Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.560
Filtrar
1.
Biomed Pharmacother ; 178: 117178, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39142248

RESUMO

Pulmonary fibrosis is a fatal and chronic lung disease that is characterized by accumulation of thickened scar in the lungs and impairment of gas exchange. The cases with unknown etiology are referred as idiopathic pulmonary fibrosis (IPF). There are currently no effective therapeutics to cure the disease; thus, the investigation of the pathogenesis of IPF is of great importance. Recent studies on bone morphogenic proteins (BMPs) and their receptors have indicated that reduction of BMP signaling in lungs may play a significant role in the development of lung fibrosis. BMPs are members of TGF-ß superfamily, and they have been shown to play an anti-fibrotic role in combating TGF-ß-mediated pathways. The impact of BMP receptors, in particular BMPR2, on pulmonary fibrosis is growing attraction to researchers. Previous studies on BMPR2 have often focused on pulmonary arterial hypertension (PAH). Given the strong clinical association between PAH and lung fibrosis, understanding BMPs/BMPR2-mediated signaling pathway is important for development of therapeutic strategies to treat IPF. In this review, we comprehensively review recent studies regarding the biological functions of BMPs and their receptors in lungs, especially focusing on their roles in the pathogenesis of pulmonary fibrosis and fibrosis resolution.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo II , Proteínas Morfogenéticas Ósseas , Fibrose Pulmonar , Transdução de Sinais , Humanos , Animais , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/patologia , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/patologia , Pulmão/metabolismo , Pulmão/patologia , Pulmão/efeitos dos fármacos , Antifibróticos/uso terapêutico , Antifibróticos/farmacologia
2.
Life Sci ; 355: 122969, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39142506

RESUMO

Bone is a connective tissue that is metabolically active and serves multiple functions, including movement, structural support, and organ protection. It is comprised primarily of three types of bone cells, namely osteoblasts, osteocytes, and osteoclasts. Osteoblasts are bone-forming cells, and the differentiation of mesenchymal stem cells towards osteoblasts is regulated by several growth factors, cytokines, and hormones via various signaling pathways, including TGF-ß/BMP (transforming growth factor-beta/bone morphogenetic protein) signaling as a primary one. Non-coding RNAs (ncRNAs), such as microRNAs and long ncRNAs, play crucial roles in regulating osteoblast differentiation via the TGF-ß/BMP signaling cascade. Dysregulation of these ncRNAs leads to bone-pathological conditions such as osteoporosis, skeletal dysplasia, and osteosclerosis. This review provides a concise overview of the latest advancements in understanding the involvement of ncRNAs/TGF-ß/BMP axis in osteoblast differentiation. These findings have the potential to identify new molecular targets for early detection of bone metabolism disorders and the development of innovative therapy strategies.

3.
Respir Res ; 25(1): 316, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39160536

RESUMO

BACKGROUND: Pulmonary hypertension (PH) is a long-term disease that impacts approximately 1% of the world's population. Currently, levosimendan (Lev) is proposed for PH treatment. However, the mechanism of Lev in the treatment of PH is unknown. METHODS: We used hypoxia-induced pulmonary artery smooth muscle cells (PASMCs) to establish a PH cell model. A number of cell biology methods were performed to assay alterations in cell proliferation, migration and apoptosis after Lev treatment. qRT-PCR and WB were performed to test the levels of circUSP34 and miR-1298, and BMP/Smad protein respectively. In addition, the regulatory relationship between circUSP34 or BMPR2 with miR-1298 was verified through the use of double luciferase as well as RIP assay. In addition, we explored the regulatory effect of Lev on the circUSP34/miR-1298/BMP/Smad axis using a rat PH model. RESULTS: Our results demonstrate that Lev inhibited PASMCs cell proliferation, migration and promoted apoptosis exposed to hypoxia. In hypoxia-treated PASMCs, circUSP34 expression got downregulated while miR-1298 upregulated, whereas the addition with Lev resulted in upregulation of circUSP34 expression and downregulation of miR-1298 expression, indicating that circUSP34 can target and regulate miR-1298. In addition, miR-1298 targets and regulates the expression of BMPR2. In a rat PH model induced by hypoxia combined with SU5416, Lev upregulated circUSP34 targeting miR-1298-mediated BMP/Smad axis to alleviate the PH phenotype. CONCLUSION: We have shown that Lev can be used as a therapeutic drug for PH patients, which works through the circUSP34/miR-1298/BMP/Smad axis to alleviate PH symptoms.


Assuntos
Hipertensão Pulmonar , MicroRNAs , Ratos Sprague-Dawley , Simendana , Regulação para Cima , MicroRNAs/metabolismo , MicroRNAs/genética , Animais , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/patologia , Ratos , Regulação para Cima/efeitos dos fármacos , Simendana/farmacologia , Masculino , Células Cultivadas , Proteínas Smad/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas Morfogenéticas Ósseas/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Proliferação de Células/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Apoptose/efeitos dos fármacos
4.
Bone Rep ; 22: 101793, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39139593

RESUMO

Bone morphogenetic protein (BMP), an osteoinductive factor, is a cytokine that induces osteoblast differentiation and mineralization, and expected to be applicable for hard tissue reconstruction. Kielin/chordin-like protein (Kcp), a member of the family of cysteine-rich proteins, enhances BMP signaling. The present study found that expression of Kcp in osteoblasts was induced by BMP-2 in a concentration- and time-dependent manner. Up-regulation of Kcp by BMP-2 was inhibited by Dorsomorphin, a SMAD signaling inhibitor. The involvement of up-regulation of Kcp by BMP-2 in induction of osteoblast differentiation by BMP-2 was also examined, which showed that suppression of Kcp expression by si Kcp partially inhibited induction of osteoblast differentiation and mineralization by BMP-2. Together, these results suggest that Kcp induced by BMP-2 functions to provide positive feedback for promotion of osteoblastic differentiation and mineralization by BMP-2 in osteoblasts.

5.
Macromol Biosci ; : e2400205, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39140453

RESUMO

A new dual-functional implant based on gellan-xanthan hydrogel with calcium-magnesium silicate ceramic diopside and recombinant lysostaphin and bone morphogenetic protein 2 (BMP-2)-ray is developed. In this composite, BMP-2 is immobilized on microparticles of diopside while lysostaphin is mixed directly into the hydrogel, providing sustained release of BMP-2 to allow gradual bone formation and rapid release of lysostaphin to eliminate infection immediately after implantation. Introduction of diopside of up to 3% (w/v) has a negligible effect on the mechanical properties of the hydrogel but provides a high sorption capacity for BMP-2. The hydrogels show good biocompatibility and antibacterial activity. Lysostaphin released from the implants over a 3 h period efficiently kills planktonic cells and completely destroys 24 h pre-formed biofilms of Staphylococcus aureus. Furthermore, in vivo experiments in a mouse model of critically-sized cranial defects infected with S. aureus show a complete lack of osteogenesis when implants contain only BMP-2, whereas, in the presence of lysostaphin, complete closure of the defect with newly formed mineralized bone tissue is observed. Thus, the new implantable gellan-xanthan hydrogel with diopside and recombinant lysostaphin and BMP-2 shows both osteogenic and antibacterial properties and represents a promising material for the treatment and/or prevention of osteomyelitis after bone trauma.

6.
Biochem Biophys Res Commun ; 738: 150497, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39151293

RESUMO

Fibrosis results in one-third of all deaths globally and is a major healthcare challenge. Fibrosis is scarring caused by the excess deposition of extracellular matrix proteins by fibroblasts. Inhibition of pathways downstream of transforming growth factor ß (TGF-ß) a pluripotent growth factor, has potent antifibrotic effects in different organs. Here we show that loss of bone morphogenetic protein (BMP-3) is a feature of kidney fibrosis, independent of the initiating injury, suggesting loss of this cytokine is a core fibrotic mechanism. TGF-ß decreased BMP3 expression in human fibroblasts is possibly a feed-forward loop that contributes to increased and sustained TGF-ß activity. Recombinant human BMP-3 reduced TGF-ß induced fibroblast contraction, migration and invasion, pathways that lead to scarring and tissue stiffening. BMP-3 reduced TGF-ß stimulated collagen cross-linking, and Ox-LDL receptor 1, a regulator of collagen deposition. BMP-3 inhibited TGF-ß stimulated lysyl oxidase activity. Lysyl oxidase mediated collagen cross-linking is a critical process in TGF-ß induced fibrosis. We propose that BMP-3 alters fibroblast responses to TGF-ß, shifting the balance from fibrosis to repair. Recombinant human BMP-3 shows promise for development as a novel therapeutic for fibrosis.

7.
Front Cell Dev Biol ; 12: 1374269, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39100096

RESUMO

Objective: The present study aimed to investigate the involvement of aberrant BMP8A expression in TNBC and bone metastasis. Methods: Aberrant expression of BMP8A in breast cancer was first determined by analyzing The Cancer Genome Atlas breast cancer cohort (TCGA-BRCA) and an immunohistochemical (IHC) staining of BMP8A in a breast cancer tissue microarray (TMA). Clinical relevance of deregulated BMP8A in breast cancer was assessed using Kaplan-Meier online analysis. The influence of BMP8A on cellular functions of two TNBC cell lines was assessed using in vitro assays. Conditional medium (CM) collected from the supernatant of hFOB cells and bone matrix extract (BME) was applied to mimic the bone micro-environment to evaluate the role played by BMP8A in bone metastasis. Correlations with both osteolytic and osteoblastic markers were evaluated in the TCGA-BRCA cohort. Expression of certain responsive genes was quantified in the BMP8A overexpression cell lines. Additionally, signal transduction through both Smad-dependent and independent pathways was evaluated using Western blot assay. Results: Compared to the adjacent normal tissues, BMP8A expression was significantly increased in primary tumors (p < 0.05) which was associated with shorter distant metastasis free survival (DMFS) in TNBC (p < 0.05). BMP8A was observed to enhance cell invasion and migration within TNBC cells. In the simulated bone milieu, both MDA-MB-231BMP8Aexp and BT549BMP8Aexp cells presented enhanced invasiveness. BMP8A level was strongly correlated with most osteolytic and osteoblastic markers, suggesting the potential involvement of BMP8A in bone metastasis in TNBC. Receptor activator of nuclear factor kappa-B ligand (RANKL) expression was significantly increased in BMP8A overexpressed triple-negative cell lines (MDA-MB-231 and BT549). Furthermore, enhanced phosphorylation of Smad3 and increased expression of epidermal growth factor receptor (EGFR) were observed in MDA-MB-231 cells overexpressing BMP8A. Conclusion: BMP8A was upregulated in TNBC which was associated with poorer DMFS. BMP8A overexpression enhanced the invasion and migration of TNBC cells. With a putative role in osteolytic bone metastasis in TNBC, BMP8A represents a promising candidate for further investigation into its therapeutic potential.

8.
Cells ; 13(15)2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39120307

RESUMO

Endothelial cells (ECs) are vital structural units of the cardiovascular system possessing two principal distinctive properties: heterogeneity and plasticity. Endothelial heterogeneity is defined by differences in tissue-specific endothelial phenotypes and their high predisposition to modification along the length of the vascular bed. This aspect of heterogeneity is closely associated with plasticity, the ability of ECs to adapt to environmental cues through the mobilization of genetic, molecular, and structural alterations. The specific endothelial cytoarchitectonics facilitate a quick structural cell reorganization and, furthermore, easy adaptation to the extrinsic and intrinsic environmental stimuli, known as the epigenetic landscape. ECs, as universally distributed and ubiquitous cells of the human body, play a role that extends far beyond their structural function in the cardiovascular system. They play a crucial role in terms of barrier function, cell-to-cell communication, and a myriad of physiological and pathologic processes. These include development, ontogenesis, disease initiation, and progression, as well as growth, regeneration, and repair. Despite substantial progress in the understanding of endothelial cell biology, the role of ECs in healthy conditions and pathologies remains a fascinating area of exploration. This review aims to summarize knowledge and concepts in endothelial biology. It focuses on the development and functional characteristics of endothelial cells in health and pathological conditions, with a particular emphasis on endothelial phenotypic and functional heterogeneity.


Assuntos
Plasticidade Celular , Células Endoteliais , Humanos , Células Endoteliais/metabolismo , Células Endoteliais/citologia , Animais , Saúde , Fenótipo
9.
Int J Mol Sci ; 25(15)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39125626

RESUMO

Pulmonary arterial hypertension (PAH) is a chronic disease characterized by a progressive increase in mean pulmonary arterial pressure. Mutations in the BMPR2 and AQP1 genes have been described in familial PAH. The bone morphogenetic proteins BMP9 and BMP10 bind with high affinity to BMPR2. Administration of BMP9 has been proposed as a potential therapeutic strategy against PAH, although recent conflicting evidence dispute the effect of such a practice. Considering the involvement of the above molecules in PAH onset, progression, and therapeutic value, we examined the effects of modulation of BMP9, BMPR2, and AQP1 on BMP9, BMP10, BMPR2, AQP1, and TGFB1 expression in human pulmonary microvascular endothelial cells in vitro. Our results demonstrated that silencing the BMPR2 gene resulted in increased expression of its two main ligands, namely BMP9 and BMP10. Exogenous administration of BMP9 caused the return of BMP10 to basal levels, while it restored the decreased AQP1 protein levels and the decreased TGFB1 mRNA and protein expression levels caused by BMPR2 silencing. Moreover, AQP1 gene silencing also resulted in increased expression of BMP9 and BMP10. Our results might possibly imply that the effect of exogenously administered BMP9 on molecules participating in the BMP signaling pathway could depend on the expression levels of BMPR2. Taken together, these results may provide insight into the highly complex interactions of the BMP signaling pathway.


Assuntos
Aquaporina 1 , Receptores de Proteínas Morfogenéticas Ósseas Tipo II , Células Endoteliais , Fator 2 de Diferenciação de Crescimento , Transdução de Sinais , Fator de Crescimento Transformador beta1 , Humanos , Aquaporina 1/metabolismo , Aquaporina 1/genética , Fator 2 de Diferenciação de Crescimento/metabolismo , Fator 2 de Diferenciação de Crescimento/genética , Células Endoteliais/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Fator de Crescimento Transformador beta1/metabolismo , Pulmão/metabolismo , Pulmão/irrigação sanguínea , Microvasos/metabolismo , Microvasos/citologia , Células Cultivadas , Inativação Gênica , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/genética , Proteínas Morfogenéticas Ósseas
10.
Bioessays ; : e2400144, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39180250

RESUMO

R-spondins (RSPOs) are a family of secreted proteins and stem cell growth factors that are potent co-activators of Wnt signaling. Recently, RSPO2 and RSPO3 were shown to be multifunctional, not only amplifying Wnt- but also binding BMP- and FGF receptors to downregulate signaling. The common mechanism underlying these diverse functions is that RSPO2 and RSPO3 act as "endocytosers" that link transmembrane proteins to ZNRF3/RNF43 E3 ligases and trigger target internalization. Thus, RSPOs are natural protein targeting chimeras for cell surface proteins. Conducting data mining and cell surface binding assays we report additional candidate RSPO targets, including SMO, PTC1,2, LGI1, ROBO4, and PTPR(F/S). We propose that there is an "R-spondin code" that imparts combinatorial signaling ON-OFF states of multiple growth factors. This code involves the modular RSPO domains, notably distinct motifs in the divergent RSPO-TSP1 domains to mediate target interaction and internalization. The RSPO code offers a novel framework for the understanding how diverse signaling pathways may be coordinately regulated in development and disease.

11.
J Orthop Surg Res ; 19(1): 466, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39118176

RESUMO

OBJECTIVE: Delayed fracture healing increases the suffering of patients. An in-depth investigation of the pathogenesis of delayed fracture healing may offer new direction for the prevention and treatment. METHODS: The study included 63 normal healing tibial fractures and 58 delayed healing tibial fractures patients. Long non-coding RNA (lncRNA)TRPM2-AS, microRNA-545-3p (miR-545-3p), bone morphogenetic protein 2 (Bmp2) mRNA and osteogenic differentiation markers, including runt-related transcription factor 2 (Runx2), osteocalcin (Ocn), and alkaline phosphatase (Alp) mRNA expression were determined by Real-time quantitative reverse transcription-polymerase chain reaction in serum and MC3T3-E1 cells. The prediction potential of TRPM2-AS in delayed healing fracture patients was verified by receiver operating characteristic curves. The binding relationship of TRPM2-AS/miR-545-3p/Bmp2 was evaluated by dual luciferase reporter gene assay. Cell proliferation and apoptosis were detected by CCK-8 and flow cytometry. RESULTS: TRPM2-AS was remarkably down-regulated in patients with delayed fracture healing and could better predict the fracture healing status. TRPM2-AS downregulation inhibited osteogenic markers mRNA expression, restrained proliferation, and promoted apoptosis of MC3T3-E1 cells (p < 0.05). In delayed fracture healing, miR-545-3p was dramatically up-regulated and was negatively regulated by TRPM2-AS. Reducing miR-545-3p eliminate the negative effect of TRPM2-AS down-regulation on osteoblast proliferation and differentiation (p < 0.05). miR-545-3p targets Bmp2, which plays a positive role in osteoblast differentiation (p < 0.05). CONCLUSION: This study found that TRPM2-AS has the potential to be a diagnostic marker for delayed fracture healing and revealed that the TRPM2-AS/miR-545-3p/Bmp2 axis affects fracture healing by regulating osteoblast.


Assuntos
Proteína Morfogenética Óssea 2 , Consolidação da Fratura , MicroRNAs , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/metabolismo , Humanos , MicroRNAs/genética , Consolidação da Fratura/genética , Consolidação da Fratura/fisiologia , Camundongos , Animais , RNA Longo não Codificante/genética , Feminino , Masculino , Fraturas da Tíbia/genética , Osteogênese/genética , Osteogênese/fisiologia , Canais de Cátion TRPM/genética , Proliferação de Células/genética , Diferenciação Celular/genética , Adulto , Apoptose/genética , Pessoa de Meia-Idade , Osteoblastos/metabolismo
12.
Discov Med ; 36(187): 1657-1671, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39190381

RESUMO

BACKGROUND: Periodontitis is the leading cause of tooth loss and can exacerbate various systemic inflammatory conditions. Periodontal ligament stem cells (PDLSCs) stand out as prominent and favorable candidates for promoting periodontal tissue regeneration. This study aimed to investigate whether the protease-activated receptor type 1 (PAR1) can mitigate the sodium butyrate (NaB)-induced PDLSCs osteogenesis inhibition and unravel the underlying mechanism. METHODS: Public datasets from the Gene Expression Omnibus (GEO) were utilized to analyze differentially expressed genes (DEGs) in periodontitis and subsequent Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. PDLSCs were cultured normally in control medium (CM) as the negative control or in osteogenic medium (OM) to induce osteogenesis. PAR1 was either activated or suppressed using a selective agonist or antagonist (OM+agonist and OM+antagonist). The evaluation of PDLSCs osteogenesis was based on the levels of osteogenesis-related markers, including runt-related transcription factor 2 (RUNX2), osterix (OSX), osteocalcin (OCN), and osteopontin (OPN), alkaline phosphatase (ALP) activity, and calcium concentration. Additionally, cell proliferation and osteogenic differentiation were measured through the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and Alizarin Red Staining. To determine the PAR1 targeting the limb development membrane protein 1 (LMBR1)/bone morphogenetic protein (BMP) pathway, LMBR1 was upregulated through cell transfection and BMP2 was inhibited using the selective inhibitor Noggin protein. Finally, NaB was introduced into PDLSCs to investigate the effect on NaB-induced inhibition of PDLSCs osteogenesis. RESULTS: PAR1, RUNX2, OSX, OCN, OPN, proliferation, ALP activity, calcium concentration, osteogenic differentiation, BMP2, and BMP4 exhibited significant increases in PDLSCs cultured in OM (p < 0.01). These parameters were further elevated by PAR1 agonist and conversely reduced by PAR1 antagonist (p < 0.01). Conversely, LMBR1 was decreased in PDLSCs cultured in OM (p < 0.001), with further reduction induced by PAR1 agonist and a reverse increase observed with PAR1 antagonist (p < 0.001). OE-LMBR1 transfection successfully elevated LMBR1 levels, subsequently inhibiting BMP2 and BMP4 (p < 0.001). Meanwhile, the Noggin protein effectively suppressed BMP2 and BMP4 (p < 0.001). All observed osteogenesis-related changes were reversed by the increased LMBR1 or inhibition of the BMP pathway (p < 0.001). Furthermore, NaB suppressed osteogenesis-related changes in OM-cultured PDLSCs (p < 0.001), and these effects were entirely reversed by PAR1 agonist (p < 0.001). Conversely, the increased LMBR1 or inhibited BMP pathway disrupted the osteogenesis reversion induced by PAR1 agonist (p < 0.001). CONCLUSION: The activation of PAR1, through suppressing LMBR1 signaling and activating BMP pathway, demonstrates the ability to enhance the osteogenesis of PDLSCs and mitigate the inhibitory effects on PDLSCs osteogenesis caused by NaB.


Assuntos
Osteogênese , Ligamento Periodontal , Receptor PAR-1 , Células-Tronco , Ligamento Periodontal/citologia , Ligamento Periodontal/efeitos dos fármacos , Humanos , Osteogênese/efeitos dos fármacos , Células-Tronco/metabolismo , Células-Tronco/efeitos dos fármacos , Células-Tronco/citologia , Receptor PAR-1/metabolismo , Receptor PAR-1/genética , Receptor PAR-1/antagonistas & inibidores , Ácido Butírico/farmacologia , Células Cultivadas , Diferenciação Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteína Morfogenética Óssea 2/metabolismo , Periodontite/metabolismo , Periodontite/patologia , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética
13.
J Orthop Res ; 2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-39182186

RESUMO

Hand osteoarthritis (HOA), characterized by an earlier onset age and reduced susceptibility to mechanical stress compared with knee and hip osteoarthritis, is considered a suitable disease for identifying predictive biomarkers of osteoarthritis. In particular, DNA methylation variants, expected to contribute to HOA susceptibility, hold potential as osteoarthritis biomarkers. In this study, leukocyte DNA methylation patterns were analyzed in blood samples from patients with HOA, aiming to identify disease-specific biomarkers for osteoarthritis. Using DNA methylation microarrays, we analyzed samples from three subjects with HOA and three age- and gender-matched healthy individuals. For validation, pyrosequencing analysis was conducted using samples from 16 to 9 subjects with and without HOA, respectively. From 735,026 probes in the DNA methylation array, the Top 100 CpG sites associated with HOA, based on low adjusted P-values, including those targeting bone morphogenetic protein 7 (BMP7), SBF2-AS1, PLOD2, ICOS, and CSF1R were identified. Validation analysis revealed significantly higher methylation levels in the BMP7-related site in the HOA group compared with the control group, even after adjusting for age, gender, and body mass index (p = 0.037). In contrast, no significant difference was observed in the other selected CpG sites between the HOA and control groups. This study highlights the significantly increased frequency of methylation at the specific BMP7 site in leukocytes of patients with HOA, suggesting its potential as a biomarker for HOA. Measurement of methylation levels at the CpG sites identified in this study offers a potential approach to prevent future osteoarthritis progression, providing valuable insights into disease management.

14.
Am J Hum Genet ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39116879

RESUMO

While it is widely thought that de novo mutations (DNMs) occur randomly, we previously showed that some DNMs are enriched because they are positively selected in the testes of aging men. These "selfish" mutations cause disorders with a shared presentation of features, including exclusive paternal origin, significant increase of the father's age, and high apparent germline mutation rate. To date, all known selfish mutations cluster within the components of the RTK-RAS-MAPK signaling pathway, a critical modulator of testicular homeostasis. Here, we demonstrate the selfish nature of the SMAD4 DNMs causing Myhre syndrome (MYHRS). By analyzing 16 informative trios, we show that MYHRS-causing DNMs originated on the paternally derived allele in all cases. We document a statistically significant epidemiological paternal age effect of 6.3 years excess for fathers of MYHRS probands. We developed an ultra-sensitive assay to quantify spontaneous MYHRS-causing SMAD4 variants in sperm and show that pathogenic variants at codon 500 are found at elevated level in sperm of most men and exhibit a strong positive correlation with donor's age, indicative of a high apparent germline mutation rate. Finally, we performed in vitro assays to validate the peculiar functional behavior of the clonally selected DNMs and explored the basis of the pathophysiology of the different SMAD4 sperm-enriched variants. Taken together, these data provide compelling evidence that SMAD4, a gene operating outside the canonical RAS-MAPK signaling pathway, is associated with selfish spermatogonial selection and raises the possibility that other genes/pathways are under positive selection in the aging human testis.

15.
Front Endocrinol (Lausanne) ; 15: 1346094, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39022341

RESUMO

Background: The revolution of orthopedic implant manufacturing is being driven by 3D printing of titanium implants for large bony defects such as those caused by diabetic Charcot arthropathy. Unlike traditional subtractive manufacturing of orthopedic implants, 3D printing fuses titanium powder layer-by-layer, creating a unique surface roughness that could potentially enhance osseointegration. However, the metabolic impairments caused by diabetes, including negative alterations of bone metabolism, can lead to nonunion and decreased osseointegration with traditionally manufactured orthopedic implants. This study aimed to characterize the response of both healthy and diabetic primary human osteoblasts cultured on a medical-grade 3D-printed titanium surface under high and low glucose conditions. Methods: Bone samples were obtained from six patients, three with Type 2 Diabetes Mellitus and three without. Primary osteoblasts were isolated and cultured on 3D-printed titanium discs in high (4.5 g/L D-glucose) and low glucose (1 g/L D-Glucose) media. Cellular morphology, matrix deposition, and mineralization were assessed using scanning electron microscopy and alizarin red staining. Alkaline phosphatase activity and L-lactate concentration was measured in vitro to assess functional osteoblastic activity and cellular metabolism. Osteogenic gene expression of BGLAP, COL1A1, and BMP7 was analyzed using reverse-transcription quantitative polymerase chain reaction. Results: Diabetic osteoblasts were nonresponsive to variations in glucose levels compared to their healthy counterparts. Alkaline phosphatase activity, L-lactate production, mineral deposition, and osteogenic gene expression remained unchanged in diabetic osteoblasts under both glucose conditions. In contrast, healthy osteoblasts exhibited enhanced functional responsiveness in a high glucose environment and showed a significant increase in osteogenic gene expression of BGLAP, COL1A1, and BMP7 (p<.05). Conclusion: Our findings suggest that diabetic osteoblasts exhibit impaired responsiveness to variations in glucose concentrations, emphasizing potential osteoblast dysfunction in diabetes. This could have implications for post-surgery glucose management strategies in patients with diabetes. Despite the potential benefits of 3D printing for orthopedic implants, particularly for diabetic Charcot collapse, our results call for further research to optimize these interventions for improved patient outcomes.


Assuntos
Diabetes Mellitus Tipo 2 , Glucose , Osteoblastos , Impressão Tridimensional , Titânio , Humanos , Titânio/farmacologia , Osteoblastos/metabolismo , Glucose/metabolismo , Glucose/farmacologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Células Cultivadas , Masculino , Fenótipo , Propriedades de Superfície , Feminino , Pessoa de Meia-Idade , Proteína Morfogenética Óssea 7/metabolismo , Osteogênese/efeitos dos fármacos , Colágeno Tipo I/metabolismo , Colágeno Tipo I/genética , Cadeia alfa 1 do Colágeno Tipo I/metabolismo , Cadeia alfa 1 do Colágeno Tipo I/genética , Idoso
16.
Regen Ther ; 26: 290-298, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39022600

RESUMO

Tendon injury is a common disorder of the musculoskeletal system, with a higher possibility of occurrence in elderly individuals and athletes. After a tendon injury, the tendon suffers from inadequate and slow healing, resulting in the formation of fibrotic scar tissue, ending up with inferior functional properties. Therapeutic strategies involving the application of growth factors have been advocated to promote tendon healing. Growth and differentiation-5 (GDF-5) represents one such factor that has shown promising effect on tendon healing in animal models and in vitro cultures. Although promising, these studies are limited as the molecular mechanisms by which GDF-5 exerts its effect remain incompletely understood. Starting from broadly introducing essential elements of current understanding about GDF-5, the present review aims to define the effect of GDF-5 and its possible mechanisms of action in tendon healing. Nevertheless, we still need more in vivo studies to explore dosage, application time and delivery strategy of GDF-5, so as to pave the way for future clinical translation.

17.
Angiogenesis ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38955953

RESUMO

The proliferation of the endothelium is a highly coordinated process to ensure the emergence, expansion, and homeostasis of the vasculature. While Bone Morphogenetic Protein (BMP) signaling fine-tunes the behaviors of endothelium in health and disease, how BMP signaling influences the proliferation of endothelium and therefore, modulates angiogenesis remains largely unknown. Here, we evaluated the role of Activin A Type I Receptor (ACVR1/ALK2), a key BMP receptor in the endothelium, in modulating the proliferation of endothelial cells. We show that ACVR1/ALK2 is a key modulator for the proliferation of endothelium in the retinal vessels. Loss of endothelial ALK2 leads to a significant reduction in endothelial proliferation and results in fewer branches/endothelial cells in the retinal vessels. Interestingly, venous endothelium appears to be more susceptible to ALK2 deletion. Mechanistically, ACVR1/ALK2 inhibits the expression of CDKN1A/p21, a critical negative regulator of cell cycle progression, in a SMAD1/5-dependent manner, thereby enabling the venous endothelium to undergo active proliferation by suppressing CDKN1A/p21. Taken together, our findings show that BMP signaling mediated by ACVR1/ALK2 provides a critical yet previously underappreciated input to modulate the proliferation of venous endothelium, thereby fine-tuning the context of angiogenesis in health and disease.

18.
Sci Total Environ ; 948: 174772, 2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-39019263

RESUMO

Mounting evidence in animal experiments proves that early life stage exposure to organophosphate flame retardants (OPFRs) affects the locomotor behavior and changes the transcriptions of central nervous system genes. Unfortunately, their effect on human motor neuron (MN) development, which is necessary for body locomotion and survival, has not yet characterized. Here, we utilized a spinal cord MN differentiation model from human embryonic stem cells (ESCs) and adopted this model to test the effects of two typical OPFRs tris (2-butoxyethyl) phosphate (TBEP) and tris (2-chloroethyl) phosphate (TCEP), on MN development and the possible mechanisms underlying. Our findings revealed TBEP exerted a much more inhibitory effect on MN survival, while TCEP exhibited a stronger stimulatory effect on ESCs differentiation into MN, and thus TBEP exhibited a stronger inhibition on MN development than TCEP. RNA sequencing analysis identified TBEP and TCEP inhibited MN survival mainly by disrupting extracellular matrix (ECM)-receptor interaction. Focusing on the pathway guided MN differentiation, we found both TBEP and TCEP activated BMP signaling, whereas TCEP simultaneously downregulated Wnt signaling. Collectively, this is the first study demonstrated TBEP and TCEP disrupted human MN development by affecting their survival and differentiation, thereby raising concern about their potential harm in causing MN disorders.


Assuntos
Diferenciação Celular , Retardadores de Chama , Neurônios Motores , Organofosfatos , Retardadores de Chama/toxicidade , Humanos , Diferenciação Celular/efeitos dos fármacos , Organofosfatos/toxicidade , Neurônios Motores/efeitos dos fármacos , Compostos Organofosforados/toxicidade , Sobrevivência Celular/efeitos dos fármacos
19.
ACS Appl Mater Interfaces ; 16(31): 40411-40427, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39044386

RESUMO

The treatment of critical-sized bone defects caused by tumor removal, skeletal injuries, or infections continues to pose a major clinical challenge. A popular potential alternative solution to autologous bone grafts is a tissue-engineered approach that utilizes the combination of mesenchymal stromal/stem cells (MSCs) with synthetic biomaterial scaffolds. This approach aims to support new bone formation by mimicking many of the biochemical and biophysical cues present within native bone. Regrettably, osteocyte cells, crucial for bone maturation and homeostasis, are rarely produced within MSC-seeded scaffolds, thereby restricting the development of fully mature cortical bone from these synthetic implants. In this work, we have constructed a multimodal scaffold by combining electrospun poly(lactic-co-glycolic acid) (PLGA) fibrous scaffolds with poly(ethylene glycol) (PEG)-based hydrogels that mimic the functional unit of cortical bone, osteon (osteon-mimetic) scaffolds. These scaffolds were decorated with a novel bone morphogenic protein-6 (BMP6) peptide (BMP6p) after our findings revealed that the BMP6p drives higher levels of Smad signaling than the full-length protein counterpart, soluble or when bound to the PEG hydrogel backbone. We show that our osteon-mimetic scaffolds, in presenting concentric layers of BMP6p-PEG hydrogel overlaid on MSC-seeded PLGA nanofibers, promoted the rapid formation of osteocyte-like cells with a phenotypic dendritic morphology, producing early osteocyte markers, including E11/gp38 (E11). Maturation of these osteocyte-like cells was further confirmed by the observation of significant dentin matrix protein 1 (DMP1) throughout our bilayered scaffolds after 3 weeks, even when cultured in a medium without dexamethasone (DEX) or any other osteogenic supplements. These results demonstrate that these osteon-mimetic scaffolds, in presenting biochemical and topographical cues reminiscent of the forming osteon, can drive the formation of osteocyte-like cells in vitro from hBMSCs without the need for any osteogenic factor media supplementation.


Assuntos
Materiais Biomiméticos , Células-Tronco Mesenquimais , Nanofibras , Osteócitos , Osteogênese , Alicerces Teciduais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Alicerces Teciduais/química , Nanofibras/química , Humanos , Osteogênese/efeitos dos fármacos , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Osteócitos/citologia , Osteócitos/metabolismo , Osteócitos/efeitos dos fármacos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Proteína Morfogenética Óssea 6/química , Proteína Morfogenética Óssea 6/farmacologia , Proteína Morfogenética Óssea 6/metabolismo , Polietilenoglicóis/química , Diferenciação Celular/efeitos dos fármacos , Engenharia Tecidual/métodos , Hidrogéis/química , Hidrogéis/farmacologia
20.
Arthritis Res Ther ; 26(1): 131, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39010233

RESUMO

BACKGROUND: Association of HLA-B27 with spondyloarthritis (SpA) has been known for 50 years, but still remains unexplained. We recently showed that HLA-B27 expressed in wing imaginal disc from HLA-B27/human-ß2 microglobulin (hß2m) transgenic Drosophila deregulated bone morphogenetic protein (BMP) pathway by interacting physically with type I BMP receptor (BMPR1) Saxophone (Sax), leading to crossveinless phenotype. METHODS: Genetic interaction was studied between activin/transforming growth factor ß (TGFß) pathway and HLA-B27/hß2m in transgenic Drosophila wings. The HLA-B27-bound peptidome was characterized in wing imaginal discs. In mesenteric lymph node (mLN) T cells from HLA-B27/hß2m rat (B27 rat), physical interaction between HLA-B27 and activin receptor-like kinase-2 (ALK2), ALK3 and ALK5 BMPR1s, phosphorylation of small mothers against decapentaplegic (SMADs) and proteins of the non-canonical BMP/TGFß pathways induced by its ligands, and the transcript level of target genes of the TGFß pathway, were evaluated. RESULTS: In HLA-B27/hß2m transgenic Drosophila, inappropriate signalling through the activin/TGFß pathway, involving Baboon (Babo), the type I activin/TGFß receptor, contributed to the crossveinless phenotype, in addition to deregulated BMP pathway. We identified peptides bound to HLA-B27 with the canonical binding motif in HLA-B27/hß2m transgenic Drosophila wing imaginal disc. We demonstrated specific physical interaction, between HLA-B27/hß2m and mammalian orthologs of Sax and Babo, i.e. ALK2 and ALK5 (i.e. TGFß receptor I), in the mLN cells from B27 rat. The magnitude of phosphorylation of SMAD2/3 in response to TGFß1 was increased in T cells from B27 rats, showing evidence for deregulated TGFß pathway. Accordingly, expression of several target genes of the pathway was increased in T cells from B27 rats, in basal conditions and/or after TGFß exposure, including Foxp3, Rorc, Runx1 and Maf. Interestingly, Tgfb1 expression was reduced in naive T cells from B27 rats, even premorbid, an observation consistent with a pro-inflammatory pattern. CONCLUSIONS: This study shows that HLA-B27 alters the TGFß pathways in Drosophila and B27 rat. Given the importance of this pathway in CD4 + T cells differentiation and regulation, its disturbance could contribute to the abnormal expansion of pro-inflammatory T helper 17 cells and altered regulatory T cell phenotype observed in B27 rats.


Assuntos
Animais Geneticamente Modificados , Antígeno HLA-B27 , Transdução de Sinais , Espondilartrite , Fator de Crescimento Transformador beta , Animais , Transdução de Sinais/fisiologia , Espondilartrite/metabolismo , Espondilartrite/imunologia , Humanos , Antígeno HLA-B27/genética , Antígeno HLA-B27/metabolismo , Antígeno HLA-B27/imunologia , Fator de Crescimento Transformador beta/metabolismo , Ratos , Drosophila , Drosophila melanogaster , Asas de Animais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA