Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 43(6): 993-1014, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38378890

RESUMO

Entry into mitosis has been classically attributed to the activation of a cyclin B/Cdk1 amplification loop via a partial pool of this kinase becoming active at the end of G2 phase. However, how this initial pool is activated is still unknown. Here we discovered a new role of the recently identified PP2A-B55 inhibitor FAM122A in triggering mitotic entry. Accordingly, depletion of the orthologue of FAM122A in C. elegans prevents entry into mitosis in germline stem cells. Moreover, data from Xenopus egg extracts strongly suggest that FAM122A-dependent inhibition of PP2A-B55 could be the initial event promoting mitotic entry. Inhibition of this phosphatase allows subsequent phosphorylation of early mitotic substrates by cyclin A/Cdk, resulting in full cyclin B/Cdk1 and Greatwall (Gwl) kinase activation. Subsequent to Greatwall activation, Arpp19/ENSA become phosphorylated and now compete with FAM122A, promoting its dissociation from PP2A-B55 and taking over its phosphatase inhibition role until the end of mitosis.


Assuntos
Caenorhabditis elegans , Proteínas Serina-Treonina Quinases , Animais , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Mitose , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo , Ciclina B/metabolismo
2.
Front Cell Dev Biol ; 10: 967909, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36105360

RESUMO

Cells require major physical changes to induce a proper repartition of the DNA. Nuclear envelope breakdown, DNA condensation and spindle formation are promoted at mitotic entry by massive protein phosphorylation and reversed at mitotic exit by the timely and ordered dephosphorylation of mitotic substrates. This phosphorylation results from the balance between the activity of kinases and phosphatases. The role of kinases in the control of mitosis has been largely studied, however, the impact of phosphatases has long been underestimated. Recent data have now established that the regulation of phosphatases is crucial to confer timely and ordered cellular events required for cell division. One major phosphatase involved in this process is the phosphatase holoenzyme PP2A-B55. This review will be focused in the latest structural, biochemical and enzymatic insights provided for PP2A-B55 phosphatase as well as its regulators and mechanisms of action.

3.
Front Oncol ; 11: 733595, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34527595

RESUMO

BACKGROUND: High glycolysis efficiency in tumor cells can promote tumor growth. lncRNAs play an important role in the proliferation, metabolism and migration of cancer cells, but their regulation of tumor glycolysis is currently not well researched. METHODS: We analyzed the co-expression of glycolysis-related genes and lncRNAs in The Cancer Genome Atlas (TCGA) database to screen glycolysis-related lncRNAs. Further prognostic analysis and differential expression analysis were performed. We further analyzed the relationship between lncRNAs and tumor immune infiltration. Since WAC antisense RNA 1 (WAC-AS1) had the greatest effect on the prognosis among all screened lncRNAs and had a larger coefficient in the prognostic model, we chose WAC-AS1 for further verification experiments and investigated the function and mechanism of action of WAC-AS1 in hepatocellular carcinoma. RESULTS: We screened 502 lncRNAs that have co-expression relationships with glycolytic genes based on co-expression analysis. Among them, 112 lncRNAs were abnormally expressed in liver cancer, and 40 lncRNAs were related to the prognosis of patients. Eight lncRNAs (WAC-AS1, SNHG3, SNHG12, MSC-AS1, MIR210HG, PTOV1-AS1, AC145207.5 and AL031985.3) were used to established a prognostic model. Independent prognostic analysis (P<0.001), survival analysis (P<0.001), receiver operating characteristic (ROC) curve analysis (AUC=0.779) and clinical correlation analysis (P<0.001) all indicated that the prognostic model has good predictive power and that the risk score can be used as an independent prognostic factor (P<0.001). The risk score and lncRNAs in the model were found to be related to a variety of immune cell infiltration and immune functions. WAC-AS1 was found to affect glycolysis and promote tumor proliferation (P<0.01). WAC-AS1 affected the expression of several glycolysis-related genes (cAMP regulated phosphoprotein 19 (ARPP19), CHST12, MED24 and KIF2A) (P<0.01). Under hypoxic conditions, WAC-AS1 regulated ARPP19 by sponging miR-320d to promote glucose uptake and lactate production (P<0.01). CONCLUSION: We constructed a model based on glycolysis-related lncRNAs to evaluate the prognostic risk of patients. The risk score and lncRNAs in the model were related to immune cell infiltration. WAC-AS1 can regulate ARPP19 to promote glycolysis and proliferation by sponging miR-320d.

4.
Front Mol Biosci ; 8: 650881, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33842550

RESUMO

Protein phosphatase 2A (PP2A) activity is critical for maintaining normal physiological cellular functions. PP2A is inhibited by endogenous inhibitor proteins in several pathological conditions including cancer. A PP2A inhibitor protein, ARPP-19, has recently been connected to several human cancer types. Accordingly, the knowledge about ARPP-19-PP2A inhibition mechanism is crucial for the understanding the disease development and the therapeutic targeting of ARPP-19-PP2A. Here, we show the first structural characterization of ARPP-19, and its splice variant ARPP-16 using NMR spectroscopy, and SAXS. The results reveal that both ARPP proteins are intrinsically disordered but contain transient secondary structure elements. The interaction mechanism of ARPP-16/19 with PP2A was investigated using microscale thermophoresis and NMR spectroscopy. Our results suggest that ARPP-PP2A A-subunit interaction is mediated by linear motif and has modest affinity whereas, the interaction of ARPPs with B56-subunit is weak and transient. Like many IDPs, ARPPs are promiscuous binders that transiently interact with PP2A A- and B56 subunits using multiple interaction motifs. In summary, our results provide a good starting point for future studies and development of therapeutics that block ARPP-PP2A interactions.

5.
Bioorg Med Chem Lett ; 40: 127955, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33744438

RESUMO

OBJECTIVES: Long noncoding RNAs (lncRNAs) have been reported to be involved in multiple cancer progression, yet the biological role of lncRNA SNHG6 in nasopharyngeal carcinoma (NPC) is still unclear. This research aims to explore the molecular mechanism of SNHG6 in the development and progression of NPC. DESIGN: Prospective feasibility study. SETTING: The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital. Long noncoding RNAs (lncRNAs) have been reported to be involved in multiple cancer progression, yet the biological role of lncRNA SNHG6 in nasopharyngeal carcinoma (NPC) is still unclear. This research aims to explore the molecular mechanism of SNHG6 in the development and progression of NPC. RT-qPCR assay was used to examine the expression of SNHG6, miR-26a-5p, and ARPP19 in NPC. CCK-8 and transwell assays were employed to detect NPC cell viability, migration, and invasion. The interaction between miR-26a-5p and SNHG6 or ARPP19 was determined by the luciferase reporter, RIP and RNA pull-down assays. We observed that SNHG6 expression was enhanced in NPC tissues and cells. SNHG6 deletion attenuated NPC cell viability and metastasis. MiR-26a-5p was predicted and validated to interact with SNHG6, and miR-26a-5p expression was markedly elevated in NPC after SNHG6 silence. Moreover, miR-26a-5p inhibitor rescued the suppressive effect of SNHG6 depletion on NPC cell viability, migration and invasion. Besides, ARPP19 was a target of SNHG6 and positively regulated by SNHG6. ARPP19 overexpression neutralized the repressive effect of SNHG6 knockdown on NPC progression. Our results indicated that SNHG6 regulated NPC progression through modulating miR-26a-5/ARPP19 axis, which might provide new insights into NPC diagnosis and treatment.


Assuntos
MicroRNAs/metabolismo , Carcinoma Nasofaríngeo/etiologia , Neoplasias Nasofaríngeas/etiologia , Fosfoproteínas/metabolismo , RNA Longo não Codificante/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Técnicas de Silenciamento de Genes , Humanos , Carcinoma Nasofaríngeo/diagnóstico , Carcinoma Nasofaríngeo/fisiopatologia , Neoplasias Nasofaríngeas/diagnóstico , Neoplasias Nasofaríngeas/fisiopatologia , Metástase Neoplásica/genética , Prognóstico , Estudos Prospectivos , RNA Longo não Codificante/genética , Regulação para Cima/fisiologia
6.
Oncol Lett ; 21(3): 225, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33613714

RESUMO

Colorectal cancer (CRC) is one of the most aggressive malignancies worldwide. Increasing evidence has indicated that microRNA (miR)-599 is involved in the occurrence and development of different types of tumors, such as breast cancer and glioma. However, the role of miR-599 in CRC remains unclear. Thus, the present study aimed to identify the regulatory mechanism of miR-599 in CRC progression. Reverse transcription-quantitative PCR was used to analyze the expression levels of MCM3AP-AS1, miR-599 and ARPP19, and Cell Counting Kit-8 and Transwell assays were used to determine the cell proliferation and migration of CRC cells. In addition, a Dual-luciferase reporter assay was used to analyze the direct interaction between miR-599 and MCM3AP-AS1 or ARPP19. Reverse transcription-quantitative PCR analysis demonstrated that miR-599 expression decreased in patients with CRC and in CRC cell lines, while miR-599 overexpression inhibited cell proliferation and migration abilities in vitro. MCM3AP-AS1 was identified as a molecular sponge of miR-599, and further investigation indicated that MCM3AP-AS1 silencing inhibited cell proliferation and migration of the CRC cell lines. In addition, ARPP19 was identified as a target gene of miR-599, and MCM3AP-AS1-knockdown decreased ARPP19 mRNA expression and increased miR-599 expression. Furthermore, silencing ARPP19 inhibited the proliferation and migration of the CRC cell lines. The results also demonstrated that MCM3AP-AS1 promoted CRC cell progression by regulating the miR-599/ARPP19 axis. Taken together, the results of the present study suggest that MCM3AP-AS1 may be a novel therapeutic target for patients with CRC.

7.
Biomolecules ; 10(11)2020 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-33266510

RESUMO

Protein phosphorylation is a post-translational modification essential for the control of the activity of most enzymes in the cell. This protein modification results from a fine-tuned balance between kinases and phosphatases. PP2A is one of the major serine/threonine phosphatases that is involved in the control of a myriad of different signaling cascades. This enzyme, often misregulated in cancer, is considered a tumor suppressor. In this review, we will focus on PP2A-B55, a particular holoenzyme of the family of the PP2A phosphatases whose specific role in cancer development and progression has only recently been highlighted. The discovery of the Greatwall (Gwl)/Arpp19-ENSA cascade, a new pathway specifically controlling PP2A-B55 activity, has been shown to be frequently altered in cancer. Herein, we will review the current knowledge about the mechanisms controlling the formation and the regulation of the activity of this phosphatase and its misregulation in cancer.


Assuntos
Neoplasias/enzimologia , Neoplasias/genética , Proteína Fosfatase 2/farmacocinética , Animais , Holoenzimas/química , Holoenzimas/genética , Holoenzimas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteína Fosfatase 2/antagonistas & inibidores , Proteína Fosfatase 2/química , Proteína Fosfatase 2/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais
8.
Onco Targets Ther ; 13: 6629-6643, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32753897

RESUMO

PURPOSE: As the first-line drug for treatment of HER2-positive metastatic gastric cancer (GC), Herceptin exhibits significant therapeutic efficacy. However, acquired resistance of Herceptin limits the therapeutic benefit of gastric cancer patients, in which the molecular mechanisms remain to be further determined. METHODS: Quantitative real-time polymerase chain reaction was performed to detect the mRNA levels of ARPP-19 and CD44 in GC cells. Protein levels were determined using Western blot and IHC staining. MTT and soft agar colony formation assays were used to measure cell proliferation. Xenograft model was established to verify the functional role of ARPP-19 in Herceptin resistance in vivo. Sphere formation assay was conducted to determine cell stemness. RESULTS: We observed ARPP-19 was up-regulated in Herceptin resistance gastric cancer cells NCI-N87-HR and MKN45-HR. The forced expression of ARPP-19 promoted, whereas the silencing of ARPP-19 impaired Herceptin resistance of HER2-positive gastric cancer cells both in vitro and in vivo. Moreover, ARPP-19 significantly enhanced the sphere formation capacity and CD44 expression, CD44 was also a positive factor of Herceptin resistance in HER2-positive gastric cancer cells. In addition, high level of ARPP-19 was positively associated with Herceptin resistance and poor survival rate of gastric cancer patients. CONCLUSION: We have demonstrated that ARPP-19 promoted Herceptin resistance of gastric cancer via up-regulation of CD44, our study suggested that ARPP-19 could be a potential diagnostic and therapeutic candidate for HER2-positive gastric cancer.

9.
Cells ; 9(2)2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32085646

RESUMO

The cell cycle is controlled by microtubule-associated serine/threonine kinase-like (MASTL), which phosphorylates the cAMP-regulated phosphoproteins 19 (ARPP19) at S62 and 19e/α-endosulfine (ENSA) at S67and converts them into protein phosphatase 2A (PP2A) inhibitors. Based on initial proteomic data, we hypothesized that the MASTL-ENSA/ARPP19-PP2A pathway, unknown until now in platelets, is regulated and functional in these anucleate cells. We detected ENSA, ARPP19 and various PP2A subunits (including seven different PP2A B-subunits) in proteomic studies of human platelets. ENSA-S109/ARPP19-S104 were efficiently phosphorylated in platelets treated with cAMP- (iloprost) and cGMP-elevating (NO donors/riociguat) agents. ENSA-S67/ARPP19-S62 phosphorylations increased following PP2A inhibition by okadaic acid (OA) in intact and lysed platelets indicating the presence of MASTL or a related protein kinase in human platelets. These data were validated with recombinant ENSA/ARPP19 and phospho-mutants using recombinant MASTL, protein kinase A and G. Both ARPP19 phosphorylation sites S62/S104 were dephosphorylated by platelet PP2A, but only S62-phosphorylated ARPP19 acted as PP2A inhibitor. Low-dose OA treatment of platelets caused PP2A inhibition, diminished thrombin-stimulated platelet aggregation and increased phosphorylation of distinct sites of VASP, Akt, p38 and ERK1/2 MAP kinases. In summary, our data establish the entire MASTL(like)-ENSA/ARPP19-PP2A pathway in human platelets and important interactions with the PKA, MAPK and PI3K/Akt systems.


Assuntos
Plaquetas/metabolismo , Pontos de Checagem do Ciclo Celular/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Fosfoproteínas/metabolismo , Proteína Fosfatase 2/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Doadores de Sangue , Plaquetas/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Células HEK293 , Humanos , Ácido Okadáico/farmacologia , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Agregação Plaquetária/efeitos dos fármacos , Agregação Plaquetária/genética , Proteína Fosfatase 2/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transfecção
10.
Cancer Manag Res ; 12: 419-430, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32021454

RESUMO

BACKGROUND/AIMS: miR-802 plays a key role in cancer progression and development. The purpose of this work is to investigate the functional role of miR-802 in laryngeal cancer and to elucidate the function of miR-802 and cAMP-regulated phosphoprotein 19 (ARPP19) on laryngeal cancer. METHODS: RT-qPCR was applied to study the expression level of ARPP19 and miR-802 in the laryngeal carcinoma cell lines and tissues. CCK-8, colony formation, flow cytometry (FACS) assay were used to study the effect of ARPP19 and miR-802 on apoptosis, proliferation, and cell cycle of laryngeal carcinoma cells. Target gene prediction and luciferase reporter gene assay were applied to identify target gene of miR-802. The transcriptional mRNA and protein expression levels of ARPP19 were measured by RT-qPCR or Western blotting. RESULTS: miR-802 was down-regulated in laryngeal carcinoma cell lines and tissues. Laryngeal cancer cells transfected by miR-802 mimic were significantly inhibited in the terms of cell colony formation and proliferation. Furthermore, miR-802 can inhibit the expression level of ARPP19 by directly targeting the 3' untranslated region (3'-UTR) of ARPP19. Overexpression of the ARPP19 gene can reverse the suppressive effect of miR-802 on laryngeal cancer cells. CONCLUSION: miR-802 can exert tumor suppressor effects in laryngeal carcinoma by targeting ARPP19, indicating that miR-802 protein may play a role of potential therapeutic target for clinical laryngeal cancer.

11.
Cancer Biother Radiopharm ; 35(2): 129-136, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32077747

RESUMO

Background: Cervical cancer (CC) is regarded as one of the most common gynecological malignancies. LncRNA DLX6-AS1 has been proven vital in various cancers, whereas its exact function is still largely unestablished in CC. Materials and Methods: The expression pattern of DLX6-AS1 and miR-16-5p in CC cells was determined by real-time quantitative polymerase chain reaction (RT-qPCR). ARPP19 expression was assessed by RT-qPCR and Western blot assays in CC cells. The precise function of DLX6-AS1 in CC was detected by Cell-Counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), caspase-3 activity, transwell, and Western blot experiments. RNA immunoprecipitation (RIP) and luciferase reporter assays were employed to certify the combination between miR-16-5p and DLX6-AS1 (or ARPP19). Nuclear cytoplasmic segmentation determined the localization of DLX6-AS1 in CC cells. A xenograft mouse model assay studied the influences of DLX6-AS1 silencing on CC progression in vivo. Results: Elevated DLX6-AS1 expression was disclosed in CC cells. DLX6-AS1 silence attenuated proliferation, migration, and epithelial-mesenchymal transition program as well as enhanced CC cell apoptosis. DLX6-AS1 was uncovered to sponge and negatively modulate miR-16-5p in CC. Besides, ARPP19 was uncovered as a downstream target gene of miR-16-5p in CC. Rescue experiments indicated that DLX6-AS1 enhanced the cellular process of CC cells through upregulating ARPP19. Moreover, in vivo assay confirmed that DLX6-AS1 promoted CC growth. Conclusions: DLX6-AS1 accelerates the progression of CC through sponging miR-16-5p and upregulates ARPP19, which offers a novel insight into prognosis and remedy of CC.


Assuntos
Proteínas de Homeodomínio/genética , MicroRNAs/metabolismo , Fosfoproteínas/metabolismo , RNA Longo não Codificante/metabolismo , Neoplasias do Colo do Útero/genética , Animais , Citoproteção/fisiologia , Modelos Animais de Doenças , Progressão da Doença , Feminino , Células HeLa , Xenoenxertos , Humanos , Camundongos , MicroRNAs/biossíntese , MicroRNAs/genética , Fosfoproteínas/genética , RNA Antissenso/biossíntese , RNA Antissenso/genética , Transfecção , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia
12.
Mol Carcinog ; 59(3): 311-322, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31943339

RESUMO

Gastric cancer (GC) is one of the most common malignancies of the digestive system worldwide. Multiple long noncoding RNAs (lncRNAs) participate in the regulation of GC development and metastasis. In this study, we aimed to elucidate the expression and function of lncRNA IGFL2-AS1 in GC. We found that IGFL2-AS1 was highly expressed in GC tissues and cell lines. Knockdown of IGFL2-AS1 suppressed GC cell proliferation, migration, and invasion in vitro. Furthermore, we identified that IGFL2-AS1 exerted its function as a molecular sponge of miR-802. MiR-802 was demonstrated to be a tumor suppressor, and overexpression of miR-802 suppressed GC cell growth, migration, and invasion. Mechanistically, we revealed that the cAMP-regulated phosphoprotein 19 (ARPP19) was a direct target of miR-802 and could reverse the inhibitory function of miR-802. Moreover, our results confirmed that knockdown of IGFL2-AS1 inhibited GC tumor development in an in vivo GC tumor xenograft model. In summary, our data suggest that the IGFL2-AS1/miR-802/ARPP19 axis plays a critical role in the progression and metastasis of GC. Therapies targeting the IGFL2-AS1/miR-802/ARPP19 axis can potentially improve GC treatment.


Assuntos
Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Fosfoproteínas/genética , RNA Longo não Codificante/genética , Neoplasias Gástricas/genética , Idoso , Animais , Linhagem Celular Tumoral , Movimento Celular , Progressão da Doença , Feminino , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Neoplasias Gástricas/patologia
13.
Cancers (Basel) ; 11(11)2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31717978

RESUMO

Disease relapse from standard chemotherapy in acute myeloid leukemia (AML) is poorly understood. The importance of protein phosphatase 2A (PP2A) as an AML tumor suppressor is emerging. Therefore, here, we examined the potential role of endogenous PP2A inhibitor proteins as biomarkers predicting AML relapse in a standard patient population by using three independent patient materials: cohort1 (n = 80), cohort2 (n = 48) and The Cancer Genome Atlas Acute Myeloid Leukemia (TCGA LAML) dataset (n = 160). Out of the examined PP2A inhibitors (CIP2A, SET, PME1, ARPP19 and TIPRL), expression of ARPP19 mRNA was found to be independent of the current AML risk classification. Functionally, ARPP19 promoted AML cell viability and expression of oncoproteins MYC, CDK1, and CIP2A. Clinically, ARPP19 mRNA expression was significantly lower at diagnosis (p = 0.035) in patients whose disease did not relapse after standard chemotherapy. ARPP19 was an independent predictor for relapse both in univariable (p = 0.007) and in multivariable analyses (p = 0.0001) and gave additive information to EVI1 expression and risk group status (additive effect, p = 0.005). Low ARPP19 expression was also associated with better patient outcome in the TCGA LAML cohort (p = 0.019). In addition, in matched patient samples from diagnosis, remission and relapse phases, ARPP19 expression was associated with disease activity (p = 0.034), indicating its potential usefulness as a minimal residual disease (MRD) marker. Together, these data demonstrate the oncogenic function of ARPP19 in AML and its risk group independent role in predicting AML patient relapse tendency.

14.
Am J Cancer Res ; 8(6): 1030-1039, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30034940

RESUMO

miRNA, which involves in pathogenesis of thyroid cancer via different targets, has been found aberrantly expressed in thyroid cancer. Modes of actions of miR-26a in papillary thyroid carcinoma (PTC), however, have not been fully understood to this date. In vitro results obtained from this research confirmed miR-26a was down-regulated in PTC cells (i.e. TPC-1 and BCPAP) where the down-regulation of miR-26a was found to be able to promote cell proliferation. In order to explore the mechanisms, potential targets of miR-26a were postulated: cAMP regulated phosphoprotein 19 (ARPP19) turned out to be the target of miR-26a and it was by depleting ARPP19 was the cell proliferation be suppressed. This suggested that miR-26a regulated cell proliferation by targeting ARPP19. In addition, such a depletion of ARPP19 sensitized PTC cells to tamoxifen (TMX) treatment. The above findings indicated miR-26a was a target of interest regarding the treatment of refractory thyroid carcinomas.

15.
Cell Cycle ; 16(15): 1440-1452, 2017 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-28722544

RESUMO

The small protein ARPP19 plays a dual role during oocyte meiosis resumption. In Xenopus, ARPP19 phosphorylation at S109 by PKA is necessary for maintaining oocytes arrested in prophase of the first meiotic division. Progesterone downregulates PKA, leading to the dephosphorylation of ARPP19 at S109. This initiates a transduction pathway ending with the activation of the universal inducer of M-phase, the kinase Cdk1. This last step depends on ARPP19 phosphorylation at S67 by the kinase Greatwall. Hence, phosphorylated by PKA at S109, ARPP19 restrains Cdk1 activation while when phosphorylated by Greatwall at S67, ARPP19 becomes an inducer of Cdk1 activation. Here, we investigate the functional interplay between S109 and S67-phosphorylations of ARPP19. We show that both PKA and Gwl phosphorylate ARPP19 independently of each other and that Cdk1 is not directly involved in regulating the biological activity of ARPP19. We also show that the phosphorylation of ARPP19 at S67 that activates Cdk1, is dominant over the inhibitory S109 phosphorylation. Therefore our results highlight the importance of timely synchronizing ARPP19 phosphorylations at S109 and S67 to fully activate Cdk1.


Assuntos
Oócitos/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo , Animais , Feminino , Meiose/genética , Meiose/fisiologia , Mitose/genética , Mitose/fisiologia , Fosfoproteínas/genética , Fosforilação/genética , Fosforilação/fisiologia , Proteínas de Xenopus/genética , Xenopus laevis/genética
16.
Cancer Biol Ther ; 16(6): 821-33, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25897893

RESUMO

Protein phosphatase 2A (PP2A) is a serine/threonine phosphatase that plays a significant role in mitotic progression and cellular responses to DNA damage. While traditionally viewed as a tumor suppressor, inhibition of PP2A has recently come to attention as a novel therapeutic means of driving senescent cancer cells into mitosis and promoting cell death via mitotic catastrophe. These findings have been corroborated in numerous studies utilizing naturally produced compounds that selectively inhibit PP2A. To overcome the known human toxicities associated with these compounds, a water-soluble small molecule inhibitor, LB100, was recently developed to competitively inhibit the PP2A protein. This review summarizes the pre-clinical studies to date that have demonstrated the anti-cancer activity of LB100 via its chemo- and radio-sensitizing properties. These studies demonstrate the tremendous therapeutic potential of LB100 in a variety of cancer types. The results of an ongoing phase 1 trial are eagerly anticipated.


Assuntos
Antineoplásicos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Inibidores Enzimáticos/farmacologia , Piperazinas/farmacologia , Proteína Fosfatase 2/antagonistas & inibidores , Radiossensibilizantes/farmacologia , Animais , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Resistencia a Medicamentos Antineoplásicos , Humanos , Mitose/efeitos dos fármacos , Mitose/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Oncogênicas/antagonistas & inibidores , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Proteína Tumoral 1 Controlada por Tradução , Proteínas Supressoras de Tumor/antagonistas & inibidores , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos
17.
Biochem Biophys Res Commun ; 458(4): 739-44, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25666948

RESUMO

Protein phosphatase 2A (PP2A) is a major serine/threonine phosphatase of eukaryotes. PP2A containing the B55 subunit is a key regulator of mitosis and must be inhibited by phosphorylated α-endosulfine (ENSA) or cyclic AMP-regulated 19 kDa phosphoprotein (ARPP-19) to allow passage through mitosis. Exit from mitosis then requires dephosphorylation of ENSA/ARPP-19 to relieve inhibition of PP2A/B55. ENSA/ARPP-19 has been characterized in several vertebrates and budding yeast, but little is known about its presence in plants and the majority of other eukaryotes. Here we show that three isoforms of ENSA/ARPP-19 are present in the Arabidopsis thaliana genome with distinct expression profiles across various plant tissues. The ENSA/ARPP-19 proteins, and in particular their key inhibitory sequence FDSGDY (FDSADW in plants), is remarkably conserved across plants and most eukaryotes suggesting an ancient origin and conserved function to control PP2A activity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Peptídeos/metabolismo , Fosfoproteínas/metabolismo , Proteína Fosfatase 2/metabolismo , Sequência de Aminoácidos , Animais , Arabidopsis/química , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Biologia Computacional , Eucariotos , Regulação da Expressão Gênica de Plantas , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Mitose , Dados de Sequência Molecular , Fosfoproteínas/química , Fosfoproteínas/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Alinhamento de Sequência
18.
Chromosoma ; 124(4): 417-28, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25712366

RESUMO

Maturation or M phase-promoting factor (MPF) is the universal inducer of M phase common to eukaryotic cells. MPF was originally defined as a transferable activity that can induce the G2/M phase transition in recipient cells. Today, however, MPF is assumed to describe an activity that exhibits its effect in donor cells, and furthermore, MPF is consistently equated with the kinase cyclin B-Cdk1. In some conditions, however, MPF, as originally defined, is undetectable even though cyclin B-Cdk1 is fully active. For over three decades, this inconsistency has remained a long-standing puzzle. The enigma is now resolved through the elucidation that MPF, defined as an activity that exhibits its effect in recipient cells, consists of at least two separate kinases, cyclin B-Cdk1 and Greatwall (Gwl). Involvement of Gwl in MPF can be explained by its contribution to the autoregulatory activation of cyclin B-Cdk1 and by its stabilization of phosphorylations on cyclin B-Cdk1 substrates, both of which are essential when MPF induces the G2/M phase transition in recipient cells. To accomplish these tasks, Gwl helps cyclin B-Cdk1 by suppressing protein phosphatase 2A (PP2A)-B55 that counteracts cyclin B-Cdk1. MPF, as originally defined, is thus not synonymous with cyclin B-Cdk1, but is instead a system consisting of both cyclin B-Cdk1 that directs mitotic entry and Gwl that suppresses the anti-cyclin B-Cdk1 phosphatase. The current view that MPF is a synonym for cyclin B-Cdk1 in donor cells is thus imprecise; instead, MPF is best regarded as the entire pathway involved in the autoregulatory activation of cyclin B-Cdk1, with specifics depending on the experimental system.


Assuntos
Pontos de Checagem da Fase G2 do Ciclo Celular/fisiologia , Fator Promotor de Maturação/fisiologia , Mitose/fisiologia , Animais , Ciclina B , Eucariotos , Humanos
19.
Cell Cycle ; 13(10): 1639-49, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24675883

RESUMO

Mammalian oocytes in ovarian follicles are arrested in meiosis at prophase I. This arrest is maintained until ovulation, upon which the oocyte exits from this arrest, progresses through meiosis I and to metaphase of meiosis II. The progression from prophase I to metaphase II, known as meiotic maturation, is mediated by signals that coordinate these transitions in the life of the oocyte. ENSA (α-endosulfine) and ARPP19 (cAMP-regulated phosphoprotein-19) have emerged as regulators of M-phase, with function in inhibition of protein phosphatase 2A (PP2A) activity. Inhibition of PP2A maintains the phosphorylated state of CDK1 substrates, thus allowing progression into and/or maintenance of an M-phase state. We show here ENSA in mouse oocytes plays a key role in the progression from prophase I arrest into M-phase of meiosis I. The majority of ENSA-deficient oocytes fail to exit from prophase I arrest. This function of ENSA in oocytes is dependent on PP2A, and specifically on the regulatory subunit PPP2R2D (also known as B55δ). Treatment of ENSA-deficient oocytes with Okadaic acid to inhibit PP2A rescues the defect in meiotic progression, with Okadaic acid-treated, ENSA-deficient oocytes being able to exit from prophase I arrest. Similarly, oocytes deficient in both ENSA and PPP2R2D are able to exit from prophase I arrest to an extent similar to wild-type oocytes. These data are evidence of a role for ENSA in regulating meiotic maturation in mammalian oocytes, and also have potential relevance to human oocyte biology, as mouse and human have genes encoding both Arpp19 and Ensa.


Assuntos
Prófase Meiótica I/fisiologia , Oócitos/metabolismo , Peptídeos/metabolismo , Fosfoproteínas/metabolismo , Animais , Feminino , Peptídeos e Proteínas de Sinalização Intercelular , Pontos de Checagem da Fase M do Ciclo Celular , Camundongos , Ácido Okadáico/farmacologia , Oócitos/citologia , Oócitos/efeitos dos fármacos , Proteína Fosfatase 2/antagonistas & inibidores , Proteína Fosfatase 2/metabolismo
20.
J Cell Sci ; 126(Pt 17): 3916-26, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23781026

RESUMO

Entry into mitosis or meiosis relies on the coordinated action of kinases and phosphatases that ultimately leads to the activation of Cyclin-B-Cdk1, also known as MPF for M-phase promoting factor. Vertebrate oocytes are blocked in prophase of the first meiotic division, an arrest that is tightly controlled by high PKA activity. Re-entry into meiosis depends on activation of Cdk1, which obeys a two-step mechanism: a catalytic amount of Cdk1 is generated in a PKA and protein-synthesis-dependent manner; then a regulatory network known as the MPF auto-amplification loop is initiated. This second step is independent of PKA and protein synthesis. However, none of the molecular components of the auto-amplification loop identified so far act independently of PKA. Therefore, the protein rendering this process independent of PKA in oocytes remains unknown. Using a physiologically intact cell system, the Xenopus oocyte, we show that the phosphorylation of ARPP19 at S67 by the Greatwall kinase promotes its binding to the PP2A-B55δ phosphatase, thus inhibiting its activity. This process is controlled by Cdk1 and has an essential role within the Cdk1 auto-amplification loop for entry into the first meiotic division. Moreover, once phosphorylated by Greatwall, ARPP19 escapes the negative regulation exerted by PKA. It also promotes activation of MPF independently of protein synthesis, provided that a small amount of Mos is present. Taken together, these findings reveal that PP2A-B55δ, Greatwall and ARPP19 are not only required for entry into meiotic divisions, but are also pivotal effectors within the Cdk1 auto-regulatory loop responsible for its independence with respect to the PKA-negative control.


Assuntos
Fator Promotor de Maturação/metabolismo , Oócitos/metabolismo , Fosfoproteínas/metabolismo , Proteína Fosfatase 2/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ciclina B/genética , Ciclina B/metabolismo , Regulação para Baixo , Feminino , Fator Promotor de Maturação/genética , Meiose/fisiologia , Fosforilação , Xenopus laevis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA