RESUMO
Valero-fenbendazole (VAL-FBZ) is a novel hybrid compound with in vitro anthelmintic activity, designed and synthesized to address the global problem of resistance to anthelmintic compounds. This new molecule derives from fenbendazole (FBZ), a well-known commercially available benzimidazole used in veterinary medicine despite its poor water solubility. In this work, we report for the first time a strategy to solve the solubility problems of FBZ and VAL-FBZ by means of self-dispersible nanocrystals (SDNC). Nanocrystals were prepared by media milling followed by a spray-drying step, and a comprehensive and exhaustive structural and physicochemical characterization was carried out, in order to understand the systems and their behavior. The formulation poloxamer 188 (P188):FBZ 1:1 turned out with the best process yield (53%) and re-dispersability properties, particle size average of 258 nm, and polydispersity index of 0.2 after redispersion in water. The dissolution profile showed a markedly increased dissolution rate compared with the simple mixture of the components (80% FBZ dissolved in 15 min from the SDNC vs 14% from the control formulation). FTIR spectroscopy, thermal analysis, and X-Ray Powder Diffraction (XRPD) studies showed no chemical interactions between components and an extensive confocal Raman microscopy analysis of the formulations showed very homogeneous spatial distribution of components in the SDNC samples. This manufacturing process was then successfully transferred for preparing and characterizing VAL-FBZ:P188 (1:1) SDNC with similar results, suggesting the promising interest of a novel anthelmintic with improved biopharmaceutical behavior. In conclusion, new FBZ and VAL-FBZ SDNC with improved dissolution rate were successfully prepared and characterized. Graphical abstract.
Assuntos
Fenbendazol/química , Lactamas/química , Nanopartículas/química , Dessecação , Excipientes/química , Tamanho da Partícula , Poloxâmero/química , Difração de Pó , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Água/químicaRESUMO
Tuberculosis (TB) is one of the top ten causes of death worldwide and a leading cause of death in HIV patients. Rifampicin (Rif), a low water-soluble drug, is a critical first-line treatment and the most effective drug substance for therapy of drug-susceptible TB. However, Rif has high interindividual pharmacokinetic variability, mainly due to its highly variable absorption caused by its poor solubility. Drug nanocrystals are a promising technology to overcome this variability by increasing the surface area. This strategy allows for increasing the dissolution rate and improving the bioavailability of this BCS class II drug. In this study, Rif nanocrystals were prepared by a wet-bead milling method. A 3-factor, 3-level Box-Behnken design was used to investigate the independent variables: the concentration of rifampicin, the concentration of the stabilizing agent (Povacoat® type F), and the mass of zirconia beads. Two optimized formulations, F1-Rif and F2-Rif, were characterized by determining their particle size and size distribution, morphology, crystal properties, and antimicrobial activity. Differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD) revealed that rifampicin's polymorph II crystal structure was unchanged. The reduced particle size of <500 nm (100-fold decrease) increased the saturation solubility and dissolution rate up to 1.74-fold. The novel polymer, Povacoat®, demonstrated to be a suitable stabilizer to maintain the physical stability of nanosuspensions over two years. The Rif nanocrystals showed antimicrobial activity (0.25 µg/mL) not significantly different from standard rifampicin powder. However, the low cytotoxicity of the nanosuspensions in HepG2 cells was determined. When compared to the commercial product, the nanosuspension increased the rifampicin concentration 2-fold. In conclusion, the Rif nanosuspension allows half the needed volume of administration, which might increase compliance among children and elderly patients throughout the long-term treatment of TB.