Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Data Brief ; 53: 110186, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38406253

RESUMO

A dataset about three topics is provided, as a follow-up to the article "Mexico's forest diversity: common tree species and proposed forest-vegetation provinces" by Ricker et al. [1]. Firstly, 6927 site locations are provided for 22,532 trees of 1452 species. Secondly, measurements of basic wood-densities are reported for 779 tree species, obtained from 5256 trunk-core samples from Mexico's national forest inventory, and ranging from 0.05 to 0.93 g/cm3. Third, the data and maps of the forest-vegetation provinces from [1] were updated with the new cartography of Mexico's vegetation and land use (base year 2018). The maps are available now in an adjusted presentation as a shapefile-set for ArcGIS, as well as map-package and image files.

2.
Am J Bot ; 105(10): 1653-1661, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30324613

RESUMO

PREMISE OF THE STUDY: Basic wood density is an important ecological trait for woody plants. It is used to characterize species performance and fitness in community ecology and to compute tree and forest biomass in carbon cycle studies. While wood density has been historically measured at 12% moisture, it is convenient for ecological purposes to convert this measure to basic wood density, i.e., the ratio of dry mass over green volume. Basic wood density can then be used to compute tree dry biomass from living tree volume. METHODS: Here, we derive a new exact formula to compute the basic wood density Db from the density at moisture content w denoted Dw , the fiber saturation point S, and the volumetric shrinkage coefficient R. We estimated a new conversion factor using a global wood technology database where values to use this formula are available for 4022 trees collected in 64 countries (mostly tropical) and representing 872 species. KEY RESULTS: We show that previous conversion factors used to convert densities at 12% moisture into basic wood densities are inconsistent. Based on theory and data, we found that basic wood density could be inferred from the density at 12% moisture using the following formula: Db = 0.828D12 . This value of 0.828 provides basic wood density estimates 4-5% smaller than values inferred from previous conversion factors. CONCLUSIONS: This new conversion factor should be used to derive basic wood densities in global wood density databases. Its use would prevent overestimating global forest carbon stocks and allow predicting better tree species community dynamics from wood density.


Assuntos
Biomassa , Árvores/fisiologia , Madeira/fisiologia , Florestas , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA