RESUMO
Ticks parasitize various hosts, including humans, and are known to transmit pathogens that can be harmful not only to animals but also to humans. To evaluate the possible presence of pathogens in ticks, we aimed to collect and identify tick fauna specimens in Lagoa Comprida Municipal Natural Park, an anthropogenic urban area located in Aquidauana, Mato Grosso do Sul, Brazil. A total of 1216 ticks, of which 51.2% were Amblyomma sculptum, 1.2% were Amblyomma dubitatum, and 41% were Amblyomma spp. were collected. These results show that the prevalence of A. sculptum is significantly higher than that of A. dubitatum across all four seasons. Molecular analyses revealed positive samples for the genus Babesia, including the confirmation of Babesia bigemina in an A. sculptum specimen, marking the first record of this relationship. This unexpected finding demands greater attention and deeper analysis in the context of the epidemiology of tick-borne diseases.
Assuntos
Amblyomma , Babesia , Animais , Brasil/epidemiologia , Babesia/isolamento & purificação , Infestações por Carrapato/veterinária , Infestações por Carrapato/epidemiologia , Infestações por Carrapato/parasitologia , Feminino , Babesiose/epidemiologia , Babesiose/parasitologia , Masculino , Prevalência , Ixodidae/parasitologiaRESUMO
This study evaluated the effect of different supportive treatments on PCV replacement of dairy calves naturally infected with tick fever (TF) agents, and treated with diminazene and enrofloxacin. Five products were tested as supportive treatments in four experiments. In these experiments, we used Girolando female calves (Gyr × Holstein, genetic ratio of 15/16 and 31/32 Holstein) four to six months old, raised in pasture, naturally infected with TF agents, and infested with R. microplus. Supportive treatment was administered once on day 0 of the study concurrently with specific treatment targeting TF agents. The animals were observed on days 0, 3, and 7. Oral or intravenous administration of a vitamin complex and mineral salts enhanced the increase in PCV and biochemical analytes present in the serum of calves naturally infected with TF agents. No positive effect on PCV values was observed with the administration of (1) invigorating tonic: calcium, casein-peptides and vitamin B12, (2) iron-based stimulant tonic and (3) metabolic tonic: vitamin A, vitamin D, and a fraction of polyunsaturated fatty acids. Supplementation by injection with Type III iron resulted in increased hemoglobin and PCV in treated animals. However, these results did not occur with iron citrate. Therefore, more studies with Type III iron need to be performed. Supportive treatment conferred no advantage in animals with no history of reduced PCV.
Assuntos
Doenças dos Bovinos , Animais , Bovinos , Feminino , Doenças dos Bovinos/tratamento farmacológico , Doenças dos Bovinos/terapia , Hematócrito/veterinária , Diminazena/análogos & derivados , Diminazena/uso terapêutico , Diminazena/farmacologia , Enrofloxacina/uso terapêutico , Enrofloxacina/administração & dosagem , Infestações por Carrapato/veterinária , Infestações por Carrapato/tratamento farmacológico , RhipicephalusRESUMO
Bovine babesiosis, caused by the protozoan Babesia bigemina, is one of the most important hemoparasite diseases of cattle in Mexico and the world. An attenuated B. bigemina strain maintained under in vitro culture conditions has been used as a live attenuated vaccine; however, the biological mechanisms involved in attenuation are unknown. The objective of this study was to identify, through a comparative transcriptomics approach, the components of the B. bigemina virulent parasites that are differentially expressed in vivo, as opposed to those expressed by B. bigemina attenuated vaccine parasites when inoculated into naïve cattle. The biological material under study was obtained by inoculating spleen-intact cattle with infected erythrocytes containing either the attenuated strain or a virulent field strain. After RNA extraction, transcriptomic analysis (RNA-seq) was performed, followed by bioinformatic Differential Expression (DE) analysis and Gene Ontology (GO) term enrichment. The high-throughput sequencing results obtained by analyzing three biological replicates for each parasite strain ranged from 9,504,000 to 9,656,000, and 13,400,000 to 15,750,000 reads for the B. bigemina attenuated and virulent strains, respectively. At least 519 differentially expressed genes were identified in the analyzed strains. In addition, GO analysis revealed both similarities and differences across the three categories: cellular components, biological processes, and molecular functions. The attenuated strain of B. bigemina derived from in vitro culture presents global transcriptomic changes when compared to the virulent strain. Moreover, the obtained data provide insights into the potential molecular mechanisms associated with the attenuation or pathogenicity of each analyzed strain, offering molecular markers that might be associated with virulence or potential vaccine candidates.
RESUMO
Babesiosis is a protozoan disease acquired by the bite of different species of ticks. More than 100 Babesia spp. infect wild and domestic animals worldwide, but only a few have been documented to infect humans. Generally, babesiosis is asymptomatic in immunocompetent persons; however, in immunocompromised can be life-threatening. A 13-year-old boy from the Amazon region presented with a 3-month evolution of fever, chills, general malaise, and arthralgia accompanied by anemia and jaundice. In the last 4 years was diagnosed with chronic kidney failure. By nested-PCR using 18S RNA ribosomal gene as target and DNA sequencing, the phylogenetic analysis showed Babesia bigemina as the causative agent in the blood. Treatment with oral quinine plus clindamycin for six continuous weeks was effective with no relapse occurring during 12 months of follow-up. This is the second human case in Ecuador but the first caused by the zoonotic B. bigemina which confirms the existence of active transmission that should alert public health decision-making authorities on the emergence of this zoonosis and the need for research to determine strategies to reduce tick exposure.
Assuntos
Babesia , Babesiose , Carrapatos , Animais , Masculino , Humanos , Adolescente , Babesia/genética , Babesiose/diagnóstico , Equador , FilogeniaRESUMO
Bovine babesiosis is a tick-transmitted disease caused by intraerythrocytic protozoan parasites of the genus Babesia. Its main causative agents in the Americas are Babesia bigemina and Babesia bovis, while Babesia ovata affects cattle in Asia. All Babesia species secrete proteins stored in organelles of the apical complex, which are involved in all steps of the invasion process of vertebrate host cells. Unlike other apicomplexans, which have dense granules, babesia parasites instead have large, round intracellular organelles called spherical bodies. Evidence suggests that proteins from these organelles are released during the process of invading red blood cells, where spherical body proteins (SBPs) play an important role in cytoskeleton reorganization. In this study, we characterized the gene that encodes SBP4 in B. bigemina. This gene is transcribed and expressed in the erythrocytic stages of B. bigemina. The sbp4 gene consists of 834 nucleotides without introns that encode a protein of 277 amino acids. In silico analysis predicted a signal peptide that is cleaved at residue 20, producing a 28.88-kDa protein. The presence of a signal peptide and the absence of transmembrane domains suggest that this protein is secreted. Importantly, when cattle were immunized with recombinant B. bigemina SBP4, antibodies identified B. bigemina and B. ovata merozoites according to confocal microscopy observations and were able to neutralize parasite multiplication in vitro for both species. Four peptides with predicted B-cell epitopes were identified to be conserved in 17 different isolates from six countries. Compared with the pre-immunization sera, antibodies against these conserved peptides reduced parasite invasion in vitro by 57%, 44%, 42%, and 38% for peptides 1, 2, 3, and 4, respectively (p < 0.05). Moreover, sera from cattle infected with B. bigemina cattle contained antibodies that recognized the individual peptides. All these results support the concept of spb4 as a new gene in B. bigemina that should be considered a candidate for a vaccine to control bovine babesiosis.
RESUMO
Bovine babesiosis is a tick-borne disease caused by protozoan parasites of the genus Babesia. Babesia bigemina is one of the most prevalent and economically important parasite species that infects cattle because of its impact on the meat and milk production industry. Effective disease control strategies should include detection of reservoir animals and early and specific pathogen detection using rapid, economical, sensitive, and specific detection techniques. The loop-mediated isothermal amplification technique (LAMP) is a one-step molecular reaction that amplifies DNA sequences with high sensitivity and specificity under isothermal conditions and requires no special equipment. The results can be observed by the naked eye as color changes. The aim of this work was to develop and standardize the LAMP technique for B. bigemina detection and its visualization using hydroxynaphtol blue. For this situation, primers were designed from the conserved sequences of the B. bigemina ama-1 gene. The results showed that at 63 °C in 1 h and under standardized conditions, this technique could amplify B. bigemina DNA as indicated by the characteristic colorimetric change. Sensitivity evaluation indicated that DNA was amplified at a 0.00000001% parasitemia, and it was demonstrated that this technique specifically amplified the DNA of B. bigemina. Additionally, this technique could amplify DNA from 10 strains of B. bigemina from three different countries. It is concluded that the LAMP technique as modified in our case could specifically amplify B. bigemina DNA and shows high sensitivity, does not cross-react with related organisms, and the product is observed by 60 min of reaction time based on color changes. This report is the first LAMP report that uses sequences that are conserved between strains of the ama-1 gene, demonstrates the results by color changes using hydroxynaphtol blue. We propose LAMP as a rapid and economical alternative method for the molecular detection of B. bigemina.
RESUMO
In the intraerythrocytic protozoan parasites of the genus Babesia both innate and adaptive immune responses are necessary to confer protection against clinical disease. In particular, the adaptive immune response involves the production of neutralizing antibodies as well as the presentation of parasite antigens to CD4+ T lymphocytes by professional antigen-presenting cells. Therefore, the development of alternative vaccines that replace the use of live attenuated strains should include relevant epitopes targeting both B and T cell responses. The aim of this study was to design new Babesia bigemina immunogens and evaluate the humoral and cellular responses in mice. To achieve this, three B. bigemina recombinant antigens called Apical Membrane Antigen 1 (AMA-1), Rhoptry Associated Protein 1 (RAP-1) and the Thrombospondin Related Anonymous Protein 1 (TRAP-1) were obtained. Besides, two recombinant modified vaccinia virus Ankara vectors coding for chimeric constructs containing bioinformatically predicted B and T cell epitopes from the same three antigens were generated. These immunogens were evaluated in prime-boost heterologous schemes. Among the combinations tested, priming with a cocktail of the three proteins followed by a booster immunization with a mix of both viruses induced the highest activation of IFN-γ+ CD4+ and CD8+ antigen-specific T cell responses. Remarkably, all vaccine schemes containing antigen cocktails also induced antibodies that were capable of neutralizing merozoite invasion of bovine erythrocytes in vitro at a level comparable to an anti B. bigemina hyperimmune bovine serum. Our results offer a new perspective for vaccines against B. bigemina combining bioinformatics predictions and prime-boost immunization regimes for future control measures against bovine babesiosis.
Assuntos
Babesia , Vacinas Protozoárias , Animais , Anticorpos Neutralizantes , Imunidade Celular , Imunização Secundária , Camundongos , Vaccinia virusRESUMO
Data regarding parasitemia (blood smears), rectal temperature (RT), packed cell volume (PCV) and vaginal mucosa coloration (VMC) of Gyr x Holstein female calves between 3-7mo were accessed to evaluate different techniques for monitoring the bovine tick fever agents (TFA). The 1st experiment determined the correlation between the TFA parasitemia with RT and PCV. The 2nd, evaluated the associated risk of A. marginale parasitemia with RT and PCV in relation to the Gyr/Holstein genetic proportion (5/8,3/4,7/8 and 15/16) using Receiver Operating Characteristic Curve (ROC). The 3rd, two groups were performed: cattle monitored by RT (T01) and by PCV (T02), during their 80-210 days of age, data regarding TFA parasitemia, RT, PCV, VMC and weight were registered. In 1st experiment, RT showed weak correlation with TFA parasitemia, while PCV showed a strong correlation with A. marginale and B. bigemina, but not with B. bovis parasitemia. In experiment 2, the ROC curve analysis showed that when the genetic proportion of B. t. taurus increased, least reliable RT was to monitor calves infected with A. marginale. The PCV for monitoring A. marginale was the best technique, showing sensitivity of 74.2% and specificity of 97.0% than other techniques that used RT and VCM as a monitoring tool. In general, calves monitored by PCV (T02) showed higher PCV values, lower A. marginale parasitemia, less pneumonia as co-infection and less salvation treatment were performed than in animals monitored by RT (T01). Furthermore, animals from T02 gained 23.5 kg more than those from T01. The low frequency of B. bovis and B. bigemina found in this study made impossible to compare the monitoring techniques for these pathogenic agents.
Assuntos
Anaplasmose , Babesia , Babesiose , Doenças dos Bovinos , Carrapatos , Animais , Babesia/genética , Bovinos , Doenças dos Bovinos/diagnóstico , Feminino , Parasitemia/veterináriaRESUMO
Babesia bovis and B. bigemina are tick-transmitted parasites causing bovine babesiosis, characterized by significant morbidity and mortality leading to economic losses to the livestock industry in tropical and subtropical regions worldwide. Animals that recover from acute infection remain carriers with low parasitemia acting as a source of transmission, and often escape detection. An improved diagnosis of a B. bovis and/or B. bigemina infection of carrier animals is enabled by the availability of detection methods with high sensitivity. To this end, two nested PCR assays targeting the cytochrome b (cytb) genes of B. bovis and B. bigemina (cytb-nPCR), have been recently developed and an increased sensitivity with respect to reference protocols has been shown (Romero-Salas et al., 2016). In this study, the specificity against a panel of hemoparasites that potentially co-occur with B. bovis and B. bigemina was demonstrated to ensure applicability of the cytb-nPCR assays in a wide range of regions where bovine babesiosis is endemic. Furthermore, we compared both reported cytb-nPCR assays with reference nPCR and qPCR protocols for (i) their capability to detect carrier animals in the field, and (ii) their reproducibility when performed in different laboratories by independent operators. We show that, in a panel of bovine field samples (n = 100), the cytb-nPCR assays detected a considerably higher number of 25% B. bovis and 61% B. bigemina-positive animals compared to 7% and 20% B. bovis and 55% and 49% B. bigemina-positive animals when tested by reference nPCR and qPCR protocols, respectively. Cytb-nPCRs were also found superior in the detection of carrier animals when field samples from Africa were analyzed. In addition, both the B. bovis and B. bigemina cytb-nPCR assays were independently validated in a single blinded study in three laboratories. Importantly, no significant differences in the number/percentage of infected animals was observed using cytb-nPCR assays. In summary, the cytb-nPCR assays detected a considerably higher number of chronically infected B. bovis and B. bigemina carrier animals compared to reference nPCR and qPCR protocols, when applied in different epidemiological field situations. Furthermore, a high reproducibility between laboratories could be demonstrated.
Assuntos
Babesia bovis , Babesia , Babesiose , Doenças dos Bovinos , Carrapatos , Animais , Babesia/genética , Babesia bovis/genética , Babesiose/parasitologia , Bovinos , Doenças dos Bovinos/parasitologia , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Reprodutibilidade dos Testes , Carrapatos/genéticaRESUMO
Currently, six species and two genetic variants within Babesia genus have been confirmed as human pathogens. Babesia bovis and Babesia bigemina are causative agents of bovine babesiosis, and, in spite of the worldwide distribution of those species and their vectors, no description of related human cases has been reported. As a contribution, we would like to address the articles which claim the alleged role of B. bovis and B. bigemina as anthropozoonotic pathogens in Colombia.
RESUMO
The present study was focused on the incidence of ticks and tick-borne diseases (TTBD) in cross-bred cattle (Friesian x Sahiwal) of two farms (n = 2548) in district Lahore, Pakistan. We collected total of 572 ticks (adults and nymphs) and blood samples (10 ml) for microscopic i.e., blood smear test Giemsa Stain (BST) and molecular analysis; Reverse Line Blot-General Primer-PCR (RLB-PCR) and Specie Specific Primer PCR (SP-PCR) from infested cattle (n = 100) from months of April to September. Results: The tick specie identified was Rhipicephalus microplus at both farms, with significant difference in infestations rate amongst both farms (p< 0.0001). The cross-bred cattle having higher ratio of Friesian blood and lower ratio of Sahiwal blood were mostly infested by ticks (p < 0.0458) and haemoparasites (p <0.474) and vice versa. The SP-PCR showed higher number of haemoparasites infection than BST, which revealed 16% T. annulata (p < 0.0001 and k value 0.485, 0.0001), 51% B. bigemina (p < 0.0001 and k value 0.485, 0.0001) and 15% A. marginale (p < 0.001 and k value 0.207, 0.001), respectively. The single infection with B. bigemina was 34% (n = 34/100) and A. marginale 6% (n = 6/100). The double infection with T. annulata/B. bigemina was 8% (n = 8/100) and B. bigemina/A. marginale 1% (n = 1/100). Whereas the triple infection with T. annulata/B. bigemina/A .marginale was 8% (n = 8/100). The phylogenetic study of isolated sequence of T. annulata revealed close homology to isolates from Iran (87%), B. bigemina to isolates from Cuba (94 to 100%) and A. marginale with isolates from Pakistan (99 to 98%).
O presente estudo foi enfocado na incidência de carrapatos e doenças transmitidas por carrapatos (TTBD) em bovinos mestiços (Friesian x Sahiwal) de duas fazendas (n = 2.548) no distrito de Lahore, Paquistão. Foram coletados 572 carrapatos (adultos e ninfas) e amostras de sangue (10 ml) para microscopia, ou seja, esfregaço sanguíneo coloração de Giemsa (BST) e análise molecular; Reverse Line Blot-General Primer-PCR (RLB-PCR) e Specific Primer PCR (SP-PCR) , de bovinos infestados (n = 100) nos meses de abril a setembro. Resultados: A espécie de carrapato identificada em ambas as fazendas foi Rhipicephalus microplus, com diferença significativa na taxa de infestação nos dois locais (p < 0,0001). Os bovinos mestiços Friesian, com maior proporção de sangue, e Sahiwal, com menor proporção de sangue, foram principalmente infestados por carrapatos (p < 0,0458) e hemoparasitos (p < 0,474), e vice-versa. O SP-PCR mostrou maior número de infecção por hemoparasitos do que a BST, revelando 16% de Theileria annulata (p < 0,0001; k valor 0,485; 0,0001), 51% de Babesia bigemina (p < 0,0001; k valor 0,485; 0,0001) e 15% de Anaplasma marginale (p < 0,001; valor de k 0,207; 0,001). A infecção única com B. bigemina foi de 34% (n = 34/100), e com A. marginale, de 6% (n = 6/100). A dupla infecção com T. annulata/B. bigemina foi de 8% (n = 8/100), e com B. bigemina/A. marginale, de 1% (n = 1/100). Já a tripla infecção com T. annulata/B. bigemina/A. marginale foi de 8% (n = 8/100). O estudo filogenético da sequência isolada de T. annulata revelou estreita homologia com isolados do Irã (87%), de B. bigemina com isolados de Cuba (94 a 100%) e de A. marginale com isolados do Paquistão (98 a 99%).
Assuntos
Animais , Bovinos , Babesia , Carrapatos , Theileria annulata/isolamento & purificação , Anaplasma marginale , Rhipicephalus , Microbioma Gastrointestinal , Paquistão , Reação em Cadeia da Polimerase/veterinária , Doenças Transmitidas por Carrapatos/epidemiologiaRESUMO
BACKGROUND: Babesia species are intraerythrocytic protozoa, distributed in tropical and subtropical areas of the world, causing anemic diseases in many animals, including cattle. This disease, called babesisosis, is transmitted from one animal to another through ticks (Tick Borne-Disease or TBD). On the other hand, Ecuador has a tropical climate that allows the development of the vector Rhipicephalus microplus, and therefore favors the transmission of Babesia spp. in cattle. METHODS AND PRINCIPAL FINDINGS: We determined the presence of Babesia spp. by PCR using 18s ribosomal gene as target (18s PCR) in 20 farms in the area of El Carmen (zone below 300 m above sea level) and 1 farm in Quito (2469 m.a.s.l.). In addition, we analyzed parameters such as age, sex, and packed cell volume (PCV) as explanatory variable associated with the disease. RESULTS: The 18s PCR test showed that 18.94% (14.77% Babesia bovis and 4.17% Babesia bigemina) and 20.28% (14.69% B. bovis and 5.59% B. bigemina) of the cattle were positive for Babesia spp in farms sampled in El Carmen and in Quito, respectively. Age influenced the presence of animals positive for Babesia spp., but sex and PCV did not. The phylogenetic analysis of sequences showed 4 isolates of B. bovis and 3 isolates of B. bigemina in the 2 study zones, with similarities between 99.73 and 100% with other sequences. One B. bovis isolate was similar in the zone of El Carmen and Quito. CONCLUSION AND SIGNIFICANCE: This work is the first molecular characterization of B. bigemina and B. bovis in Ecuador, and it is also the first evidence of Babesia spp. in cattle in the area of Quito at an altitude of 2469 m.a.s.l., being the highest altitude reported for animals with babesiosis and for the tick R. microplus. Climatic factors as well as mobility of tick-carrying animals without any control allow the presence of Babesiosis outbreaks in new geographical areas.
RESUMO
Bovine babesiosis caused by Babesia bigemina and B. bovis is an economically relevant tick-borne disease distributed over tropical and subtropical world regions. Animals that recover from the clinical disease can remain persistently infected, and those carriers are epidemiologically relevant since they can act as a source of infection to other animals through the tick bite. According to the manual of the World Organisation for Animal Health (OIE), the recommended molecular diagnosis test for both parasites is a nested polymerase chain reaction (nPCR) based on an amplification of a fragment of the rap-1 gene. Since nPCRs are time consuming, have a higher cost and risk of contamination, we propose a single step PCR for B. bigemina (BbiVESA) and B. bovis (BboVESA) based on the amplification of the multi-copy ves-1α gene. We developed these methods and we achieved a detection limit of 1 × 10-12 % parasitemia for B. bigemina and of 1 × 10-6 % for B. bovis using reference strains, which compared to the reference OIE tests, results in an improvement in sensitivity of six orders for B. bigemina. Finally, we tested 48 field samples from a babesiosis enzootic region where we were able to detect a higher proportion of positive animals with both VESA methods than with the reference rap-1 nPCRs. This difference was statistically significant for each Babesia species. Concordance between both diagnostic schemes based on Cohen's kappa coefficient showed minimal to non-agreement (κ = 0.32) for B. bigemina and non-agreement (κ = 0.16) for B. bovis since BbiVESA and BboVESA PCR tests showed a significantly higher detection capacity. In conclusion, the high sensitivity of the assay, together with the lower demand of time and reagents make the VESA PCR methods developed here a valuable diagnostic tool for the molecular detection and epidemiological survey of both Babesia pathogens.
Assuntos
Babesia bovis , Babesiose , Doenças dos Bovinos , Reação em Cadeia da Polimerase , Animais , Babesia/genética , Babesia bovis/genética , Babesiose/diagnóstico , Bovinos , Doenças dos Bovinos/diagnóstico , Reação em Cadeia da Polimerase/veterinária , Sensibilidade e EspecificidadeRESUMO
Cattle babesiosis is a socio-economically important tick-borne disease caused by Apicomplexa protozoa of the genus Babesia that are obligate intraerythrocytic parasites. The pathogenicity of Babesia parasites for cattle is determined by the interaction with the host immune system and the presence of the parasite's virulence genes. A Babesia bigemina strain that has been maintained under a microaerophilic stationary phase in in vitro culture conditions for several years in the laboratory lost virulence for the bovine host and the capacity for being transmitted by the tick vector. In this study, we compared the virulome of the in vitro culture attenuated Babesia bigemina strain (S) and the virulent tick transmitted parental Mexican B. bigemina strain (M). Preliminary results obtained by using the Basic Local Alignment Search Tool (BLAST) showed that out of 27 virulence genes described and analyzed in the B. bigemina virulent tick transmitted strain, only five were fully identified in the attenuated laboratory strain. In all cases, the identity and coverture of the identified genes of the wildtype strain were higher than those of the laboratory strain. This finding is putatively associated with the continuous partial loss of virulence genes in the laboratory strain after several passages of the parasite population under optimal in vitro growth conditions. The loss of virulence factors might be reflected in the absence of symptoms of the disease in cattle inoculated with the attenuated strain despite the presence of infection in the bovine host cells.
RESUMO
BACKGROUND: Thrombospondin-related anonymous protein (TRAP) has been described as a potential vaccine candidate for several diseases caused by apicomplexan parasites. However, this protein and members of this family have not yet been characterized in Babesia bigemina, one of the most prevalent species causing bovine babesiosis. METHODS: The 3186-bp Babesia bigemina TRAP-1 (BbiTRAP-1) gene was identified by a bioinformatics search using the B. bovis TRAP-1 sequence. Members of the TRAP and TRAP-related protein families (TRP) were identified in Babesia and Theileria through a search of the TSP-1 adhesive domain, which is the hallmark motif in both proteins. Structural modeling and phylogenetic analysis were performed with the identified TRAP proteins. A truncated recombinant BbiTRAP-1 that migrates at approximately 107 kDa and specific antisera were produced and used in Western blot analysis and indirect fluorescent antibody tests (IFAT). B-cell epitopes with neutralizing activity in BbiTRAP-1 were defined by enzyme-linked immunosorbent assays (ELISA) and invasion assays. RESULTS: Three members of the TRAP family of proteins were identified in B. bigemina (BbiTRAP-1 to -3). All are type 1 transmembrane proteins containing the von Willebrand factor A (vWFA), thrombospondin type 1 (TSP-1), and cytoplasmic C-terminus domains, as well as transmembrane regions. The BbiTRAP-1 predicted structure also contains a metal ion-dependent adhesion site for interaction with the host cell. The TRP family in Babesia and Theileria species contains the canonical TSP-1 domain but lacks the vWFA domain and together with TRAP define a novel gene superfamily. A variable number of tandem repeat units are present in BbiTRAP-1 and could be used for strain genotyping. Western blot and IFAT analysis confirmed the expression of BbiTRAP-1 by blood-stage parasites. Partial recognition by a panel of sera from B. bigemina-infected cattle in ELISAs using truncated BbiTRAP-1 suggests that this protein is not an immunodominant antigen. Additionally, bovine anti-recombinant BbiTRAP-1 antibodies were found to be capable of neutralizing merozoite invasion in vitro. CONCLUSIONS: We have identified the TRAP and TRP gene families in several Babesia and Theileria species and characterized BbiTRAP-1 as a novel antigen of B. bigemina. The functional relevance and presence of neutralization-sensitive B-cell epitopes suggest that BbiTRAP-1 could be included in tests for future vaccine candidates against B. bigemina.
Assuntos
Babesia/imunologia , Babesiose/parasitologia , Doenças dos Bovinos/parasitologia , Merozoítos/imunologia , Proteínas de Protozoários/química , Proteínas de Protozoários/imunologia , Trombospondina 1/química , Trombospondina 1/imunologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Babesia/classificação , Babesia/genética , Babesia/crescimento & desenvolvimento , Bovinos , Feminino , Masculino , Merozoítos/química , Merozoítos/genética , Merozoítos/crescimento & desenvolvimento , Camundongos , Camundongos Endogâmicos BALB C , Família Multigênica , Filogenia , Proteínas de Protozoários/genética , Alinhamento de Sequência , Trombospondina 1/genéticaRESUMO
The instrumentation of the in vitro culture system has allowed researchers to learn more about the metabolic and growth behavior of Babesia spp. The various applications for in vitro cultivation of Babesia include obtaining attenuated strains for vaccination or pre-munition, the selection of pure lines with different degrees of virulence, studies on biological cloning, ultrastructure, antigen production for diagnostics, drug sensitivity assessments, and different aspects of parasite biology. Although there are different types of vaccines that have been tested against bovine babesiosis, so far, the only procedure that has offered favorable results in terms of protection and safety has been the use of live attenuated vaccines. In countries, such as Australia, Argentina, Brazil, Uruguay and Israel, this type of vaccine has been produced and used. The alternative to live vaccines other than splenectomized calf-derived biological material, has been the in vitro cultivation of Babesia bovis and B. bigemina. The development of in vitro culture of Babesia spp. strains in a defined medium has been the basis for the initiation of a source of parasites and exoantigens for a variety of studies on the biochemistry and immunology of babesiosis. The use of live immunogens from attenuated strains derived from in vitro culture is highlighted, which has been proposed as an alternative to control bovine babesiosis. In several studies performed in Mexico, this type of immunogen applied to susceptible cattle has shown the induction of protection against the experimental heterologous strain challenge with both, Babesia-infected blood and animal exposure to confrontations on tick vector-infested farms. The combination of transfection technologies and the in vitro culture system as integrated methodologies would eventually give rise to the generation of genetically modified live vaccines. However, a greater challenge faced now by researchers is the large-scale cultivation of Babesia parasites for mass production and vaccine distribution.
RESUMO
In this study, we report Babesia bigemina proliferation in culture medium free of components of animal origin supplemented with a lipid mixture. Babesia bigemina continuously proliferated in VP-SFM with a higher percent parasitized erythrocyte as compare to using other animal component-free culture media. Compared with Advanced DMEM/F12 (ADMEM/F12), VP-SFM had a similar percent parasitized erythrocyte (PPE). Supplementation of VP-SF with a lipid acid mixture improved B. bigemina proliferation in vitro culture, with a maximum PPE of 11.3%. Growth of B. bigemina in a perfusion bioreactor using VP-SFM medium supplemented with lipid mixture resulted in a PPE above 28%. In conclusion, we demonstrated that B. bigemina proliferated in an animal component-free medium supplemented with the fatty acid mixture. This innovation to B. bigemina in vitro culture method presented herein is an important source of biological material for live vaccine production and understanding the mechanisms and molecules involved in parasite attachment and invasion of bovine erythrocytes.
RESUMO
The objective of this study was to instrument a serological assay for the epidemiological diagnosis of bovine babesiosis in Mexico, using the Babesia bigemina recombinant protein RAP-1 (rRAP-1α) as antigen. rRAP-1α, r12d3 and rGP45 were the three recombinant antigens initially tested. Based on the highest titres obtained in the indirect ELISA (iELISA) with the positive control serum, using similar antigen concentrations, rRAP-1α was selected for further use. The diagnostic sensitivity and specificity rates estimated for the iELISA with rRAP-1α as antigen were 89.9% and 86.5%, respectively, while for the Indirect Fluorescent Antibody Test (IFAT), the gold standard assay, the sensitivity was 86.66% and the specificity was 95%. The ĸ agreement value determined was 0.52, indicating a moderate agreement between the iELISA and IFAT assays. The instrumented iELISA with rRAP-1α as antigen shows an excellent specificity rate and an acceptable sensitivity that allows for the detection of antibodies to B. bigemina in cattle naturally exposed to the vector tick Rhipicephalus microplus. By using the iELISA-rRAP-1α, along with an iELISA with recombinant Merozoite Surface Antigen (rMSA-1) for antibody determination against Babesia bovis in the serum samples collected from cattle at 'La Posta' experimental station in Mexico, a seroprevalence of 20.3% was estimated for B. bigemina and 19.4% for B. bovis, while 36.89% of samples were positive for both Babesia species. The iELISA test promises to be a safe and low-cost type of diagnosis available to cattle producers in Mexico and would facilitate the definition of herd immunity status to implement measures of control adapted for the prevention of bovine babesiosis outbreaks.
Assuntos
Antígenos de Protozoários/imunologia , Babesia/imunologia , Babesiose/epidemiologia , Doenças dos Bovinos/epidemiologia , Técnica Indireta de Fluorescência para Anticorpo/veterinária , Rhipicephalus/parasitologia , Animais , Babesia/isolamento & purificação , Babesia bovis/imunologia , Babesia bovis/isolamento & purificação , Babesiose/diagnóstico , Babesiose/parasitologia , Bovinos , Doenças dos Bovinos/diagnóstico , Doenças dos Bovinos/parasitologia , Ensaio de Imunoadsorção Enzimática/veterinária , México/epidemiologia , Proteínas Recombinantes , Estudos SoroepidemiológicosRESUMO
Bovine babesiosis is a tick-transmitted haemoparasitic disease caused by Babesia bovis and B. bigemina affecting cattle of tropical and subtropical regions around the world. Pathogens are transmitted by the tick vector Rhipicephalus microplus displaying a widespread distribution in northeastern Argentina. The disease is characterized by significant animal morbidity and mortality resulting in considerable economic loss. In this study, B. bovis and B. bigemina infection was investigated in a cattle herd of 150 adult bovines of pure Braford breed raised in a tick-hyperendemic field using molecular and serum antibody tests. A highly sensitive nested polymerase chain reaction (nPCR) assay targeting a species-specific region of the apocytochrome b gene resulted in direct B. bovis and B. bigemina detection in 27.3% and 54.7% of bovines, respectively. A recently developed immunochromatographic strip test (ICT) based on recombinant forms of spherical body protein 4 and the C-terminal region of rhoptry-associated protein 1 showed that 71.3% and 89.3% of bovines were seropositive for B. bovis and B. bigemina, respectively. The mixed infection rate as observed by direct (19.3%) and indirect detection (65.3%) coincided with those expected, respectively. Importantly, four months after sampling, nine bovines of the studied herd showed clinical signs of bovine babesiosis of which six animals eventually died. Microscopic detection of infected erythrocytes in Giemsa-stained blood smears confirmed B. bovis infection. Our study demonstrates that although animals showed a relatively high and very high rate of immunity against infection with B. bovis (71.3%) and B. bigemina (89.3%) parasites, respectively, clinical cases and fatalities due to the infection with B. bovis were observed. It is proposed that the most adequate control measure in the studied epidemiological situation is to vaccinate animals to prevent losses and/or an outbreak of bovine babesiosis.
Assuntos
Babesia/isolamento & purificação , Babesiose/epidemiologia , Doenças dos Bovinos/epidemiologia , Rhipicephalus/parasitologia , Animais , Argentina/epidemiologia , Babesia/genética , Babesia/imunologia , Babesia bovis/genética , Babesia bovis/imunologia , Babesia bovis/isolamento & purificação , Babesiose/parasitologia , Bovinos , Doenças dos Bovinos/parasitologia , Cromatografia de Afinidade/veterinária , Feminino , Masculino , Reação em Cadeia da Polimerase/veterinária , Sensibilidade e Especificidade , Especificidade da EspécieRESUMO
Bovine babesiosis is the most important protozoan disease transmitted by ticks. In Plasmodium falciparum, another Apicomplexa protozoan, the interaction of rhoptry neck protein 2 (RON2) with apical membrane antigen-1 (AMA-1) has been described to have a key role in the invasion process. To date, RON2 has not been described in Babesia bigemina, the causal agent of bovine babesiosis in the Americas. In this work, we found a ron2 gene in the B. bigemina genome. RON2 encodes a protein that is 1351 amino acids long, has an identity of 64% (98% coverage) with RON2 of B. bovis and contains the CLAG domain, a conserved domain in Apicomplexa. B. bigemina ron2 is a single copy gene and it is transcribed and expressed in blood stages as determined by RT-PCR, Western blot, and confocal microscopy. Serum samples from B. bigemina-infected bovines were screened for the presence of RON2-specific antibodies, showing the recognition of conserved B-cell epitopes. Importantly, in vitro neutralization assays showed an inhibitory effect of RON2-specific antibodies on the red blood cell invasion by B. bigemina. Therefore, RON2 is a novel antigen in B. bigemina and contains conserved B-cell epitopes, which induce antibodies that inhibit merozoite invasion.