Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Drug Discov Technol ; 21(1): e101023222025, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38629170

RESUMO

Recently, it has been observed that newly developed drugs are lipophilic and have low aqueous solubility issues, which results in a lower dissolution rate and bioavailability of the drugs. To overcome these issues, the liquisolid technique, an innovative and advanced approach, comes into play. This technique involves the conversion of the drug into liquid form by dissolving it in non-volatile solvent and then converting the liquid medication into dry, free-flowing, and compressible form by the addition of carrier and coating material. It offers advantages like low cost of production, easy method of preparation, and compactable with thermo labile and hygroscopic drugs. It has been widely applied for BCS II drugs to enhance dissolution profile. Improving bioavailability, providing sustained release, minimizing pH influence on drug dissolution, and improving drug photostability are some of the other promising applications of this technology. This review article presents an overview of the liquisolid technique and its applications in formulation development.


Assuntos
Biofarmácia , Química Farmacêutica , Química Farmacêutica/métodos , Solubilidade , Liberação Controlada de Fármacos , Água , Comprimidos
2.
Int J Nanomedicine ; 19: 1163-1187, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38344440

RESUMO

Purpose: Improving the treatment of psoriasis is a serious challenge today. Psoriasis is an immune-mediated skin condition affecting 125 million people worldwide. It is commonly treated with cyclosporine-A (CsA) and dithranol (DTH). CsA suppresses the activation of T-cells, immune cells involved in forming psoriatic lesions. Meanwhile, DTH is a potent anti-inflammatory and anti-proliferative drug that effectively reduces the severity of psoriasis symptoms such as redness, scaling, and skin thickness. CsA and DTH belong to BCS class II with limited oral bioavailability. We aim to develop a drug delivery system for topical co-delivery of CsA and DTH, exploring its therapeutic potential. Methods: Firstly, we developed a niosomal drug delivery system based on ceramide IIIB to form Cerosomes. Cerosomes were prepared from a mixture of Ceramide, hyaluronic acid, and edge activator using a thin-film hydration technique. To co-deliver CsA and DTH topically for the treatment of psoriasis. These two hydrophobic drugs encapsulated into our synthesized positively charged particle cerosomes. Results:  Cerosomes had an average particle size of (222.36 nm± 0.36), polydispersity index of (0.415±0.04), Entrapment Efficiency of (96.91%± 0.56), and zeta potential of (29.36±0.38mV) for selected formula. In vitro, In silico, in vivo, permeation, and histopathology experiments have shown that cerosomes enhanced the skin penetration of both hydrophobic drugs by 66.7% compared to the CsA/DTH solution. Imiquimod (IMQ) induced psoriatic mice model was topically treated with our CsA/DTH cerosomes. We found that our formulation enhances the skin penetration of both drugs and reduces psoriasis area and severity index (PASI score) by 2.73 times and 42.85%, respectively, compared to the CsA/DTH solution. Moreover, it reduces the levels of proinflammatory cytokines, TNF-α, IL-10, and IL-6 compared to CsA/DTH solution administration. Conclusion: The Cerosomes nano-vesicle-containing CsA/DTH represents a more promising topical treatment for psoriasis, giving new hope to individuals with psoriasis, compared to commercial and other conventional alternatives.


Assuntos
Antralina , Psoríase , Humanos , Animais , Camundongos , Antralina/farmacologia , Antralina/uso terapêutico , Ciclosporina/farmacologia , Fosfolipídeos , Ceramidas/farmacologia , Administração Cutânea , Psoríase/tratamento farmacológico , Psoríase/patologia , Pele , Modelos Animais de Doenças
3.
Nanotoxicology ; 17(10): 583-603, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38146991

RESUMO

Nanocrystal drug formulation involves several critical manufacturing procedures that result in complex structures to improve drug solubility, dissolution, bioavailability, and consequently the efficacy of poorly soluble Biopharmaceutics Classification System (BCS) II and IV drugs. Nanocrystal formulation of an already approved oral drug may need additional immunotoxic assessment due to changes in the physical properties of the active pharmaceutical ingredient (API). In this study, we selected Zileuton, an FDA-approved drug that belongs to BCS-II for nanocrystal formulation. To evaluate the efficacy and mucosal immune profile of the nanocrystal drug, 10-week-old rats were dosed using capsules containing either API alone or nanocrystal formulated Zileuton (NDZ), or with a physical mixture (PM) using flexible oral gavage syringes. Control groups consisted of untreated, or placebo treated animals. Test formulations were administrated to rats at a dose of 30 mg/kg body weight (bw) once a day for 15 days. The rats treated with NDZ or PM had approximately 4.0 times lower (7.5 mg/kg bw) API when compared to the micron sized API treated rats. At the end of treatment, mucosal (intestinal tissue) and circulating cytokines were measured. The immunological response revealed that NDZ decreased several proinflammatory cytokines in the ileal mucosa (Interleukin-18, Tumor necrosis Factor-α and RANTES [regulated upon activation, normal T cell expressed and secreted]). A similar pattern in the cytokine profile was also observed for the micron sized API and PM treated rats. The cytokine production revealed that there was a significant increase in the production of IL-1ß and IL-10 in the females in all experimental groups. Additionally, NDZ showed an immunosuppressive effect on proinflammatory cytokines both locally and systemically, which was similar to the response in micron sized API treated rats. These findings indicate that NDZ significantly decreased several proinflammatory cytokines and it displays less immunotoxicity, probably due to the nanocrystal formulation. Thus, the nanocrystal formulation is more suitable for oral drug delivery, as it exhibited better efficacy, safety, and reduced toxicity.


Assuntos
Biofarmácia , Hidroxiureia/análogos & derivados , Nanopartículas , Feminino , Ratos , Animais , Biofarmácia/métodos , Ratos Sprague-Dawley , Administração Oral , Cápsulas , Mucosa Intestinal , Nanopartículas/toxicidade , Citocinas , Solubilidade
4.
Polymers (Basel) ; 14(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36080539

RESUMO

Nanocrystals are carrier-free, submicron-sized, colloidal drug delivery systems with particle sizes in the mean nanometer range. Nanocrystals have high bioavailability and fast absorption because of their high dissolution velocity and enhanced adhesiveness to cell membranes. Loxoprofen, a nonsteroidal anti-inflammatory drug belonging to the Biopharmaceutical Classification System (BCS) II drug class, was selected as the model drug. The aim of this study was to formulate nanocrystals of loxoprofen. A total of 12 formulations (F1 to F12) were prepared. An antisolvent technique was used to determine the effects of various stabilizers and processing conditions on the optimization of formulations. The various stabilizers used were hydroxypropyl methylcellulose (0.5%), polyvinylpyrrolidone (0.5%), and sodium lauryl sulfate (0.1%). The various characterizations conducted for this research included stability studies at 25 °C and 4 °C, scanning electron microscopy, transmission electron microscopy (TEM), X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), zeta potentials, polydispersity indexes, and dissolution studies. F10 was the optimized formulation that showed stability at room temperature, as well as at a refrigerated temperature, for 30 days. A high dissolution rate (100% within the first 10 min) was shown by comparative dissolution studies of nano-suspensions with the micro-suspension and raw loxoprofen. F10 formulation had a non-porous and crystalline morphology on evaluation by TEM and XRPD, respectively, and the average particle size was 300 ± 0.3 nm as confirmed by TEM. DSC recorded a reduction in the melting point (180 °C processed and 200 °C unprocessed melting points). The dissolution rate and solubility of the formulated loxoprofen nanocrystals were significantly enhanced. It can be concluded that selecting suitable stabilizers (i.e., polymers and surfactants) can produce stable nanocrystals, and this can potentially lead to a scaling up of the process for commercialization.

5.
Mol Pharm ; 18(8): 2947-2958, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34181413

RESUMO

The high-throughput drying and encapsulation technique called electrospraying assisted by pressurized gas (EAPG) was used for the first time to produce nanostructured valsartan within microparticles of excipients. Valsartan, a poorly absorbed and lipid-soluble drug, was selected since it is considered a good model for BCS class II drugs. Two different polymeric matrices were selected as excipients, i.e., hydroxypropyl methylcellulose (HPMC) and lactose monohydrate, while Span 20 was used as a surfactant. The produced 80% valsartan loading formulations were characterized in terms of morphology, crystallinity, in vitro release, in vitro Caco-2 cells' permeability, and in vivo pharmacokinetic study. Spherical microparticles of ca. 4 µm were obtained within which valsartan nanoparticles were seen to range from 150 to 650 nm. Wide-angle X-ray scattering and differential scanning calorimetry confirmed that valsartan had a lower and/or more ill-defined crystallinity than the commercial source, and photon correlation spectroscopy and transmission electron microscopy proved that it was dispersed and distributed in the form of nanoparticles of controlled size. In vitro dissolution tests showed that the HPMC formulation with the lowest API particle size, i.e., 150 nm, dissolved 2.5-fold faster than the commercial valsartan in the first 10 min. This formulation also showed a 4-fold faster in vitro permeability than the commercial valsartan and a 3-fold higher systemic exposure than the commercial sample. The results proved the potential of the EAPG processing technique for the production of safe-to-handle microparticles containing high quantities of a highly dispersed and distributed nanonized BCS class II model drug with enhanced bioavailability.


Assuntos
Anti-Hipertensivos/farmacocinética , Química Farmacêutica/métodos , Portadores de Fármacos/química , Composição de Medicamentos/métodos , Nanopartículas/química , Temperatura , Valsartana/farmacocinética , Anti-Hipertensivos/química , Disponibilidade Biológica , Células CACO-2 , Cristalização , Liberação Controlada de Fármacos , Excipientes/química , Hexoses/química , Humanos , Derivados da Hipromelose/química , Tamanho da Partícula , Solubilidade , Tensoativos/química , Valsartana/química
6.
ADMET DMPK ; 9(1): 57-68, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35299877

RESUMO

The kinetics of passive transport of ketoprofen and metformin, as model substances for high and low permeability, respectively, across the artificial membrane under the influence of the pH of donor solution was investigated. There was an upward trend in the apparent permeation coefficient (P app) of ketoprofen with the decrease in pH to a value close to pKa. At the pH value below pKa the permeation coefficient had lower value, due to the higher retention of ketoprofen in the artificial membrane. Metformin is a low permeable compound, and the highest permeation values were recorded at pH 7.4. Two dissociation constants determine that metformin at physiological pH exists as a hydrophilic cationic molecule, i.e. predominantly in ionized form. At pH values below 2.8, metformin mainly exists in diprotonated form, and it was, thus, very poorly permeable. The highest retention, i.e. affinity of both ketoprofen and metformin to the membrane, was at the lowest pH values, which is explained by different mechanisms. At higher pH values of donor compartment the substances showed significantly less affinity to the membrane. The obtained values of apparent permeation coefficients at studied pH values showed good correlation with the obtained experimental values by other in vitro methods.

7.
Int J Nanomedicine ; 15: 8767-8781, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33204087

RESUMO

BACKGROUND: Niosomes, bilayer vesicles formed by the self-assembly of nonionic surfactants, are receiving increasing attention as potential oral drug delivery systems but the impact of niosomal formulation parameters on their oral capability has not been studied systematically. The aim of this study was to investigate the impact of surfactant composition and surface charge of niosomes in enhancing oral bioavailability of repaglinide (REG) as a BCS II model drug. METHODS: Niosomes (13 formulations) from various nonionic surfactants having HLB in the range of 4-28 (Tweens, Spans, Brijs, Myrj, poloxamer 188, TPGS and Labrasol) were prepared and characterized concerning their loading efficiency, hydrodynamic diameter, zeta potential, drug release profile, and stability. The oral pharmacokinetics of the selected formulations were studied in rats (8 in vivo groups). RESULTS: The results revealed that type of surfactant markedly affected the in vitro and in vivo potentials of niosomes. The Cmax and AUC values of REG after administration of the selected niosomes as well as the drug suspension (as control) were in the order of Tween 80> TPGS> Myrj 52> Brij 35> Span 60≈Suspension. Adding stearyl amine as a positive charge-inducing agent to the Tween 80-based niosomes, resulted in an additional increase in drug absorption and values of AUC and Cmax were 3.8- and 4.7-fold higher than the drug suspension, respectively. CONCLUSION: Cationic Tween 80-based niosomes may represent a promising platform to develop oral delivery systems for BCS II drugs.


Assuntos
Carbamatos/farmacocinética , Lipossomos/química , Piperidinas/farmacocinética , Tensoativos/química , Administração Oral , Animais , Disponibilidade Biológica , Células CACO-2 , Carbamatos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Hexoses/química , Humanos , Lipossomos/administração & dosagem , Lipossomos/farmacocinética , Masculino , Piperidinas/administração & dosagem , Polissorbatos/química , Ratos Wistar , Tensoativos/administração & dosagem
8.
Eur J Pharm Sci ; 142: 105138, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31704344

RESUMO

Biorelevant media have proven to be useful in predicting the performance of poorly soluble drugs in the gastrointestinal tract. Several versions of fasted state simulated intestinal fluids have been published and compared with respect to their physical chemical properties and solubilization of drugs. However, to date there have been no reports in the literature comparing dissolution of poorly soluble drugs in these media. In this study eleven BCS Class II compounds (five nonionized compounds, three weak bases and three weak acids) were investigated with respect to their thermodynamic solubility and dissolution behavior in three biorelevant media simulating conditions in the small intestine (FaSSIF V1, FaSSIF V2 and FaSSIF V3). It was shown that the maximum percentage release of drugs from their commercial formulations can differ from the results for the thermodynamic solubility of the pure drug; these differences can be largely attributed to API presentation, composition of the formulation and manufacturing effects. The results were additionally compared with data for solubility in HIF taken from the literature in order to determine which version of FaSSIF most closely corresponds to the physiological conditions. The different versions of FaSSIF are able to achieve solubility results similar to those in HIF, with closest results generally achieved in FaSSIF V1. The magnitude of solubility/dissolution differences among the three FaSSIF versions is dependent on the drug's characteristics. In the case of weakly basic compounds, the differences among the FaSSIF versions are minor. For weakly acidic compounds the behavior in the different versions is primarily pH dependent and influenced by the lipid composition of the FaSSIF only to a minor extent. The differences in solubility and dissolution of the nonionized compounds among the three versions of FaSSIF becomes apparent above a log P value of 2.5, with larger differences among the versions at high log P values.


Assuntos
Intestino Delgado/metabolismo , Preparações Farmacêuticas/química , Preparações Farmacêuticas/metabolismo , Solubilidade/efeitos dos fármacos , Líquidos Corporais/metabolismo , Jejum/metabolismo , Humanos , Absorção Intestinal/fisiologia , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA