Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 248
Filtrar
1.
Macromol Rapid Commun ; : e2400596, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39319677

RESUMO

Biomimetic slippery liquid-infused porous surfaces (SLIPS) have emerged as a promising solution to solve the limitations of superhydrophobic surfaces, such as inadequate durability in corrosion protection and a propensity for frosting. However, the challenge of ensuring strong, lasting adhesion on diverse materials to enhance the durability of the lubricant layer remains. The research addresses this by leveraging amyloid phase-transitioned lysozyme (PTL) as an adhesive interlayer, conferring stable attachment of SLIPS across a variety of substrates, including metals, inorganics, and polymers. The silica-textured interface robustly secures the lubricant with a notably low sliding angle of 1.15°. PTL-mediated adhesion fortifies the silicone oil attachment to the substrate, ensuring the retention of its repellent efficacy amidst mechanical stressors like ultrasonication, water scrubbing, and centrifugation. The integration of robust adhesion, cross-substrate compatibility, and durability under stress affords the PTL-modified SLIPS exceptional anti-fouling, anti-icing, and anti-corrosion properties, marking it as a leading solution for advanced protective applications.

2.
Materials (Basel) ; 17(18)2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39336241

RESUMO

Superhydrophobic strain sensors are highly promising for human motion and health monitoring in wet environments. However, the introduction of superhydrophobicity inevitably alters the mechanical and conductive properties of these sensors, affecting sensing performance and limiting behavior monitoring. Here, we developed an alkylated MXene-carbon nanotube/microfiber composite material (AMNCM) that is simultaneously flexible, superhydrophobic, and senses properties. Comprising a commercially available fabric substrate that is coated with a functional network of alkylated MXene/multi-walled carbon nanotubes and epoxy-silicone oligomers, the AMNCM offers high mechanical and chemical robustness, maintaining high conductivity and strain sensing properties. Furthermore, the AMNCM strain sensor achieves a gauge factor of up to 51.68 within a strain range of 80-100%, and exhibits rapid response times (125 ms) and long-term stability under cyclic stretching, while also displaying superior direct/indirect anti-fouling capabilities. These properties position the AMNCM as a promising candidate for next-generation wearable devices designed for advanced environmental interactions and human activity monitoring.

3.
Polymers (Basel) ; 16(16)2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39204543

RESUMO

Photocatalytic membranes are crucial in addressing membrane fouling issues. However, the grafting amount of the catalyst on the membrane often becomes a key factor in restricting the membrane's self-cleaning capability. To address the challenge, this manuscript proposes a method for solving membrane fouling, featuring high grafting rates of bismuth oxide (Bi2O3) and acrylic acid (AA), significant contaminant degradation capability, and reusability. A highly photocatalytic self-cleaning microfiltration membrane made of polyvinylidene fluoride bismuth oxide and acrylic acid (PVDF-g-BA) was prepared by attaching nano Bi2O3 and acrylic acid onto the polyvinylidene fluoride membrane through adsorption/deposition and UV grafting polymerization. Compared with pure membranes and pure acrylic grafted membranes (PVDF-g-AA), the modified membrane grafted with 0.5% bismuth oxide not only improves the grafting rate and filtration performance, but also has higher self-cleaning ability. Furthermore, the degradation effect of this membrane on the organic dye methyl violet 2B under visible light irradiation is very significant, with a degradation rate reaching 90% and almost complete degradation after 12 h. Finally, after repeated filtration and photocatalysis, the membrane can still significantly degrade contaminants and can be reused.

4.
Biosens Bioelectron ; 264: 116667, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39146772

RESUMO

Developing the portable CRP detection technologies that are suitable for point-of-care (POC) and primary care management is of utmost importance, and advancing the electrochemical immunosensors hold promise for POC implementation. Nevertheless, non-specific adsorption of numerous interfering proteins in complex biological media contaminates immunosensors, thereby restricting the reliability in detection efficacy. In this study, a three-dimensional flower-leaf shape amyloid bovine serum albumin/gold nanoparticles/polyaniline (AL-BSA/AuNPs/PANI) coating on the surface of the electrode was developed, which demonstrated strong anti-adsorption properties against bovine serum albumin, plasma, and cells. The immunosensor exhibited a good linear relationship to CRP response, featuring a detection limit of 0.09 µg/mL, consistent with clinical reference range. In addition, the CRP immunosensor demonstrated excellent specificity in other inflammation-related proteins and commendable anti-interference performance for CRP detection in plasma and whole blood tests. Importantly, by combining the development of a USB flash disk-type portable electrochemical workstation with a reagent-free mode, the developed CRP electrochemical immunosensor delivered ideal results in clinical samples. The anti-fouling performance, sensitivity and specificity of the immunosensor, as well as its flexible test modes in clinical samples, provide important scientific basis for developing POC detection technologies of vital biomarkers in complex biological media.


Assuntos
Compostos de Anilina , Técnicas Biossensoriais , Proteína C-Reativa , Técnicas Eletroquímicas , Ouro , Limite de Detecção , Nanopartículas Metálicas , Soroalbumina Bovina , Ouro/química , Proteína C-Reativa/análise , Técnicas Biossensoriais/instrumentação , Humanos , Nanopartículas Metálicas/química , Soroalbumina Bovina/química , Técnicas Eletroquímicas/métodos , Compostos de Anilina/química , Imunoensaio/métodos , Imunoensaio/instrumentação , Sistemas Automatizados de Assistência Junto ao Leito , Animais , Bovinos , Anticorpos Imobilizados/química
5.
Biomolecules ; 14(8)2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39199346

RESUMO

The adherence of pathogenic microorganisms to surfaces and their association to form antibiotic-resistant biofilms threatens public health and affects several industrial sectors with significant economic losses. For this reason, the medical, pharmaceutical and materials science communities are exploring more effective anti-fouling approaches. This review focuses on the anti-fouling properties, structure-activity relationships and environmental toxicity of quaternary ammonium salts (QAS) and, as a subclass, ionic liquid compounds. Greener alternatives such as QAS-based antimicrobial polymers with biocide release, non-fouling (i.e., PEG, zwitterions), fouling release (i.e., poly(dimethylsiloxanes), fluorocarbon) and contact killing properties are highlighted. We also report on dual-functional polymers and stimuli-responsive materials. Given the economic and environmental impacts of biofilms in submerged surfaces, we emphasize the importance of less explored QAS-based anti-fouling approaches in the marine industry and in developing efficient membranes for water treatment systems.


Assuntos
Biofilmes , Incrustação Biológica , Compostos de Amônio Quaternário , Purificação da Água , Compostos de Amônio Quaternário/química , Compostos de Amônio Quaternário/farmacologia , Incrustação Biológica/prevenção & controle , Biofilmes/efeitos dos fármacos , Purificação da Água/métodos , Polímeros/química , Polímeros/farmacologia , Líquidos Iônicos/química , Líquidos Iônicos/toxicidade , Líquidos Iônicos/farmacologia
6.
Water Res ; 263: 122176, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39128422

RESUMO

Membrane distillation (MD) presents a promising alternative to conventional desalination systems, particularly for the treatment of hypersaline wastewater. However, the large-scale application of MD is hindered by challenges such as membrane wetting, membrane fouling, and low permeate flux. Herein, we proposed an air/liquid interface deposition method to fabricate a Janus membrane, termed the PVDF-PDA/PEI-Si membrane. The membrane featured a nanosieving, superhydrophilic polydopamine/polyethylenimine (PDA/PEI) layer decorated with silica nanoparticles, coupled with a microporous, hydrophobic polyvinylidene fluoride (PVDF) layer. The introduction of a dense PDA/PEI-Si layer featuring high surface energy significantly enhanced the wetting and fouling resistance of the membrane, with a minor effect on the permeate flux. The performance enhancement was particularly evident when hypersaline water containing sodium dodecyl sulfate (SDS) and oily contaminants was used as the feed. The interactions between the membrane and contaminants were calculated using the XDLVO theory and molecular dynamics simulations to elucidate the mechanisms underlying the enhanced anti-wetting and anti-fouling properties, respectively. According to the XDLVO theory, a large energy barrier must be overcome for the SDS to attach onto the PDA/PEI-Si surface. Meanwhile, molecular dynamics simulations confirmed the weak interaction energy between the oily foulants and the PVDF-PDA/PEI-Si membrane due to its high surface energy. This study presents a promising approach for the fabrication of high-performance MD membranes and provides new insights into the mechanisms underlying the enhanced anti-wetting and anti-fouling properties.


Assuntos
Destilação , Membranas Artificiais , Destilação/métodos , Purificação da Água/métodos , Molhabilidade , Polivinil/química , Interações Hidrofóbicas e Hidrofílicas , Incrustação Biológica/prevenção & controle , Indóis/química , Polímeros/química , Polímeros de Fluorcarboneto
7.
Chemosphere ; 363: 142808, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38992443

RESUMO

The design of hydrophilic polyvinylidene fluoride (PVDF) membranes with anti-fouling properties has been explored for decades. Surface modification and blending are typical strategies to tailor the hydrophilicity of PVDF membranes. Herein, cyclodextrin was used to improve the antifouling performance of PVDF membranes. Cyclodextrin-modified PVDF membranes were prepared by coupling PVDF amination (blending with branched polyethyleneimine) and activated cyclodextrin grafting. The blending of PEI in the PVDF casting solution preliminarily aminated the PVDF, resulting in PEI-crosslinked/grafted PVDF membranes after phase inversion. Aldehydes groups on cyclodextrin, introduced by oxidation, endow cyclodextrin to be grafted on the aminated PVDF membrane by the formation of imines. Borch reduction performed on the activated cyclodextrin-grafted PVDF membrane converted the imine bonds to secondary amines, ensuring the membrane stability. The resulting membranes possess excellent antifouling performance, with a lower protein adsorption capacity (5.7 µg/cm2, indicated by Bovine Serum Albumin (BSA)), and a higher water flux recovery rate (FRR = 96%). The proposed method provides a facial strategy to prepare anti-fouling PVDF membranes.


Assuntos
Incrustação Biológica , Ciclodextrinas , Interações Hidrofóbicas e Hidrofílicas , Membranas Artificiais , Polivinil , Polivinil/química , Incrustação Biológica/prevenção & controle , Ciclodextrinas/química , Adsorção , Soroalbumina Bovina/química , Polímeros de Fluorcarboneto
8.
Small ; : e2402431, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934549

RESUMO

In drug discovery, human organ-on-a-chip (organ chip) technology has emerged as an essential tool for preclinical testing, offering a realistic representation of human physiology, real-time monitoring, and disease modeling. Polydimethylsiloxane (PDMS) is commonly used in organ chip fabrication owing to its biocompatibility, flexibility, transparency, and ability to replicate features down to the nanoscale. However, the porous nature of PDMS leads to unintended absorption of small molecules, critically affecting the drug response analysis. Addressing this challenge, the precision drug testing organ chip (PreD chip) is introduced, an innovative platform engineered to minimize small molecule absorption while facilitating cell culture. This chip features a PDMS microchannel wall coated with a perfluoropolyether-based lubricant, providing slipperiness and antifouling properties. It also incorporates an ECM-coated semi-porous membrane that supports robust multicellular cultures. The PreD chip demonstrates its outstanding antifouling properties and resistance to various biological fluids, small molecule drugs, and plasma proteins. In simulating the human gut barrier, the PreD chip demonstrates highly enhanced sensitivity in tests for dexamethasone toxicity and is highly effective in assessing drug transport across the human blood-brain barrier. These findings emphasize the potential of the PreD chip in advancing organ chip-based drug testing methodologies.

9.
Adv Healthc Mater ; 13(20): e2400148, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38780479

RESUMO

Controlling bleeding by applying pressing cotton gauze is the most facile treatment in prehospital emergencies. However, the wettable nature of cotton fibers leads to unnecessary blood loss due to excessive blood absorption, inseparable adhesion-induced pain, and pliable to infection. Here, a kind of ultra-hydrophobic haemostatic anti-adhesive gauze whose surface is loaded with polydimethylsiloxane (PDMS) and hydrophobic-modified cellulose nanocrystals (CNCs), achieving a water contact angle of ≈160° is developed. It is demonstrated that the mechanism by which hydrophobic CNCs promote blood clotting is associated with their ability to activate coagulation factors, contributing to fibrin formation, and promoting platelet activation. The blood-restricting effect results from the low surface energy layer formed by PDMS and then the alkyl chains of hydrophobic CNCs are combined. The produced ultra-hydrophobic gauze resists blood flow and diffusion, decreases blood loss, is effortlessly peelable, and minimizes pathogen adhesion. Compared to the commercial cotton gauze, this gauze achieved effective haemostasis and antiadhesion by reducing blood loss by more than 90%, shortening haemostasis time by more than 75%, lowering peeling force by more than 90% and minifying bacterium attachment by more than 95%. This work presents promising applications in terms of prehospital first aid.


Assuntos
Celulose , Dimetilpolisiloxanos , Hemostasia , Interações Hidrofóbicas e Hidrofílicas , Nanopartículas , Celulose/química , Animais , Hemostasia/efeitos dos fármacos , Nanopartículas/química , Dimetilpolisiloxanos/química , Bandagens , Humanos , Fibra de Algodão , Hemorragia , Coagulação Sanguínea/efeitos dos fármacos , Coagulação Sanguínea/fisiologia , Masculino , Hemostáticos/química , Hemostáticos/farmacologia
10.
J Hazard Mater ; 473: 134653, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38795482

RESUMO

Oil-contaminated wastewater has been one of the most concerned environmental issues. Superwetting materials-enabled remediation of oil contamination in wastewater faces the critical challenge of fouling problems due to the formation of intercepted phase. Herein, high-performance separation of emulsions wastewater was accomplished by developing collagen fibers (CFs)-derived water-oil dual-channels that were comprised of intertwisted superhydrophilic and superhydrophobic CFs. The dual-channels relied on the superhydrophilic CFs to accomplish efficient demulsifying, which played the role as water-channel to enable fast transportation of water, while the superhydrophobic CFs served as the oil-transport channel to permit oil transportation. The mutual repellency between water-channel and oil-channel was essential to guarantee the stability of established dual-channels. The unique dual-channel separation mechanism fundamentally resolved the intercepted phase-caused fouling problem frequently engaged by the superwetting materials that provided single-channel separation capability. Long-lasting (1440 min) anti-fouling separations were achieved by the superwetting CFs-derived dual-channels with separation efficiency high up to 99.99%, and more than 4-fold of stable separation flux as compared with that of superhydrophilic CFs with single-channel separation capability. Our investigations demonstrated a novel strategy by using superwetting CFs to develop water-oil dual-channels for achieving high-performance anti-fouling separation of emulsions wastewater. ENVIRONMENTAL IMPLICATION: Industrial processes discard a large amount of emulsion wastewater, which seriously imperils the aquatic ecosystem. This work demonstrated a conceptual-new strategy to achieve effective remediation of emulsion wastewater via the water-oil dual-channels established by the intertwisted superhydrophilic and superhydrophobic collagen fibers (CFs). The superhydrophilic CFs enabled efficient demulsification of emulsions and played the role of water-channel for the rapid transportation of water, while the superhydrophobic CFs worked as oil-channel to permit the efficient transportation of oil pollutants. Consequently, the long-term (1440 min) anti-fouling high-performance separation of emulsion wastewater was achieved.

11.
Adv Healthc Mater ; 13(19): e2304397, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38684223

RESUMO

A zwitterionic injectable and degradable hydrogel based on hydrazide and aldehyde-functionalized [2-(methacryloyloxy)ethyl] dimethyl-(3-sulfopropyl)ammonium hydroxide (DMAPS) precursor polymers that can address practical in vivo needs is reported. Zwitterion fusion interactions between the zwitterionic precursor polymers create a secondary physically crosslinked network to enable much more rapid gelation than previously reported with other synthetic polymers, facilitating rapid gelation at much lower polymer concentrations or degrees of functionalization than previously accessible in addition to promoting zero swelling and long-term degradation responses and significantly stiffer mechanics than are typically accessed with previously reported low-viscosity precursor gelation systems. The hydrogels maintain the highly anti-fouling properties of conventional zwitterionic hydrogels against proteins, mammalian cells, and bacteria while also promoting anti-fibrotic tissue responses in vivo. Furthermore, the use of the hydrogels for effective delivery and subsequent controlled release of viable cells with tunable profiles both in vitro and in vivo is demonstrated, including the delivery of myoblasts in a mouse skeletal muscle defect model for reducing the time between injury and functional mobility recovery. The combination of the injectability, degradability, and tissue compatibility achieved offers the potential to expand the utility of zwitterionic hydrogels in minimally invasive therapeutic applications.


Assuntos
Hidrogéis , Hidrogéis/química , Hidrogéis/farmacologia , Animais , Camundongos , Regeneração/efeitos dos fármacos , Reagentes de Ligações Cruzadas/química , Músculo Esquelético/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Mioblastos/efeitos dos fármacos , Mioblastos/citologia
12.
Acta Biomater ; 180: 183-196, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38604465

RESUMO

The utilization of biodegradable magnesium (Mg) alloys in the fabrication of temporary non-vascular stents is an innovative trend in biomedical engineering. However, the heterogeneous degradation profiles of these biomaterials, together with potential bacterial colonization that could precipitate infectious or stenotic complications, are critical obstacles precluding their widespread clinical application. In pursuit of overcoming these limitations, this study applies the principles of biomimicry, particularly the hydrophobic and anti-fouling characteristics of lotus leaves, to pioneer the creation of nanocomposite coatings. These coatings integrate poly-trimethylene carbonate (PTMC) with covalent organic frameworks (COFs), to modify the stent's surface property. The strategic design of the coating's topography, porosity, and self-polishing capabilities collectively aims to decelerate degradation processes and minimize biological adhesion. The protective qualities of the coatings were substantiated through rigorous testing in both in vitro dynamic bile tests and in vivo New Zealand rabbit choledochal models. Empirical findings from these trials confirmed that the implementation of COF-based nanocomposite coatings robustly fortifies Mg implantations, conferring heightened resistance to both biocorrosion and biofouling as well as improved biocompatibility within bodily environments. The outcomes of this research elucidate a comprehensive framework for the multifaceted strategies against stent corrosion and fouling, thereby charting a visionary pathway toward the systematic conception of a new class of reliable COF-derived surface modifications poised to amplify the efficacy of Mg-based stents. STATEMENT OF SIGNIFICANCE: Biodegradable magnesium (Mg) alloys are widely utilized in temporary stents, though their rapid degradation and susceptibility to bacterial infection pose significant challenges. Our research has developed a nanocomposite coating inspired by the lotus, integrating poly-trimethylene carbonate with covalent organic frameworks (COF). The coating achieved self-polishing property and optimal surface energy on the Mg substrate, which decelerates stent degradation and reduces biofilm formation. Comprehensive evaluations utilizing dynamic bile simulations and implantation in New Zealand rabbit choledochal models reveal that the coating improves the durability and longevity of the stent. The implications of these findings suggest the potential COF-based Mg alloy stent surface treatments and a leap forward in advancing stent performance and endurance in clinical applications.


Assuntos
Implantes Absorvíveis , Materiais Revestidos Biocompatíveis , Magnésio , Nanocompostos , Stents , Animais , Coelhos , Magnésio/química , Magnésio/farmacologia , Nanocompostos/química , Corrosão , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Incrustação Biológica/prevenção & controle , Dioxanos/química , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Polímeros/química , Polímeros/farmacologia , Ligas/química , Ligas/farmacologia
13.
Environ Sci Pollut Res Int ; 31(21): 30988-31000, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38622420

RESUMO

In this study, a facile method for multifunctional surface modification on forward osmosis (FO) membrane was constructed by surface immobilization of AgNPs based on tannic acid (TA)/diethylenetriamine (DETA) precursor layer. The cellulose triacetate (CTA) FO membranes modified by TA and DETA with different co-deposition time (6 h, 12 h, 24 h) were investigated. Results indicated that the TA/DETA (24)-Ag CTA membrane with a TA/DETA co-deposition time of 24 h was identified to be optimal, which attained more hydrophilic. And it had the bacterial mortality of Escherichia coli and Staphylococcus aureus reaching 98.23% and 99.83% respectively and possessed excellent physical and chemical binding stability. Meanwhile, the coating layer resulted in the antifouling ability without damaging the membrane intrinsic transport characteristics. As for synthetic municipal wastewater treatment, the water flux of CTA FO membrane decreased approximately 49% of the initial flux after running for 14 days. In contrast, the flux decline rate of TA/DETA (24)-Ag CTA membrane was about 37%. Furthermore, less foulant deposition and higher recovery rate of water flux was observed for TA/DETA (24)-Ag CTA membrane, implying that the modified membrane effectively alleviated membrane fouling and processed a lower flux decline during municipal wastewater treatment. It was attributed to the enhanced surface hydrophilicity and antibacterial property of the coating layer, which improved antifouling property.


Assuntos
Nanopartículas Metálicas , Prata , Taninos , Águas Residuárias , Purificação da Água , Taninos/química , Águas Residuárias/química , Prata/química , Nanopartículas Metálicas/química , Purificação da Água/métodos , Osmose , Membranas Artificiais , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Incrustação Biológica/prevenção & controle
14.
Heliyon ; 10(7): e28513, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38596028

RESUMO

Marine biofouling poses significant challenges to maritime industries worldwide, affecting vessel performance, fuel efficiency, and environmental sustainability. These challenges demand innovative and sustainable solutions. In this review, the evolving landscape of cellulose-based materials for anti-fouling applications in marine environments is explored. Through a comprehensive bibliometric analysis, the current state of research is examined, highlighting key trends, emerging technologies, and geographical distributions. Cellulose, derived from renewable resources, offers a promising avenue for sustainable anti-fouling strategies due to its biodegradability, low toxicity, and resistance to microbial attachment. Recent advancements in cellulose-based membranes, coatings, and composites are discussed, showcasing their efficacy in mitigating biofouling while minimizing environmental impact. Opportunities for interdisciplinary collaboration and innovation are identified to drive the development of next-generation anti-fouling solutions. By harnessing the power of cellulose, progress towards cleaner, more sustainable oceans can be facilitated, fostering marine ecosystems and supporting global maritime industries.

15.
Bioresour Technol ; 399: 130622, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38518877

RESUMO

This study presents the development and application of a cellulose acetate phase-inversion membrane for the efficient harvesting of Tetraselmis sp., a promising alternative for aquaculture feedstock. Once fabricated, the cellulose acetate membrane was characterized, and its performance was evaluated through the filtration of Tetraselmis sp. broth. The results demonstrated that the developed membrane exhibited exceptional microalgae harvesting efficiency. It showed a low intrinsic resistance and a high clean water permeability of 1100 L/(m2·h·bar), enabling high-throughput filtration of Tetraselmis sp. culture with a permeability of 400 L/(m2·h·bar) and a volume reduction factor of 2.5 ×. The cellulose acetate -based membrane demonstrated robust filtration performance over a 7-day back concentration filtration with minimum irreversible fouling of only 22.5 % irreversibility even without any cleaning. These results highlighted the potential of cellulose acetate as a versatile base polymer for custom-membrane for microalgae harvesting.


Assuntos
Celulose/análogos & derivados , Clorófitas , Microalgas , Filtração , Polímeros
16.
Crit Rev Microbiol ; 50(2): 168-195, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36651058

RESUMO

Present-day healthcare employs several types of invasive devices, including urinary catheters, to improve medical wellness, the clinical outcome of disease, and the quality of patient life. Among urinary catheters, the Foley catheter is most commonly used in patients for bladder drainage and collection of urine. Although such devices are very useful for patients who cannot empty their bladder for various reasons, they also expose patients to catheter-associated urinary tract infections (CAUTIs). Catheter provides an ideal surface for bacterial colonization and biofilm formation, resulting in persistent bacterial infection and severe complications. Hence, rigorous efforts have been made to develop catheters that harbour antimicrobial and anti-fouling properties to resist colonization by bacterial pathogens. In this regard, catheter modification by surface functionalization, impregnation, blending, or coating with antibiotics, bioactive compounds, and nanoformulations have proved to be effective in controlling biofilm formation. This review attempts to illustrate the complications associated with indwelling Foley catheters, primarily focussing on challenges in fighting CAUTI, catheter colonization, and biofilm formation. In this review, we also collate scientific literature on catheter modification using antibiotics, plant bioactive components, bacteriophages, nanoparticles, and studies demonstrating their efficacy through in vitro and in vivo testing.


Assuntos
Infecções Relacionadas a Cateter , Infecções Urinárias , Humanos , Infecções Relacionadas a Cateter/etiologia , Infecções Relacionadas a Cateter/microbiologia , Infecções Urinárias/prevenção & controle , Cateteres Urinários/efeitos adversos , Cateteres Urinários/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Biofilmes , Bactérias
17.
Adv Healthc Mater ; 13(10): e2303574, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38115543

RESUMO

Peritoneal adhesion is a common problem after abdominal surgery and can lead to various medical problems. In response to the lack of in situ retention and pro-wound healing properties of existing anti-adhesion barriers, this work reports an injectable adhesive-antifouling bifunctional hydrogel (AAB-hydrogel). This AAB-hydrogel can be constructed by "two-step" injection. The tissue adhesive hydrogel based on gallic acid-modified chitosan and aldehyde-modified dextran is prepared as the bottom hydrogel (B-hydrogel) by Schiff base reaction. The aldehyde-modified zwitterionic dextran/carboxymethyl chitosan-based hydrogel is formed on the B-hydrogel surface as the antifouling top hydrogel (T-hydrogel). The AAB-hydrogel exhibits good bilayer binding and asymmetric properties, including tissue adhesive, antifouling, and antimicrobial properties. To evaluate the anti-adhesion effect in vivo, the prepared hydrogels are injected onto the wound surface of a mouse abdominal wall abrasion-cecum defect model. Results suggest that the AAB-hydrogel has antioxidant capacity and can reduce the postoperative inflammatory response by modulating the macrophage phenotype. Moreover, the AAB-hydrogel could effectively inhibit the formation of postoperative adhesions by reducing protein deposition, and resisting fibroblast adhesions and bacteria attacking. Therefore, AAB-hydrogel is a promising candidate for the prevention of postoperative peritoneal adhesions.


Assuntos
Incrustação Biológica , Quitosana , Adesivos Teciduais , Camundongos , Animais , Hidrogéis/farmacologia , Hidrogéis/química , Quitosana/farmacologia , Quitosana/química , Adesivos , Adesivos Teciduais/química , Dextranos/farmacologia , Aderências Teciduais/prevenção & controle , Aderências Teciduais/metabolismo , Modelos Animais de Doenças , Aldeídos , Antibacterianos/química
18.
Artigo em Inglês | MEDLINE | ID: mdl-38048089

RESUMO

At present, there are very few reports on the combination of phosphorescence and fluorescence in the field of pollution prevention. A composite antibacterial agent was designed to store energy by using the phosphorescence effect of rare earth oxides, emit light at night, and stimulate 7-amino-4-methylcoumarin to produce fluorescence and prevent algae from adhering. When complexed with PVA, it exhibited excellent characteristics as an all-weather autocatalytic phosphorescence-fluorescence antifouling hydrogel. The rare earth phosphorescent powder was prepared in a high-temperature tube furnace, coated with SiO2 on the surface for waterproofing, and then grafted with 7-amino-4-methylcoumarin to obtain a composite antibacterial agent with a phosphorescence-fluorescence effect. The composite antibacterial agent was added with PVA to obtain a hydrogel, which exhibited bactericidal rates of more than 99.98% against both Gram-positive and Gram-negative bacteria after 48 h. The results of fluorescence staining showed that the coverage rate of dead bacteria reached 41.6% after 24 h. The tensile strength of the antifouling hydrogel is up to 1.49 MPa, which is strong enough for real marine environments. Moreover, the algae coverage area of the composite hydrogel under natural light was only 2.7%, representing a 10-fold reduction compared with the control. The antifouling hydrogel has good antipollution and algae suppression performance, which is due to the fact that the rare earth phosphorescent powder when exposed to sunlight can provide a light source to stimulate 7-amino-4-methylcoumarin fluorescence at night and thereby prevent algae adhesion. After testing in the marine field and the real sea test when wrapped in a fishing net, the excellent antifouling performance was demonstrated. The functional hydrogel has great application potential in the protection of seawater-exposed structures, such as bridges and bay ports.

19.
J R Soc Interface ; 20(209): 20230485, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38053385

RESUMO

The fouling of submerged surfaces detrimentally alters stratum properties. Inorganic and organic foulers alike attach to and accumulate on surfaces when the complex interaction between numerous variables governing attachment and colonization is favourable. Unlike naturally evolved solutions, industrial methods of repellence carry adverse environmental impacts. Mammal fur demonstrates high resistance to fouling; however, our understanding of the intricacies of such performance remains limited. Here, we show that the passive trait of fur to dynamically respond to an external flow field dramatically improves its anti-fouling performance over that of fibres rigidly fixed at both ends. We have previously discovered a statistically significant correlation between a group of flow- and stratum-related properties, and the quantified anti-fouling performance of immobile filaments. In this work, we improve the correlation by considering an additional physical factor, the ability of hair to flex. Our work establishes a parametric framework for the design of passive anti-fouling filamentous structures and invites other disciplines to contribute to the investigation of the anti-fouling prowess of mammalian interfaces.


Assuntos
Mamíferos , Membranas Artificiais , Animais
20.
Microb Cell Fact ; 22(1): 230, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37936187

RESUMO

The physical states and chemical components of bulk sludge determine the occurrence and development of membrane fouling in membrane bioreactors. Thus, regulation of sludge suspensions can provide new strategies for fouling control. In this study, we used "top-down" enrichment to construct a synthetic anti-fouling consortium (SAC) from bio-cake and evaluate its roles in preventing membrane fouling. The SAC was identified as Massilia-dominated and could almost wholly degrade the alginate solution (1,000 mg/L) within 72 h. Two-dimensional Fourier transformation infrared correlation spectroscopy (2D-FTIR-CoS) analysis demonstrated that the SAC induced the breakage of glycosidic bond in alginates. The co-cultivation of sludge with a low dosage of SAC (ranging from 0 to 1%) led to significant fouling mitigation, increased sludge floc size, and decreased unified membrane fouling index value (0.55 ± 0.06 and 0.11 ± 0.05). FTIR spectra and X-ray spectroscopy analyses demonstrated that the addition of SAC decreased the abundance of the O-acetylation of polysaccharides in extracellular polymeric substances. Secondary derivatives analysis of amide I spectra suggested a strong reduction in the α-helix/(ß-sheet + random coil) ratio in the presence of SAC, which was expected to enhance cell aggregation. Additionally, the extracellular secretions of SAC could both inhibit biofilm formation and strongly disperse the existing biofilm strongly during the biofilm incubation tests. In summary, this study illustrates the feasibility and benefits of using SAC for fouling control and provides a new strategy for fouling control.


Assuntos
Incrustação Biológica , Esgotos , Esgotos/química , Incrustação Biológica/prevenção & controle , Membranas Artificiais , Biofilmes , Polissacarídeos , Reatores Biológicos , Alginatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA