Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.180
Filtrar
1.
Materials (Basel) ; 17(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38730888

RESUMO

In this study, a novel fabrication method was used to synthesize phenolic resin/phosphate hybrid coatings using aluminum dihydrogen phosphate (Al(H2PO4)3, hereafter denoted as Al), SC101 silica sol (Si) as the primary film-forming agent, and phenolic resin (PF) as the organic matrix. This approach culminated in the formation of Al+Si+PF organo-inorganic hybrid coatings. Fourier-transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) results confirmed the successful integration of hybrid structures within these coatings. The crystalline structure of the coatings post-cured at various temperatures was elucidated using X-ray diffraction (XRD). Additionally, the surface and cross-sectional morphologies were meticulously analyzed using scanning electron microscopy (SEM), offering insights into the microstructural properties of the coatings. The coatings' porosities under diverse thermal and temporal regimes were quantitatively evaluated using advanced image processing techniques, revealing a significant reduction in porosity to a minimum of 5.88% following a thermal oxidation process at 600 °C for 10 h. The antioxidant efficacy of the phosphate coatings was rigorously assessed through cyclic oxidation tests, which revealed their outstanding performance. Specifically, at 300 °C across 300 h of cyclic oxidation, the weight losses recorded for phosphate varnish and the phenolic resin-infused phosphate coatings were 0.15 mg·cm-2 and 0.09 mg·cm-2, respectively. Furthermore, at 600 °C and over an identical period, the weight reduction was noted as 0.21 mg·cm-2 for phosphate varnish and 0.085 mg·cm-2 for the hybrid coatings, thereby substantiating the superior antioxidation capabilities of the phenolic resin hybrid coatings in comparison to the pure phosphate varnish.

2.
Animals (Basel) ; 14(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731277

RESUMO

Fatty acids (FAs) are of utmost importance in the peripartal period for the development of the central nervous and immune systems of the newborn. The transport of polyunsaturated fatty acids (PUFAs) through the placenta is considered to be minimal in ruminants. Nevertheless, the cow's FAs are the main source of FAs for the calf during gestation. This research aimed to investigate the influence of low-dose eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) supplementation during late gestation on the FA metabolism of cows and their calves. A total of 20 Charolais cows during the last month of their gestation were included in the feeding trial and were divided into a control group (CON) and an experimental group (EPA + DHA). The latter received a supplement in the amount of 100 g/day (9.1 and 7.8 g/cow/day of EPA and DHA, respectively). Supplementation of low-dose EPA and DHA alters colostrum and milk fatty acid composition through the elevation of n-3 long-chain polyunsaturated fatty acids (LC-PUFAs) without affecting milk fat and protein concentrations and oxidative status. Plasma composition in cows was significantly altered, while the same effect was not detected in calf plasma. No significant change in mRNA expression was detected for the genes fatty acid synthase (FASN) and acetyl-CoA carboxylase alpha (ACACA).

3.
Molecules ; 29(9)2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38731629

RESUMO

This work presents the design, synthesis and biological activity of novel N-substituted benzimidazole carboxamides bearing either a variable number of methoxy and/or hydroxy groups. The targeted carboxamides were designed to investigate the influence of the number of methoxy and/or hydroxy groups, the type of substituent placed on the N atom of the benzimidazole core and the type of substituent placed on the benzimidazole core on biological activity. The most promising derivatives with pronounced antiproliferative activity proved to be N-methyl-substituted derivatives with hydroxyl and methoxy groups at the phenyl ring and cyano groups on the benzimidazole nuclei with selective activity against the MCF-7 cell line (IC50 = 3.1 µM). In addition, the cyano-substituted derivatives 10 and 11 showed strong antiproliferative activity against the tested cells (IC50 = 1.2-5.3 µM). Several tested compounds showed significantly improved antioxidative activity in all three methods compared to standard BHT. In addition, the antioxidative activity of 9, 10, 32 and 36 in the cells generally confirmed their antioxidant ability demonstrated in vitro. However, their antiproliferative activity was not related to their ability to inhibit oxidative stress nor to their ability to induce it. Compound 8 with two hydroxy and one methoxy group on the phenyl ring showed the strongest antibacterial activity against the Gram-positive strain E. faecalis (MIC = 8 µM).


Assuntos
Antineoplásicos , Antioxidantes , Benzimidazóis , Proliferação de Células , Desenho de Fármacos , Benzimidazóis/química , Benzimidazóis/farmacologia , Benzimidazóis/síntese química , Humanos , Proliferação de Células/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Células MCF-7 , Antioxidantes/farmacologia , Antioxidantes/síntese química , Antioxidantes/química , Relação Estrutura-Atividade , Antibacterianos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Amidas/química , Amidas/farmacologia , Amidas/síntese química , Estrutura Molecular , Testes de Sensibilidade Microbiana , Estresse Oxidativo/efeitos dos fármacos
4.
Food Sci Anim Resour ; 44(3): 533-550, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38765288

RESUMO

Peptides with bioactive effects are being researched for various purposes. However, there is a lack of overall research on pork-derived peptides. In this study, we reviewed the process of obtaining bioactive peptides, available analytical methods, and the study of bioactive peptides derived from pork. Pepsin and trypsin, two representative protein digestive enzymes in the body, are hydrolyzed by other cofactors to produce peptides. Bicinchoninic acid assay, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, chromatography, and in vitro digestion simulation systems are utilized to analyze bioactive peptides for protein digestibility and molecular weight distribution. Pork-derived peptides mainly exhibit antioxidant and antihypertensive activities. The antioxidant activity of bioactive peptides increases the accessibility of amino acid residues by disrupting the three-dimensional structure of proteins, affecting free radical scavenging, reactive oxygen species inactivation, and metal ion chelating. In addition, the antihypertensive activity decreases angiotensin II production by inhibiting angiotensin converting enzyme and suppresses blood pressure by blocking the AT1 receptor. Pork-derived bioactive peptides, primarily obtained using papain and pepsin, exhibit significant antioxidant and antihypertensive activities, with most having low molecular weights below 1 kDa. This study may aid in the future development of bioactive peptides and serve as a valuable reference for pork-derived peptides.

5.
Fitoterapia ; : 106025, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38768797

RESUMO

Algae and its metabolites have been a popular subject of research in numerous fields over the years. Various reviews have been written on algal bioactive components, but a specific focus on Antarctic-derived algae is seldom reviewed. Due to the extreme climate conditions of Antarctica, it is hypothesized that the acclimatized algae may have given rise to a new set of bioactive compounds because of adaptation. Although most studies done on Antarctic algae are based on ecological and physiological studies, as well as in the field of nanomaterial synthesis, some studies point out the potential therapeutic properties of these compounds. As an effort to shed light on a different application of Antarctic algae, this review focuses on evaluating the different medicinal properties, including antimicrobial, anticancer, antioxidative, anti-inflammatory, and skin protective effects of Antarctic algae.

6.
Vet Res Commun ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771449

RESUMO

Pentatrichomonas hominis is a common intestinal parasitic protozoan that causes abdominal pain and diarrhea, and poses a zoonotic risk. Probiotics, known for enhancing immunity and pathogen resistance, hold promise in combating parasitic infections. This study aimed to evaluate two porcine-derived probiotics, Lactobacillus reuteri LR1 and Lactobacillus plantarum LP1, against P. hominis infections in pigs. Taxonomic identity was confirmed through 16 S rRNA gene sequencing, with L. reuteri LR1 belonging to L. reuteri species and L. plantarum LP1 belonging to L. plantarum species. Both probiotics exhibited robust in vitro growth performance. Co-culturing intestinal porcine epithelial cell line (IPEC-J2) with these probiotics significantly improved cell viability compared with the control group. Pre-incubation probiotics significantly enhanced the mRNA expression of anti-oxidative response genes in IPEC-J2 cells compared with the PHGD group, with L. reuteri LR1 and L. plantarum LP1 significantly up-regulating CuZn-SOD、CAT and Mn-SOD genes expression (p < 0.05). The anti-oxidative stress effect of L. reuteri LR1 was significantly better than that of L. plantarum LP1 (p < 0.05). Furthermore, pre-incubation with the probiotics alleviated the P. hominis-induced inflammatory response. L. reuteri LR1 and L. plantarum LP1 significantly down-regulated IL-6、IL-8 and TNF-α gene expression(p < 0.05) compared with the PHGD group. The probiotics also mitigated P. hominis-induced apoptosis. L. reuteri LR1 and L. plantarum LP1 significantly down-regulated Caspase3 and Bax gene expression (p < 0.05), significantly up-regulated Bcl-2 gene expression (p < 0.05) compared with the PHGD group. Among them, L. plantarum LP1 showed better anti-apoptotic effect. These findings highlight the probiotics for mitigating P. hominis infections in pigs. Their ability to enhance anti-oxidative responses, alleviate inflammation, and inhibit apoptosis holds promise for therapeutic applications. Simultaneously, probiotics can actively contribute to inhibiting trichomonal infections, offering a novel approach for preventing and treating diseases such as P. hominis. Further in vivo studies are required to validate these results and explore their potential in animal and human health.

7.
Plant Physiol Biochem ; 211: 108674, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38705044

RESUMO

Plants produce a diverse range of secondary metabolites that serve as defense compounds against a wide range of biotic and abiotic stresses. In addition, their potential curative attributes in addressing various human diseases render them valuable in the development of pharmaceutical drugs. Different secondary metabolites including phenolics, terpenes, and alkaloids have been investigated for their antioxidant and therapeutic potential. A vast number of studies evaluated the specific compounds that possess crucial medicinal properties (such as antioxidative, anti-inflammatory, anticancerous, and antibacterial), their mechanisms of action, and potential applications in pharmacology and medicine. Therefore, an attempt has been made to characterize the secondary metabolites studied in medicinal plants, a brief overview of their biosynthetic pathways and mechanisms of action along with their signaling pathways by which they regulate various oxidative stress-related diseases in humans. Additionally, the biotechnological approaches employed to enhance their production have also been discussed. The outcome of the present review will lead to the development of novel and effective phytomedicines in the treatment of various ailments.

8.
Int J Biol Macromol ; : 132014, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38697443

RESUMO

Pectin, a natural polysaccharide, holds versatile applications in food and pharmaceuticals. However, there is a need for further exploration into extracting novel functional fractions and characterizing them thoroughly. In this study, a sequential extraction approach was used to obtain three distinct lemon pectin (LP) fractions from lemon peels (Citrus Eureka): LP extracted with sodium acetate (LP-SA), LP extracted with ethylenediaminetetraacetic acid (LP-EDTA), and LP extracted with sodium carbonate and sodium borohydride (LP-SS). Comprehensive analysis revealed low methyl-esterification in all fractions. LP-SA and LP-SS displayed characteristics of rhamnogalacturonan-I type pectin, while LP-EDTA mainly consisted of homogalacturonan pectin. Notably, LP-SA formed self-aggregated particles with rough surfaces, LP-EDTA showed interlocking linear structures with smooth planes, and LP-SS exhibited branch chain structures with smooth surfaces. Bioactivity analysis indicated that LP-SA had significant apparent viscosity and ABTS radical scavenging activity, while both LP-EDTA and LP-SS showed excellent thermal stability according to thermogravimetric analysis (TGA). Furthermore, LP-SS exhibited remarkable gel-forming ability and significant hydroxyl free radicals scavenging activity. In conclusion, this study presents a novel method for extracting various lemon pectin fractions with unique structural and bioactive properties, contributing insights for advanced applications in the food and pharmaceutical sectors.

9.
Int J Biol Macromol ; 269(Pt 1): 132022, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38697414

RESUMO

Edible bird's nest (EBN) is made up of sialylated-mucin glycoprotein with various health benefits due to its high antioxidative activity. However, as a macromolecule with distinct charged sialic acid and amino acids, fractions with different charges would have varied physicochemical properties and antioxidant activity, which have not been studied. Therefore, this study aimed to fractionate and purify the enzymatic hydrolysed of cleaned EBN (EBNhc) and EBN by-product (EBNhbyp) through anion exchange chromatography (AEC), and determine their molecular weights, physicochemical properties, and antioxidative activities. Overall, 26 fractionates were collected from enzymatic hydrolysate by AEC, which were classified into 5 fractions. It was found that the positively charged fraction of EBNhc (CF 1) and EBNhbyp (DF 1) showed the significantly highest (p < 0.05) soluble protein contents (22.86 and 18.40 mg/g), total peptide contents (511.13 and 800.47 mg/g) and ferric reducing antioxidant power (17.44 and 6.96 mg/g) among the fractionates. In conclusion, a positively charged fraction (CF 1 and DF 1) showed more desired physicochemical properties and antioxidative activities. This research suggests the potential of AEC fractionation as a technology to purify EBN and produce positively charged EBN fractionates with antioxidative potential that could be applied as food components to provide health benefits.

10.
Environ Toxicol Pharmacol ; : 104468, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38759849

RESUMO

Chlorpyrifos, widely used for pest control, is known to have various harmful effects, although its toxic effects in macrophages and the mechanisms underlying its toxicity remain unclear. The present study investigated the toxic effects of chlorypyrifos in a macrophage cell line. Here, we found that chlorpyrifos induced cytotoxicity and genotoxicity in RAW264.7 macrophages. Moreover, chlorpyrifos induced intracellular ROS production, subsequently leading to lipid peroxidation. Chlorpyrifos reduced the activation of antioxidative enzymes including superoxide dismutase, catalase, and glutathione peroxidase. Chlorpyrifos upregulated HO-1 expression and activated the Keap1-Nrf2 pathway, as indicated by enhanced Nrf2 phosphorylation and Keap1 degradation. Chlorpyrifos exerted effects on the following in a dose-dependent manner: cytotoxicity, genotoxicity, lipid peroxidation, intracellular ROS production, antioxidative enzyme activity reduction, HO-1 expression, Nrf2 phosphorylation, and Keap1 degradation. Notably, N-acetyl-L-cysteine successfully inhibited chlorpyrifos-induced intracellular ROS generation, cytotoxicity, and genotoxicity. Thus, chlorpyrifos may induce cytotoxicity and genotoxicity by promoting intracellular ROS production and suppressing the antioxidative defense system activation in macrophages.

11.
Heliyon ; 10(7): e28224, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38560210

RESUMO

This study evaluated the effects of potato, wheat, rice, and corn starch on growth performance, blood parameters, digestive enzyme activity, antioxidative response, and gut microbiota of African catfish, Clarias gariepinus. A control diet (a commercial fish diet) and four different starch (potato, PO; wheat, WH; corn, CO; rice, RC) formulations were fed to African catfish with average weight of 10.5g (n = 30) for eight weeks. The experiment was conducted in triplicates. At the end of the feeding trial, the growth performance of African catfish fed with potato starch (PO) was significantly higher than other treatment groups. Furthermore, this group recorded significant and lowest feed conversion ratio (FCR) compared to other groups. Meanwhile, there were no significant differences in all tested hematological parameters and antioxidative response between the groups. Digestive enzyme activities in the fish intestines, including amylase, lipase, and protease, were significantly higher in African catfish fed with the PO diet. In addition, this group demonstrated substantially lower viscerosomatic index (VSI) and hepatosomatic index (HSI) than other groups, indicating that the fish has more meat on its body. The PO diet group also recorded significantly higher Akkermansia muciniphila, a good gut microbiota. Therefore, the PO diet potentially improves African catfish's growth performance and health status.

12.
Environ Monit Assess ; 196(5): 412, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565815

RESUMO

Cadmium (Cd) is a highly toxic metal that frequently contaminates our environment. In this study, the bioflocculant-producing, cadmium-resistant Escherichia fergusonii ZSF-15 was characterized from Paharang drain, Bawa Chak, Faisalabad, Pakistan. The Cd-resistant E. fergusonii was used to determine the bioflocculant production using yeast-peptone-glycerol medium (pH 6.5) supplemented with 50 mg L-1 of Cd. The culture was incubated for 3 days at 37 °C in a rotary shaker at 120 rpm. The fermentation broth was centrifuged at 4000 g for 10 min after the incubation period. The maximum flocculating activity by isolate ZSF-15 was found to be 71.4% after 48 h of incubation. According to the Fourier transform infrared spectroscopy analysis, the bioflocculant produced by strain ZSF-15 was comprised of typical polysaccharide and protein, i.e. hydroxyl, carboxyl, and amino groups. The strain ZSF-15 exhibited bioflocculant activity at range of pH (6-8) and temperature (35-50℃). Maximum flocculation activity (i.e. 71%) was observed at 47℃, whereas 63% flocculation production was observed at pH 8. In the present study, antioxidant enzyme profile of ZSF-15 was also evaluated under cadmium stress. A significant increase in antioxidant enzymes including superoxide dismutase (118%) and ascorbate peroxidase (28%) was observed, whereas contents of catalase (86%), glutathione transferase (13%), and peroxidase (8%) were decreased as compared to control.


Assuntos
Antioxidantes , Cádmio , Escherichia , Cádmio/toxicidade , Concentração de Íons de Hidrogênio , Monitoramento Ambiental , Floculação
13.
Cell Biochem Biophys ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558242

RESUMO

Hepatocellular carcinoma (HCC), the fifth most prevalent cancer worldwide, is influenced by a myriad of clinic-pathological factors, including viral infections and genetic abnormalities. This study delineates the synthesis, characterization, and the biological efficacy of iron oxide nanoparticles (Fe3O4) and chitosan-coated iron oxide nanoparticles (Fe3O4-CS) against HCC. Analytical methods confirmed the successful synthesis of both nanoparticles, with Fe3O4-CS demonstrating a smaller, uniform spherical morphology and distinct surface and magnetic properties attributable to its chitosan coating. The prepared materials were analyzed using various techniques, and their potential cytotoxic effects on HepG2 cancer cells line for HCC were investigated. In biological evaluations against HepG2 cells, a notable distinction in cytotoxicity was observed. Fe3O4 showed modest anticancer activity with an IC50 of 383.71 ± 23.9 µg/mL, whereas Fe3O4 exhibited a significantly enhanced cytotoxic effect, with a much lower IC50 of 39.15 ± 39.2 µg/mL. The Comet assay further evidenced Fe3O4-CS potent DNA damaging effect, showcasing its superior ability to induce apoptosis through extensive DNA fragmentation. Biochemical analyses integrated into our results reveal that Fe3O4-CS not only induces significant DNA damage but also markedly alters oxidative stress markers. Compared to control and Fe3O4-treated cells, Fe3O4-CS exposure significantly elevated levels of oxidative stress markers: superoxide dismutase (SOD) increased to 192.07 U/ml, catalase (CAT) decreased to 0.03 U/L, glutathione peroxidase (GPx) rose dramatically to 18.76 U/gT, and malondialdehyde (MDA) levels heightened to 30.33 nmol/gT. These results underscore the potential of Fe3O4-CS nanoparticles not only in inducing significant DNA damage conducive to cancer cell apoptosis but also in altering enzymatic activities and oxidative stress markers, suggesting a dual mechanism of action that may underpin their therapeutic advantage in cancer treatment. Our findings advocate for the further exploration of Fe3O4-CS nanoparticles in the development of anticancer drugs, emphasizing their capability to trigger oxidative stress and enhance antioxidant defense mechanisms.

14.
Front Vet Sci ; 11: 1381823, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585301

RESUMO

Enzymolytic soybean meal (ESBM) enriches free amino acids and small peptides, while mitigating anti-nutritional factors. Substituting soybean meal with ESBM enhances animal performance, though optimal piglet dietary supplementation levels vary. The present study aimed to assess the impact of ESBM on the growth performance, nutrient digestibility, antioxidative capacity and intestinal health of weaned piglets. A total of 120 piglets (initial body weight, 7.0 ± 0.4 kg) were randomly allocated into 4 dietary groups, each comprising 5 replicates with 6 piglets per replicate. The control group received the basal diet, while the experimental groups were fed diets containing 2, 4% or 8% ESBM as a replacement for soybean meal over 28 days. Compared with the control group, piglets supplemented with 4% ESBM exhibited a significant increase (p < 0.05) in average daily gain and the apparent total tract digestibility of dry matter, ether extract and gross energy (p < 0.05), alongside a notable decrease (p < 0.05) in diarrhea incidence. Fed ESBM linearly increased (p < 0.05) the villus height in the ileum of piglets. The levels of superoxide dismutase and total antioxidant capacity in serum of piglets increased (p < 0.05) in the 2 and 4% ESBM groups, while diamine oxidase content decreased (p < 0.05) in the 4 and 8% ESBM group. ESBM inclusion also upregulated (p < 0.05) the expression of superoxide dismutase 1 (SOD-1), Catalase (CAT) and claudin-1 mRNA. In terms of cecal fermentation characteristics, ESBM supplementation resulted in a increase (p < 0.05) in valerate content and a linear rise (p < 0.05) in propionate, butyrate, and total short-chain fatty acids levels, accompanied by a decrease (p < 0.05) in the concentrations of tryptamine and NH3 in cecal digesta. ESBM had no discernible effect on cecal microbial composition. In summary, substitution of soybean meal with ESBM effectively improved the growth performance of piglets by enhancing nutrient digestibility, antioxidant capacity, intestinal barrier and cecal microbial fermentation characteristics, with the optimal replacement level identified at 4%.

15.
Arch Toxicol ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38635053

RESUMO

3-Bromofluoranthene (3-BrFlu) is the secondary metabolite of fluoranthene, which is classified as a polycyclic aromatic hydrocarbon, through bromination and exists in the fine particulate matter of air pollutants. Endothelial dysfunction plays a critical role in the pathogenesis of cardiovascular and vascular diseases. Little is known about the molecular mechanism of 3-BrFlu on endothelial dysfunction in vivo and in vitro assay. In the present study, 3-BrFlu included concentration-dependent changes in ectopic angiogenesis of the sub-intestinal vein and dilation of the dorsal aorta in zebrafish. Disruption of vascular endothelial integrity and up-regulation of vascular endothelial permeability were also induced by 3-BrFlu in a concentration-dependent manner through pro-inflammatory responses in vascular endothelial cells, namely, SVEC4-10 cells. Generation of pro-inflammatory mediator PGE2 was induced by 3-BrFlu through COX2 expression. Expression of COX2 and generation of pro-inflammatory cytokines, including TNFα and IL-6, were induced by 3-BrFlu through phosphorylation of NF-κB p65, which was mediated by phosphorylation of MAPK, including p38 MAPK, ERK and JNK. Furthermore, generation of intracellular ROS was induced by 3-BrFlu, which is associated with the down-regulated activities of the antioxidant enzyme (AOE), including SOD and catalase. We also found that 3-BrFlu up-regulated expression of the AOE and HO-1 induced by 3-BrFlu through Nrf-2 expression. However, the 3-BrFlu-induced upregulation of AOE and HO-1 expression could not be revised the responses of vascular endothelial dysfunction. In conclusion, 3-BrFlu is a hazardous substance that results in vascular endothelial dysfunction through the MAPK-mediated-NFκB pro-inflammatory pathway and intracellular ROS generation.

16.
Environ Toxicol Pharmacol ; 108: 104437, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38609060

RESUMO

Oxybenzone is an ultraviolet filter frequently used in Personal Care Products, plastics, furniture, etc. and is listed as an Emerging Contaminant. This report studied the acute toxicity of Oxybenzone to Lemna minor after exposure to graded concentrations of Oxybenzone for 7 days. IC50 for growth was found to be 8.53 mg L-1. The hormesis effect was reported at lower concentrations, while growth and pigments reduced from 2.5 to 12.5 mg L-1 in a concentration-related manner. The impact of Oxybenzone on protein and antioxidant enzymes- Catalase and Guaiacol Peroxidase revealed less stress up to 2.5 mg L-1 than control, increasing further from 5 to 10 mg L-1. Enzyme activity decreased over-time but always remained higher than control over a period of 7 days. Thus, our findings reveal that indiscriminate discharge of Oxybenzone could be potentially toxic to the aquatic primary producers at higher concentrations, causing an ecological imbalance in aquatic ecosystems.

17.
J Ethnopharmacol ; 330: 118243, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38677577

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Pomegranate 'Punica granatum' offers multiple health benefits, including managing hypertension, dyslipidemia, hyperglycemia, insulin resistance, and enhancing wound healing and infection resistance, thanks to its potent antioxidant and anti-inflammatory properties. It has been symbolized by life, health, femininity, fecundity, and spirituality. AIM OF THE STUDY: Although laboratory and animal studies have been conducted on the healing effects of pomegranate, there needs to be a comprehensive review on its anti-oxidative and anti-inflammatory effects in chronic disorders. We aim to provide a comprehensive review of these effects based on in-vitro, in-vivo, and clinical studies conducted in managing various disorders. MATERIALS AND METHODS: A comprehensive search of in-vitro, in-vivo, and clinical findings of pomegranate and its derivatives focusing on the highly qualified original studies and systematic reviews are carried out in valid international web databases, including Web of Science, PubMed, Scopus, and Cochrane Library. RESULTS: Relevant studies have demonstrated that pomegranate and its derivatives can modulate the expression and activity of several genes, enzymes, and receptors through influencing oxidative stress and inflammation pathways. Different parts of pomegranate; roots, bark, blossoms, fruits, and leaves contain various bioactive compounds, such as polyphenols, flavonoids, anthocyanins, and ellagitannins, that have preventive and therapeutic effects against many disorders such as cardiovascular diseases, diabetes, neurological diseases, and cancers without any serious adverse effects. CONCLUSIONS: Most recent scientific evidence indicates that all parts of the pomegranate can be helpful in treating a wide range of chronic disorders due to its anti-oxidative and anti-inflammatory activities. Since the safety of pomegranate fruit, juice, and extracts is established, further investigations can be designed by targeting its active antioxidant and anti-inflammatory constituents to discover new drugs.


Assuntos
Anti-Inflamatórios , Antioxidantes , Inflamação , Estresse Oxidativo , Punica granatum , Humanos , Punica granatum/química , Estresse Oxidativo/efeitos dos fármacos , Animais , Inflamação/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Fitoterapia
18.
Plant Sci ; 344: 112082, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38583807

RESUMO

The expression of R2R3-MYB transcription factor PeRAX2 increased transiently upon CdCl2 exposure (100 µM, 48 h) in leaves and roots of Populus euphratica. We observed that overexpression of PeRAX2 increased Cd2+ concentration in Arabidopsis root cells and Cd2+ amount in whole plant, which was due to the increased Cd2+ influx into root tips. However, the Cd2+ influx facilitated by PeRAX2 overexpression was substantially reduced by LaCl3 (an inhibitor of Ca2+-channels), suggesting that PeRAX2 could promote the Cd2+ entering through PM Ca2+-permeable channels (CaPCs) in the roots. It is noting that the expression of annexin1 (AtANN1), which mediates the influx of divalent cations through the PM calcium channels, was upregulated by Cd2+ in PeRAX2-transgenic Arabidopsis. Bioinformatic analysis revealed that the AtANN1 promoter (AtANN1-pro) contains four cis-elements for MYB binding. The PeRAX2 interaction with AtANN1-pro was validated by LUC reporter assay, EMSA, and Y1H assay. Our data showed that PeRAX2 binds to the AtANN1 promoter region to regulate gene transcription and that AtANN1 mediates the Cd2+ entry through CaPCs in the PM, leading to a Cd2+ enrichment in transgenic plants. The PeRAX2-stimulated Cd2+ enrichment consequently resulted in high H2O2 production in root cells of transgenic plants. The expression of AtSOD and AtPOD and activities of CAT, SOD, POD increased in the transgenic lines under Cd2+ stress. However, the Cd2+-upregulated expression and activity of antioxidative enzymes were less pronounced in the PeRAX2-overexpressed lines, compared to the wildtype and vector controls. As a result, root length and plant growth were more suppressed by Cd2+ in the transgenic lines. Our data suggest that transcriptional regulation of AtANN1 by PeRAX2 can be utilized to improve Cd2+ enrichment and phytoremediation, although the enriched Cd2+ affected antioxidant defense system and plant growth in the model species.


Assuntos
Arabidopsis , Cádmio , Regulação da Expressão Gênica de Plantas , Populus , Regiões Promotoras Genéticas , Fatores de Transcrição , Arabidopsis/genética , Arabidopsis/metabolismo , Populus/genética , Populus/metabolismo , Cádmio/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Regiões Promotoras Genéticas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/genética
19.
Artigo em Inglês | MEDLINE | ID: mdl-38656895

RESUMO

Anterior uveitis (AU) is an immune-mediated inflammatory disease that results in iritis, cyclitis, glaucoma, cataracts, and even a loss of vision. The frequent and long-term administration of corticosteroid drugs is limited in the clinic owing to the side effects and patient noncompliance with the drugs. Therefore, specifically delivering drugs to inflammatory anterior segment tissues and reducing the topical application dosage of the drug are still a challenge. Here, we developed dual dexamethasone (Dex) and curcumin (Cur)-loaded reactive oxygen species (ROS)-responsive nanoparticles (CPDC NPs) to treat anterior uveitis. The CPDC NPs demonstrated both anti-inflammatory and antioxidative effects, owing to their therapeutic characteristics of dexamethasone and curcumin, respectively. The CPDC NPs could effectively release dexamethasone and curcumin in the oxidizing physiological environment of the inflammation tissue. The CPDC NPs can effectively internalize by activated macrophage cells, subsequently suppressing the proinflammatory factor expression. Moreover, the CPDC NPs can inhibit ROS and inflammation via nuclear transcription factor E2-related factor 2/heme oxygenase-1 (Nrf2/HO-1) pathway activation. In an endotoxin-induced uveitis rabbit model, the CPDC NPs show a therapeutic effect that is better than that of either free drugs or commercial eye drops. Importantly, the CPDC NPs with a lower dexamethasone dosage could reduce the side effects significantly. Taken together, we believe that the dual-drug-loaded ROS-responsive NPs could effectively target and inhibit inflammation and have the potential for anterior uveitis treatment in clinical practice.

20.
Animal Model Exp Med ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659237

RESUMO

BACKGROUND: Around the world, there is a high incidence of gastric ulcers. YS, an extract from the Chinese herb Albizzia chinensis (Osbeck) Merr, has potential therapeutic applications for gastrointestinal diseases. Here we elucidated the protective effect and underlying mechanism of action of YS on gastric ulcer in rats injured by ethanol. METHODS: The ethanol-induced gastric ulcer rat model was used to assess the protective effect of YS. A pathological examination of gastric tissue was performed by H&E staining. GES-1 cells damaged by hydrogen peroxide were used to simulate oxidative damage in gastric mucosal epithelial cells. Endogenous NRF2 was knocked down using small interfering RNA. Immunoprecipitation was used to detect ubiquitination of NRF2. Co-immunoprecipitation was used to detect the NRF2-Keap1 interaction. RESULTS: YS (10 and 30 mg/kg, i.g.) significantly reduced the ulcer index, decreased MDA level, and increased SOD and GSH levels in gastric tissues damaged by ethanol. YS promoted NRF2 translocation from cytoplasm to nucleus and enhanced the NQO1 and HO-1 expression levels in injured rat gastric tissue. In addition, YS regulated NQO1 and HO-1 via NRF2 in H2O2-induced oxidative injured GES-1 cells. Further studies on the underlying mechanism indicated that YS reduced the interaction between NRF2 and Keap1 and decreased ubiquitylation of NRF2, thereby increasing its stability and expression of downstream factors. NRF2 knockdown abolished the effect of YS on MDA and SOD in GES-1 cells treated with H2O2. CONCLUSION: YS reduced the NRF2-Keap1 interaction, promoting NRF2 translocation into the nucleus, which increasing the transcription and translation of NQO1 and HO-1 and improved the antioxidant capacity of rat stomach.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...