Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 358: 120855, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38614007

RESUMO

Political conflicts or geopolitical tensions can create uncertainty in addressing climate change and environmental management in the Arctic. Dissecting how actors interact with each other and form networks is important for understanding ecological and environmental management challenges during geopolitical tensions, as well as promoting better governance. We construct transboundary networks for Arctic climate change governance (ACCG) from 2013 to 2021 based on the Global Database of Events, Language, and Tone (GDELT). Further, we used network descriptive statistical analysis and Temporal Exponential Random Graph Models (TERGM) to explore the structure of ACCG networks and the key factors influencing cooperation formation. The findings suggest that the overall cooperation density of the ACCG is low, and the dominant position of core actors is continuously strengthening. Non-state actors are less likely to be seen as partners and their participation depends largely on cooperation with states. The results also show that actors with similar stances and problem exposure are more likely to cooperate, but those exposed to high latitudes often choose not to cooperate; first-comers are more likely to perceive as cooperating yet they are inclined to establish internal cooperation. Additionally, two geographically proximate actors are more likely to cooperate. This indicates that under geopolitical tensions, the ACCG faces challenges not only due to the limited capacity of non-state actors to perform transboundary functions but also because the cooperation mechanisms are influenced by regional political logic. Accordingly, we further suggest policy recommendations from developing binding international frameworks to guide transboundary cooperation, enhancing cooperation among non-state actors, and ensuring the representativeness and fairness of non-Arctic actors' participation. This research provides insights into transboundary environmental management under political tensions, while also offering new pathways for analysing large-scale environmental governance structures.


Assuntos
Mudança Climática , Regiões Árticas , Conservação dos Recursos Naturais , Política
2.
Sci Rep ; 14(1): 3862, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38366004

RESUMO

There is little consensus among global climate models (CGMs) regarding the response of lightning flash rates to past and future climate change, largely due to graupel not being included in models. Here a two-moment prognostic graupel scheme was incorporated into the MIROC6 GCM and applied in three experiments involving pre-industrial aerosol, present-day, and future warming simulations. The new microphysics scheme performed well in reproducing global distributions of graupel, convective available potential energy, and lightning flash rate against satellite retrievals and reanalysis datasets. The global mean lightning rate increased by 7.1% from the pre-industrial period to the present day, which was attributed to increased graupel occurrence. The impact of future warming on lightning activity was more evident, with the rate increasing by 18.4[Formula: see text] through synergistic contributions of destabilization and increased graupel. In the Arctic, the lightning rate depends strongly on the seasonality of graupel, emphasizing the need to incorporate graupel into GCMs for more accurate climate prediction.

3.
J Exp Biol ; 224(13)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34232314

RESUMO

The Arctic is warming at approximately twice the global rate, with well-documented indirect effects on wildlife. However, few studies have examined the direct effects of warming temperatures on Arctic wildlife, leaving the importance of heat stress unclear. Here, we assessed the direct effects of increasing air temperatures on the physiology of thick-billed murres (Uria lomvia), an Arctic seabird with reported mortalities due to heat stress while nesting on sun-exposed cliffs. We used flow-through respirometry to measure the response of body temperature, resting metabolic rate, evaporative water loss and evaporative cooling efficiency (the ratio of evaporative heat loss to metabolic heat production) in murres while experimentally increasing air temperature. Murres had limited heat tolerance, exhibiting: (1) a low maximum body temperature (43.3°C); (2) a moderate increase in resting metabolic rate relative that within their thermoneutral zone (1.57 times); (3) a small increase in evaporative water loss rate relative that within their thermoneutral zone (1.26 times); and (4) a low maximum evaporative cooling efficiency (0.33). Moreover, evaporative cooling efficiency decreased with increasing air temperature, suggesting murres were producing heat at a faster rate than they were dissipating it. Larger murres also had a higher rate of increase in resting metabolic rate and a lower rate of increase in evaporative water loss than smaller murres; therefore, evaporative cooling efficiency declined with increasing body mass. As a cold-adapted bird, murres' limited heat tolerance likely explains their mortality on warm days. Direct effects of overheating on Arctic wildlife may be an important but under-reported impact of climate change.


Assuntos
Termotolerância , Animais , Aves , Regulação da Temperatura Corporal , Temperatura Alta , Perda Insensível de Água
4.
Ecol Evol ; 11(4): 1609-1619, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33613993

RESUMO

Arctic animals inhabit some of the coldest environments on the planet and have evolved physiological mechanisms for minimizing heat loss under extreme cold. However, the Arctic is warming faster than the global average and how well Arctic animals tolerate even moderately high air temperatures (T a) is unknown.Using flow-through respirometry, we investigated the heat tolerance and evaporative cooling capacity of snow buntings (Plectrophenax nivalis; ≈31 g, N = 42), a cold specialist, Arctic songbird. We exposed buntings to increasing T a and measured body temperature (T b), resting metabolic rate (RMR), rates of evaporative water loss (EWL), and evaporative cooling efficiency (the ratio of evaporative heat loss to metabolic heat production).Buntings had an average (±SD) T b of 41.3 ± 0.2°C at thermoneutral T a and increased T b to a maximum of 43.5 ± 0.3°C. Buntings started panting at T a of 33.2 ± 1.7°C, with rapid increases in EWL starting at T a = 34.6°C, meaning they experienced heat stress when air temperatures were well below their body temperature. Maximum rates of EWL were only 2.9× baseline rates at thermoneutral T a, a markedly lower increase than seen in more heat-tolerant arid-zone species (e.g., ≥4.7× baseline rates). Heat-stressed buntings also had low evaporative cooling efficiencies, with 95% of individuals unable to evaporatively dissipate an amount of heat equivalent to their own metabolic heat production.Our results suggest that buntings' well-developed cold tolerance may come at the cost of reduced heat tolerance. As the Arctic warms, and this and other species experience increased periods of heat stress, a limited capacity for evaporative cooling may force birds to increasingly rely on behavioral thermoregulation, such as minimizing activity, at the expense of diminished performance or reproductive investment.

5.
J Therm Biol ; 95: 102816, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33454044

RESUMO

Increasing heart rate (ƒH) is a central, if not primary mechanism used by fishes to support their elevated tissue oxygen consumption during acute warming. Thermal acclimation can adjust this acute response to improve cardiac performance and heat tolerance under the prevailing temperatures. We predict that such acclimation will be particularly important in regions undergoing rapid environmental change such as the Arctic. Therefore, we acclimated Arctic char (Salvelinus alpinus), a high latitude, cold-adapted salmonid, to ecologically relevant temperatures (2, 6, 10, 14 and 18 °C) and examined how thermal acclimation influenced their cardiac heat tolerance by measuring the maximum heart rate (ƒHmax) response to acute warming. As expected, acute warming increased ƒHmax in all Arctic char before ƒHmax reached a peak and then became arrhythmic. The peak ƒHmax, and the temperature at which peak ƒHmax (Tpeak) and that at which arrhythmia first occurred (Tarr) all increased progressively (+33%, 49% and 35%, respectively) with acclimation temperature from 2 to 14 °C. When compared at the same test temperature ƒHmax also decreased by as much as 29% with increasing acclimation temperature, indicating significant thermal compensation. The upper temperature at which fish first lost their equilibrium (critical thermal maximum: CTmax) also increased with acclimation temperature, albeit to a lesser extent (+11%). Importantly, Arctic char experienced mortality after several weeks of acclimation at 18 °C and survivors did not have elevated cardiac thermal tolerance. Collectively, these findings suggest that if wild Arctic char have access to suitable temperatures (<18 °C) for a sufficient duration, warm acclimation can potentially mitigate some of the cardiorespiratory impairments previously documented during acute heat exposure.


Assuntos
Frequência Cardíaca , Termotolerância , Truta/fisiologia , Animais , Ecossistema , Movimento
6.
Environ Res Commun ; 3(6): 1-11, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-36072508

RESUMO

The brick kiln industrial sector in South Asia accounts for large amounts of short-lived climate forcer (SLCF) emissions, namely black carbon (BC), organic carbon (OC), and sulfur dioxide (SO2; the precursor to atmospheric sulfate [SO4]). These SLCFs are air pollutants and have important impacts on both human health and the Arctic, a region currently experiencing more than double the rate of warming relative to the global average. Using previously derived Arctic equilibrium temperature response factors, we estimate the contribution to Arctic temperature impacts from previously reported emissions of BC, OC, and SO2 from four prevalent South Asian brick kiln types (Bull's Trench [BTK], Down Draught [DDK], Vertical Shaft [VSBK], and Zig-zag). Net annual BC (115 gigagrams [Gg]), OC (17 Gg), and SO2 (350 Gg) baseline emissions from all four South Asian kiln types resulted in 3.36 milliKelvin (mK) of Arctic surface warming. Given these baseline emissions and Arctic temperature responses, we estimate the current and maximum potential emission and temperature mitigation considering two kiln type conversions. Assuming no change in brick production, baseline emissions have been reduced by 17% when considering current BTK to Zig-zag conversions and have the potential to decrease by 82% given a 100% future conversion rate. This results in a 25% and 119% reduction in Arctic warming, respectively. Replacing DDKs with VSBKs increases baseline SLCF emissions by 28% based on current conversions and has the potential to increase by 131%. This conversion still reduces baseline warming by 31% and 149%, respectively. These results show that brick kiln conversions can have different impacts on local air quality and Arctic climate. When considering brick kiln emissions mitigation options, regional and/or local policy action should consider several factors, including local air quality, worker health and safety, cost, quality of bricks, as well as global climate impacts.

7.
Proc Natl Acad Sci U S A ; 117(44): 27171-27178, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33046633

RESUMO

Global warming due to anthropogenic factors can be amplified or dampened by natural climate oscillations, especially those involving sea surface temperatures (SSTs) in the North Atlantic which vary on a multidecadal scale (Atlantic multidecadal variability, AMV). Because the instrumental record of AMV is short, long-term behavior of AMV is unknown, but climatic teleconnections to regions beyond the North Atlantic offer the prospect of reconstructing AMV from high-resolution records elsewhere. Annually resolved titanium from an annually laminated sedimentary record from Ellesmere Island, Canada, shows that the record is strongly influenced by AMV via atmospheric circulation anomalies. Significant correlations between this High-Arctic proxy and other highly resolved Atlantic SST proxies demonstrate that it shares the multidecadal variability seen in the Atlantic. Our record provides a reconstruction of AMV for the past ∼3 millennia at an unprecedented time resolution, indicating North Atlantic SSTs were coldest from ∼1400-1800 CE, while current SSTs are the warmest in the past ∼2,900 y.


Assuntos
Aquecimento Global/história , Temperatura , Regiões Árticas , Oceano Atlântico , Atmosfera , Clima , História do Século XVIII , História do Século XIX , História do Século XX , Estações do Ano
8.
Glob Chang Biol ; 25(10): 3254-3266, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31241797

RESUMO

The sustainability of the vast Arctic permafrost carbon pool under climate change is of paramount importance for global climate trajectories. Accurate climate change forecasts, therefore, depend on a reliable representation of mechanisms governing Arctic carbon cycle processes, but this task is complicated by the complex interaction of multiple controls on Arctic ecosystem changes, linked through both positive and negative feedbacks. As a primary example, predicted Arctic warming can be substantially influenced by shifts in hydrologic regimes, linked to, for example, altered precipitation patterns or changes in topography following permafrost degradation. This study presents observational evidence how severe drainage, a scenario that may affect large Arctic areas with ice-rich permafrost soils under future climate change, affects biogeochemical and biogeophysical processes within an Arctic floodplain. Our in situ data demonstrate reduced carbon losses and transfer of sensible heat to the atmosphere, and effects linked to drainage-induced long-term shifts in vegetation communities and soil thermal regimes largely counterbalanced the immediate drainage impact. Moreover, higher surface albedo in combination with low thermal conductivity cooled the permafrost soils. Accordingly, long-term drainage effects linked to warming-induced permafrost degradation hold the potential to alleviate positive feedbacks between permafrost carbon and Arctic warming, and to slow down permafrost degradation. Self-stabilizing effects associated with ecosystem disturbance such as these drainage impacts are a key factor for predicting future feedbacks between Arctic permafrost and climate change, and, thus, neglect of these mechanisms will exaggerate the impacts of Arctic change on future global climate projections.


Assuntos
Pergelissolo , Regiões Árticas , Mudança Climática , Ecossistema , Solo
9.
J Exp Biol ; 222(Pt 11)2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31097602

RESUMO

Arctic marine ecosystems are currently undergoing rapid environmental changes. Over the past 20 years, individual growth rates of beluga whales (Delphinapterus leucas) have declined, which may be a response to climate change; however, the scarcity of physiological data makes it difficult to gauge the adaptive capacity and resilience of the species. We explored relationships between body condition and physiological parameters pertaining to oxygen (O2) storage capacity in 77 beluga whales in the eastern Beaufort Sea. Muscle myoglobin concentrations averaged 77.9 mg g-1, one of the highest values reported among mammals. Importantly, blood haematocrit, haemoglobin and muscle myoglobin concentrations correlated positively to indices of body condition, including maximum half-girth to length ratios. Thus, a whale with the lowest body condition index would have ∼27% lower blood (26.0 versus 35.7 ml kg-1) and 12% lower muscle (15.6 versus 17.7 ml kg-1) O2 stores than a whale of equivalent mass with the highest body condition index; with the conservative assumption that underwater O2 consumption rates are unaffected by body condition, this equates to a >3 min difference in maximal aerobic dive time between the two extremes (14.3 versus 17.4 min). Consequently, environmental changes that negatively impact body condition may hinder the ability of whales to reach preferred prey sources, evade predators and escape ice entrapments. The relationship between body condition and O2 storage capacity may represent a vicious cycle, in which environmental changes resulting in decreased body condition impair foraging, leading to further reductions in condition through diminished prey acquisition and/or increased foraging efforts.


Assuntos
Beluga/fisiologia , Músculos/química , Oxigênio/análise , Oxigênio/sangue , Animais , Composição Corporal , Feminino , Hematócrito , Hemoglobinas/análise , Masculino , Mioglobina/análise , Territórios do Noroeste
10.
Front Plant Sci ; 9: 715, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29922310

RESUMO

Plant ecosystem engineers are widely used to combat land degradation. However, the ability of those plants to modulate limiting abiotic and biotic resources of other species can cause damage to ecosystems in which they become invasive. Here, we use Lupinus nootkatensis as example to estimate and project the hazardous potential of nitrogen fixing herbaceous plants in a sub-polar oceanic climate. L. nootkatensis was introduced to Iceland in the 1940s to address erosion problems and foster reforestation, but subsequently became a high-latitude invader. In a local field survey, we quantified the impact of L. nootkatensis invasion at three different cover levels (0, 10-50, and 51-100%) upon native plant diversity, richness, and community composition of heath-, wood-, and grasslands using a pairwise comparison design and comparisons of means. Afterward, we scaled impacts up to the ecosystem and landscape level by relating occurrences of L. nootkatensis to environmental and human-mediated variables across Iceland using a species distribution model. Plant diversity was significantly deteriorated under high lupine cover levels of the heath- and woodland, but not in the grassland. Plant species richness of the most diverse habitat, the heathland, linearly decreased with lupine cover level. The abundance of small rosettes, cushion plants, orchids, and small woody long-lived plants of the heath declined with invader presence, while the abundance of late successional species and widespread nitrophilous ruderals in wood- and grasslands increased. Distribution modeling revealed 13.3% of Iceland's land surface area to be suitable lupine habitat. Until 2061-2080, this area will more than double and expand significantly into the Central Highlands due to human mediation and increasingly favorable climatic conditions. Species-rich habitats showed a loss of plant species diversity and richness as well as a change in community composition even in low lupine cover classes. The future increase of suitable lupine habitat might lead to the displacement of cold-adapted native plant species and will certainly challenge conservation as well as restoration of ecosystems in the cold climate of Iceland, but also elsewhere. Lupine invasion speeds up succession, which may be additive with climate change effects, and accelerates ecological change in cold biomes.

11.
Ambio ; 46(Suppl 3): 410-422, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29067638

RESUMO

A significant share of the world's undiscovered oil and natural gas resources are assumed to lie under the seabed of the Arctic Ocean. Up until now, the exploitation of the resources especially under the European Arctic has largely been prevented by the challenges posed by sea ice coverage, harsh weather conditions, darkness, remoteness of the fields, and lack of infrastructure. Gradual warming has, however, improved the accessibility of the Arctic Ocean. We show for the most resource-abundant European Arctic Seas whether and how a climate induced reduction in sea ice might impact future accessibility of offshore natural gas and crude oil resources. Based on this analysis we show for a number of illustrative but representative locations which technology options exist based on a cost-minimization assessment. We find that under current hydrocarbon prices, oil and gas from the European offshore Arctic is not competitive on world markets.


Assuntos
Mudança Climática , Camada de Gelo , Campos de Petróleo e Gás , Regiões Árticas , Oceanos e Mares , Petróleo
12.
Ambio ; 46(Suppl 1): 94-105, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28116689

RESUMO

The objective of this paper is to characterize the spatiotemporal variations of vegetation phenology along latitudinal and altitudinal gradients in Greenland, and to examine local and regional climatic drivers. Time-series from the Moderate Resolution Imaging Spectroradiometer (MODIS) were analyzed to obtain various phenological metrics for the period 2001-2015. MODIS-derived land surface temperatures were corrected for the sampling biases caused by cloud cover. Results indicate significant differences between West and East Greenland, in terms of both observed phenology during the study period, as well as the climatic response. The date of the start of season (SOS) was significantly earlier (24 days), length of season longer (25 days), and time-integrated NDVI higher in West Greenland. The sea ice concentration during May was found to have a significant effect on the date of the SOS only in West Greenland, with the strongest linkage detected in mid-western parts of Greenland.


Assuntos
Clima , Desenvolvimento Vegetal , Estações do Ano , Regiões Árticas , Monitorização de Parâmetros Ecológicos , Geografia , Groenlândia , Camada de Gelo , Dinâmica Populacional , Tecnologia de Sensoriamento Remoto , Temperatura , Tundra
13.
Earths Future ; 4(6): 270-281, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31423454

RESUMO

The Arctic temperature response to emissions of aerosols-specifically black carbon (BC), organic carbon (OC), and sulfate-depends on both the sector and the region where these emissions originate. Thus, the net Arctic temperature response to global aerosol emissions reductions will depend strongly on the blend of emissions sources being targeted. We use recently published equilibrium Arctic temperature response factors for BC, OC, and sulfate to estimate the range of present-day and future Arctic temperature changes from seven different aerosol emissions scenarios. Globally, Arctic temperature changes calculated from all of these emissions scenarios indicate that present-day emissions from the domestic and transportation sectors generate the majority of present-day Arctic warming from BC. However, in all of these scenarios, this warming is more than offset by cooling resulting from SO2 emissions from the energy sector. Thus, long-term climate mitigation strategies that are focused on reducing carbon dioxide (CO2) emissions from the energy sector could generate short-term, aerosol-induced Arctic warming. A properly phased approach that targets BC-rich emissions from the transportation sector as well as the domestic sectors in key regions-while simultaneously working toward longer-term goals of CO2 mitigation-could potentially avoid some amount of short-term Arctic warming.

14.
Philos Trans A Math Phys Eng Sci ; 373(2052)2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26347536

RESUMO

Between 1948 and 1996, mean annual environmental parameters in the Arctic experienced a well-pronounced decadal variability with two basic circulation patterns: cyclonic and anticyclonic alternating at 5 to 7 year intervals. During cyclonic regimes, low sea-level atmospheric pressure (SLP) dominated over the Arctic Ocean driving sea ice and the upper ocean counterclockwise; the Arctic atmosphere was relatively warm and humid, and freshwater flux from the Arctic Ocean towards the subarctic seas was intensified. By contrast, during anticylonic circulation regimes, high SLP dominated driving sea ice and the upper ocean clockwise. Meanwhile, the atmosphere was cold and dry and the freshwater flux from the Arctic to the subarctic seas was reduced. Since 1997, however, the Arctic system has been under the influence of an anticyclonic circulation regime (17 years) with a set of environmental parameters that are atypical for this regime. We discuss a hypothesis explaining the causes and mechanisms regulating the intensity and duration of Arctic circulation regimes, and speculate how changes in freshwater fluxes from the Arctic Ocean and Greenland impact environmental conditions and interrupt their decadal variability.

15.
Proc Natl Acad Sci U S A ; 112(19): 5921-6, 2015 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-25902494

RESUMO

Phytoplankton have attracted increasing attention in climate science due to their impacts on climate systems. A new generation of climate models can now provide estimates of future climate change, considering the biological feedbacks through the development of the coupled physical-ecosystem model. Here we present the geophysical impact of phytoplankton, which is often overlooked in future climate projections. A suite of future warming experiments using a fully coupled ocean-atmosphere model that interacts with a marine ecosystem model reveals that the future phytoplankton change influenced by greenhouse warming can amplify Arctic surface warming considerably. The warming-induced sea ice melting and the corresponding increase in shortwave radiation penetrating into the ocean both result in a longer phytoplankton growing season in the Arctic. In turn, the increase in Arctic phytoplankton warms the ocean surface layer through direct biological heating, triggering additional positive feedbacks in the Arctic, and consequently intensifying the Arctic warming further. Our results establish the presence of marine phytoplankton as an important potential driver of the future Arctic climate changes.


Assuntos
Aquecimento Global , Fitoplâncton/fisiologia , Regiões Árticas , Clorofila/química , Clima , Ecossistema , Geografia , Geologia , Camada de Gelo , Pigmentação , Estações do Ano , Energia Solar , Temperatura , Fatores de Tempo
16.
Glob Chang Biol ; 21(3): 1116-23, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25639886

RESUMO

Arctic climate change has profound impacts on the cryosphere, notably via shrinking sea-ice cover and retreating glaciers, and it is essential to evaluate and forecast the ecological consequences of such changes. We studied zooplankton-feeding little auks (Alle alle), a key sentinel species of the Arctic, at their northernmost breeding site in Franz-Josef Land (80°N), Russian Arctic. We tested the hypothesis that little auks still benefit from pristine arctic environmental conditions in this remote area. To this end, we analysed remote sensing data on sea-ice and coastal glacier dynamics collected in our study area across 1979-2013. Further, we recorded little auk foraging behaviour using miniature electronic tags attached to the birds in the summer of 2013, and compared it with similar data collected at three localities across the Atlantic Arctic. We also compared current and historical data on Franz-Josef Land little auk diet, morphometrics and chick growth curves. Our analyses reveal that summer sea-ice retreated markedly during the last decade, leaving the Franz-Josef Land archipelago virtually sea-ice free each summer since 2005. This had a profound impact on little auk foraging, which lost their sea-ice-associated prey. Concomitantly, large coastal glaciers retreated rapidly, releasing large volumes of melt water. Zooplankton is stunned by cold and osmotic shock at the boundary between glacier melt and coastal waters, creating new foraging hotspots for little auks. Birds therefore switched from foraging at distant ice-edge localities, to highly profitable feeding at glacier melt-water fronts within <5 km of their breeding site. Through this behavioural plasticity, little auks maintained their chick growth rates, but showed a 4% decrease in adult body mass. Our study demonstrates that arctic cryosphere changes may have antagonistic ecological consequences on coastal trophic flow. Such nonlinear responses complicate modelling exercises of current and future polar ecosystem dynamics.


Assuntos
Charadriiformes/fisiologia , Mudança Climática , Comportamento Alimentar , Animais , Regiões Árticas , Charadriiformes/anatomia & histologia , Charadriiformes/crescimento & desenvolvimento , Camada de Gelo , Modelos Biológicos , Dinâmica não Linear , Tecnologia de Sensoriamento Remoto , Federação Russa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA