soil has essentially demonstrated that the best soil management in terms of climate change mitigation must aim at promoting vegetation growth and maximizing soil organic matter content and water retention. Some ongoing virtuous initiatives (e.g., the Great Green Wall of Africa) and farming systems (e.g., the conservation agriculture) should be extended as much as possible worldwide to enable the soil to make the greatest contribution to climate change mitigation.


Assuntos
Agricultura , Solo , Humanos , Mudança Climática , Biodiversidade , Água
4.
Front Plant Sci ; 13: 900231, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35845640

RESUMO

Trees acquire hydric and mineral soil resources through root mutualistic associations. In most boreal, temperate and Mediterranean forests, these functions are realized by a chimeric structure called ectomycorrhizae. Ectomycorrhizal (ECM) fungi are highly diversified and vary widely in their specificity toward plant hosts. Reciprocally, association patterns of ECM plants range from highly specialist to generalist. As a consequence, ECM symbiosis creates interaction networks, which also mediate plant-plant nutrient interactions among different individuals and drive plant community dynamics. Our knowledge of ECM networks essentially relies on a corpus acquired in temperate ecosystems, whereas the below-ground facets of both anthropogenic ECM forests and inter-tropical forests remain poorly investigated. Here, we successively (1) review the current knowledge of ECM networks, (2) examine the content of early literature produced in ECM cultivated forests, (3) analyze the recent progress that has been made in understanding the place of ECM networks in urban soils, and (4) provide directions for future research based on the identification of knowledge gaps. From the examined corpus of knowledge, we reach three main conclusions. First, the emergence of metabarcoding tools has propelled a resurgence of interest in applying network theory to ECM symbiosis. These methods revealed an unexpected interconnection between mutualistic plants with arbuscular mycorrhizal (AM) herbaceous plants, embedding ECM mycelia through root-endophytic interactions. This affinity of ECM fungi to bind VA and ECM plants, raises questions on the nature of the associated functions. Second, despite the central place of ECM trees in cultivated forests, little attention has been paid to these man-made landscapes and in-depth research on this topic is lacking. Third, we report a lag in applying the ECM network theory to urban soils, despite management initiatives striving to interconnect motile organisms through ecological corridors, and the highly challenging task of interconnecting fixed organisms in urban greenspaces is discussed. In particular, we observe a pauperized nature of resident ECM inoculum and a spatial conflict between belowground human pipelines and ECM networks. Finally, we identify the main directions of future research to make the needed link between the current picture of plant functioning and the understanding of belowground ECM networks.

5.
Environ Geochem Health ; 43(12): 5065-5086, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33945056

RESUMO

Authors aim to carry out a bibliographic review as an initial approach to state of the art related to the quality of urban soils, as well as its possible link with human health. This concern arises from the need to highlight the consequences that soil could face, derived from the growth and aging of the population, as well as its predicted preference for urban settlement. Urban development may pose a challenge to the health of urban soils, due to degradative processes that it entails, such as land take, sealing, contamination or compaction. A healthy soil is the one which maintains the capacity to support ecosystem services, so it can provide numerous benefits to human health and well-being (carbon sequestration, protection against flooding, retention and immobilization of pollutants and a growth media for vegetation and food production). This article addresses threats facing urban soils, the strategies put forward by the European Union to deal with them, as well as the issues that require further attention. Greening cities could be a consensual solution, so authors analyze whether soils of cities are ready for that challenge and what resources need to maintain soil ecosystem functions. This review proposes to use made by waste Technosols for a sustainable green city. Although the use of Technosols as a type of soil is very recent, the interest of the scientific community in this field continues to grow.


Assuntos
Ecossistema , Poluentes do Solo , Cidades , Humanos , Solo , Poluentes do Solo/análise
6.
Sci Total Environ ; 722: 137815, 2020 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-32179299

RESUMO

Humic acids (HA) play an important role in the distribution, toxicity, and bioavailability of metals in the environment. Humic-like acids (HLA) that simulate geochemical processes can be prepared by NaOH aqueous extraction from hydrochars produced by hydrothermal carbonization (HTC). HLA can exhibit properties such as those found in HA from soils, which are known for their ability to interact with inorganic and organic compounds. The molecular characteristics of HLA and HA help to explain the relationship between their molecular features and their interaction with metallic species. The aim of this study is to assess the molecular features of HA extracted from Terra Mulata (TM) and HLA from hydrochars as well as their interaction with metals by using Cu(II) ions as a model. The results from 13C NMR, elemental analysis, FTIR, and UV-Vis showed that HA are composed mostly of aromatic structures and oxygenated functional groups, whereas HLA showed a mutual contribution of aromatic and aliphatic structures as main constituents. The interactions of HA and HLA with Cu(II) ions were evaluated through fluorescence quenching, in which the density of complexing sites per gram of carbon for interaction was higher for HLA than for HA. Furthermore, the HLA showed similar values for stability constants, and higher than those found for other types of HA in the literature. In addition, the average lifetime in both humic extracts appeared to be independent of the copper addition, indicating that the main mechanism of interaction was static quenching with a non-fluorescent ground-state complex formation. Therefore, the HLA showed the ability to interact with Cu(II) ions, which suggests that their application can provide a new approach for remediation of contaminated areas.

7.
Sci Total Environ ; 714: 136761, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-31982757

RESUMO

Serpentine minerals with high levels of geologic chromium (Cr) and nickel (Ni) and non-serpentine farmlands polluted by irrigation water causing high anthropogenic Cr and Ni levels are both found in Taiwan. Elevated levels of Cr and Ni in these soils are a concern due to their potential to promote cancer mortality in humans. Bioaccessibility is a crucial factor determining the actual health risk via oral ingestion when children are exposed to metal-contaminated soils. Furthermore, the bioaccessibility of metals varies with the source, soil properties, and fractionation of metals in the soil. Therefore in this study, soil pH, total organic carbon (TOC), texture, and the total concentrations, fractionation, and bioaccessibility of Cr and Ni were analyzed and correlated for soils collected from serpentine mineral-containing deposits and contaminated non-serpentine farmlands. The low bioaccessibility and low mobility of Cr and Ni in serpentine soils suggested that incidental ingesting of soils posed a low health risk; however, the higher bioaccessibility and mobility of Ni in non-serpentine soils contaminated by electroplating wastewater could lead to potential risks for humans. Additionally, a significant difference in the bioaccessibility of Ni was observed between serpentine and non-serpentine soils, but this was not shown for Cr. Accordingly, a correlation analysis showed that Cr bioaccessibility was positively correlated with TOC, with no distinction between serpentine and non-serpentine soils. In contrast, TOC and the fractions of the sequential extraction procedure were significantly correlated with Ni bioaccessibility both in anthropogenically contaminated non-serpentine soils and in natural serpentine soils.


Assuntos
Solo , Cromo , Níquel , Poluentes do Solo , Taiwan
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA