Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
BMC Plant Biol ; 23(1): 520, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37884892

RESUMO

Studies of boron (B) and silicon (Si) synergy in cotton crops have shown promising results; however, the focus was on the foliar application of B and Si. Nonetheless, B is an element with little mobility in the plant and its best form of application is in the soil. Thus, the objective of this study was to evaluate the synergistic effect of soil applied B and foliar applied sSi on fiber quality and crop yield of cotton. For this purpose, a field experiment was carried out using cotton cultivar FM 985 GLTP. The soil's B in the experimental site is classified as low for cotton cultivation. The experiment was conducted in a randomized complete-block design, in a 3 × 2 factorial scheme, with three doses of B: 0.0 kg ha-1 (deficiency), 2.0 kg ha-1 (recommended dose), and 4.0 kg ha-1 (high dose) in the absence and presence (920 g L-1) of Si, with four replications. One week after the 4th application of Si, B and Si leaf content was determined. At boll opening, crop yield was estimated, and fiber quality analysis was realized. Boron deficiency reduced cotton yield, in 11 and 9%, compared to the application of 2 and 4 kg ha-1 of B, respectively. The presence of Si, however, increased plant yield in 5% in the treatments with 0 and 2 kg ha-1 of B, respectively. Cotton fiber length and elongation were not influenced by the B doses and Si presence. Fiber breaking strength was increased in 5% by the presence of Si and was not influenced by B deficiency. Micronaire was 8% smaller in the treatment with 0 kg ha-1 of B and 6% smaller in the absence of Si. Short fiber index was 4% greater in the plants of the treatment with 0 kg ha-1 of B. The results of this study reports that the complementation with Si via foliar application increases fiber quality by enhance breaking strength and micronaire. In conclusion, the interaction between soil-applied B and foliar-applied Si is beneficial for cotton cultivation, resulting in high cotton yield with better fiber quality.


Assuntos
Fibra de Algodão , Solo , Boro , Silício/farmacologia , Folhas de Planta , Gossypium
2.
Front Plant Sci ; 14: 1204836, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324691

RESUMO

Introduction: Alkaline soils with iron (Fe) deficiency are found in many regions of the world, and the use of silicon (Si) can mitigate the damages caused by such deficiency. The aim of this study was to evaluate the effect of Si in mitigating a moderate deficiency of Fe in two energy cane cultivars. Methods: Two experiments were performed, one with the VX2 cultivar and the other with the VX3 cultivar of energy cane, which were cultivated in pots with sand and a nutrient solution. In both experiments, treatments followed a factorial scheme 2x2, designed based on the sufficiency and deficiency of Fe, being combined with the absence or presence of Si (2.5 mmol L-1), disposed in a randomized blocks design with six replicates. In the condition of Fe sufficiency, plants were cultivated in a solution containing 368 µmol L-1 of Fe, while plants cultivated under deficiency were initially submitted to cultivation with a 54 µmol L-1 concentration of Fe for 30 days, and later, with Fe complete omission for 60 days. The supply of Si was carried out by applying 15 fertirrigations with Si (via root and leaf) during the initial stage of seedling development, and after transplanting, the nutrient solution was added daily (via root). Results and discussion: Both cultivars of energy cane were sensitive to Fe deficiency in the absence of Si, impairing its growth by causing stress and pigment degradation, thus reducing the photosynthesis efficiency. The supply of Si mitigated the damages caused by Fe deficiency in both cultivars, by increasing Fe accumulation in new and intermediate leaves, stem, and roots in the VX2 cultivar, and in new, intermediate, and old leaves and stem in the VX3 cultivar, which in turn reduced stress and favored both the nutritional and photosynthesis efficiency, while increasing the dry matter production. Si by modulating physiological and nutritional mechanisms, mitigates Fe deficiency in two energy cane cultivars. It was concluded that Si can be used as a strategy to improve growth and nutrition of energy cane in environments that are susceptible to Fe deficiency.

3.
BMC Plant Biol ; 23(1): 213, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37095435

RESUMO

BACKGROUND: In many regions of the world, K is being depleted from soils due to agricultural intensification a lack of accessibility, and the high cost of K. Thus, there is an urgent need for a sustainable strategy for crops in this environment. Si is an option for mitigating stress due to nutritional deficiency. However, the underlying effects of Si in mitigating K deficiency C:N:P homeostasis still remains unknown for bean plants. This is a species of great worldwide importance. Thus, this study aims to evaluate whether i) K deficiency modifies the homeostatic balance of C, N and P, and, if so, ii) Si supply can reduce damage caused to nutritional stoichiometry, nutrient use efficiency, and production of dry mass in bean plants. RESULTS: K deficiency caused a reduction in the stoichiometric ratios C:N, C:P, and P:Si in shoots and C:N, C:P, C:Si, N:Si, and P:Si in roots, resulting in a decrease in K content and use efficiency and reducing biomass production. The application of Si in K-deficient plants modified the ratios C:N, C:Si, N:P, N:Si, and P:Si in shoots and C:N, C:P, C:Si, N:Si, N:P, and P:Si in roots, increasing the K content and efficiency, reducing the loss of biomass. In bean plants with K sufficiency, Si also changed the stoichiometric ratios C:N, C:P, C:Si, N:P, N:Si, and P:Si in shoots and C:N, C:Si, N:Si, and P:Si in roots, increasing K content only in roots and the use efficiency of C and P in shoots and C, N, and P in roots, increasing the biomass production only in roots. CONCLUSION: K deficiency causes damage to the C:N:P homeostatic balance, reducing the efficiency of nutrient use and biomass production. However, Si is a viable alternative to attenuate these nutritional damages, favoring bean growth. The future perspective is that the use of Si in agriculture in underdeveloped economies with restrictions on the use of K will constitute a sustainable strategy to increase food security.


Assuntos
Deficiência de Potássio , Silício , Silício/farmacologia , Homeostase , Nutrientes
4.
Plant Physiol Biochem ; 197: 107594, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37001302

RESUMO

Silicon (Si) application, especially via foliar application, may be promising to attenuate oxidative damage, as Si can improve the non-enzymatic antioxidant system of cotton flowers. However, studies that address the relationship between boron (B) and Si in cotton flowers are still scarce. Therefore, this paper aimed to evaluate the effect of silicon alone and added to the borate solution applied via foliar spray on the oxidative stress; proline, carotenoid, and phenol contents; and biomass production of cotton flowers grown under moderate B deficiency. The experiment was arranged in a completely randomized design with ten replicates and the following five treatments: control (cotton plants under boron deficiency); water application (without B and Si); boron application; silicon application; and B + Si. The application of B, Si, and B + Si reduced the malondialdehyde content in cotton petals by 45%, 48%, and 59%, respectively, and in cotton anthers by57%, 64%, and 67%, respectively. The dry matter of cotton petals in the respective treatments increased by 20%, 16%, 35%, and 44%, while the dry matter of cotton anthers increased by 40%, 24%, 48%, and 53%, respectively, compared to the treatment with water only. There was a strong relationship between B content and dry matter; Si content and the contents of phenols and proline; and carotenoid content and the contents of MDA and H2O2. B deficiency can induce oxidative stress specifically in the petals and anthers of cotton, with carotenoids being the main defense mechanism in flowers, while Si is capable of strongly activating defense mechanisms from phenol and proline. In conclusion, the development of organs related to reproduction is impaired by B deficiency. In addition, the foliar application of Si and B attenuates the effects of oxidative stress on the sepals and anthers of cotton, mainly favoring the development of cotton anthers.


Assuntos
Antioxidantes , Silício , Antioxidantes/metabolismo , Silício/farmacologia , Boro/farmacologia , Gossypium/metabolismo , Peróxido de Hidrogênio/farmacologia , Fenol , Estresse Oxidativo , Flores/metabolismo , Carotenoides , Prolina/farmacologia
5.
BMC Plant Biol ; 23(1): 51, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36694112

RESUMO

BACKGROUND: C:N:P homeostasis in plants guarantees optimal levels of these nutrients in plant metabolism. H However, one of the causes to the effects of deficit irrigation is the loss of C:N:P homeostasis in leaves and stems that causes reduction in the growth of sugarcane. Being able to measure the impact of water deficit on C:N:P homeostasis in plants from the stoichiometric ratios of the concentrations of these nutrients in leaves and stems. This loss causes a decrease in nutritional efficiency, but can be mitigated with the use of silicon. Silicon favors the homeostasis of these nutrients and crop productivity. The magnitude of this benefit depends on the absorption of Si by the plant and Si availability in the soil, which varies with the type of soil used. Thus, this study aims to evaluate whether the application of Si via fertigation is efficient in increasing the absorption of Si and whether it is capable of modifying the homeostatic balance of C:N:P of the plant, causing an increase in nutritional efficiency and consequently in the production of biomass in leaves and stems of sugarcane ratoon cultivated with deficient and adequate irrigations in different tropical soils. RESULTS: Water deficit caused biological losses in concentrations and accumulation of C, N, and P, and reduced the nutrient use efficiency and biomass production of sugarcane plants cultivated in three tropical soils due to disturbances in the stoichiometric homeostasis of C:N:P. The application of Si increased the concentration and accumulation of Si, C, N, and P and their use efficiency and reduced the biological damage caused by water deficit due to the modification of homeostatic balance of C:N:P by ensuring sustainability of the production of sugarcane biomass in tropical soils. However, the intensity of attenuation of such deleterious effects stood out in plants cultivated in Eutrophic Red Oxisols. Si contributed biologically by improving the performance of sugarcane ratoon with an adequate irrigation due to the optimization of stoichiometric ratios of C:N:P; increased the accumulation and the use efficiency of C, N, and P, and promoted production gains in biomass of sugarcane in three tropical soils. CONCLUSION: Our study shows that fertigation with Si can mitigate the deleterious effects of deficient irrigation or potentiate the beneficial effects using an adequate irrigation system due to the induction of a new stoichiometric homeostasis of C:N:P, which in turn improves the nutritional efficiency of sugarcane cultivated in tropical soils.


Assuntos
Saccharum , Saccharum/metabolismo , Silício/farmacologia , Solo , Água/metabolismo , Biomassa , Grão Comestível
6.
Front Plant Sci ; 13: 949909, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35968098

RESUMO

Studies with silicon (Si) in sugarcane indicate a greater response in productivity in plants under stress, and the underlying mechanisms of Si in the crop are poorly reported. In this context, the benefits of Si in the crop's stem production are expected to occur at the C:N:P stoichiometry level in plant tissues, benefiting plants with and without stress. However, the extension of this response may vary in different soils. Thus, this research aimed to evaluate if fertigation with Si modifies the C:N:P stoichiometry and if it can increase sugarcane's nutritional efficiency and vegetative and productive parameters. Therefore, three experiments were installed using pre-sprouted seedlings to cultivate sugarcane in tropical soils belonging to the Quartzarenic Neosol, Eutrophic Red Latosol, and Dystrophic Red Latosol classes. The treatments comprised a 2 × 2 factorial scheme in each soil. The first factor was composed without water restriction (water retention = 70%; AWD) and with water restriction (water retention = 35%; PWD). The second factor presented Si concentrations (0 mM and 1.8 mM) arranged in randomized blocks with five replications. Fertigation with Si increases the Si and P concentration, the C and N efficiency, the C:N ratio, and the dry mass production. However, it decreases the C and N concentration and the C:P, C:Si, and N:P ratios in sugarcane leaves and stems regardless of the water regime adopted in the three tropical soils. Cluster and principal components analysis indicated that the intensity of the beneficial effects of Si fertigation on sugarcane plants varies depending on the cultivation soil and water conditions. We found that Si can be used in sugarcane with and without water stress. It changes the C:N:P homeostasis enough to improve the nutritional efficiency of C, P, N, and, consequently, the dry mass accumulation on the stems, with variation in the different cultivated soils.

7.
BMC Plant Biol ; 22(1): 338, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35831782

RESUMO

BACKGROUND: Boron (B) nutritional disorders, either deficiency or toxicity, may lead to an increase in reactive oxygen species production, causing damage to cells. Oxidative damage in leaves can be attenuated by supplying silicon (Si). The aim of this study was to assess the effect of increasing foliar B accumulation on cotton plants to determine whether adding Si to the spray solution promotes gains to correct deficiency and toxicity of this micronutrient by decreasing oxidative stress via synthetizing proline and glycine-betaine, thereby raising dry matter production. RESULTS: B deficiency or toxicity increased H2O2 and MDA leaf concentration in cotton plants. H2O2 and MDA leaf concentration declined, with quadratic adjustment, as a function of increased leaf B accumulation. Proline and glycine-betaine leaf concentration increased under B-deficiency and B-toxicity. In addition, production of these nonenzymatic antioxidant compounds was greater in plants under toxicity, in relation to deficient plants. Adding Si to the B spray solution reduced H2O2 and MDA concentration in the plants under nutrient deficiency or toxicity. Si reduced H2O2, primarily in B-deficient plants. Si also increased proline and glycine-betaine concentration, mainly in plants under B toxicity. Dry matter production of B-deficient cotton plants increased up to an application of 1.2 g L- 1 of B. The critical B level in the spray solution for deficiency and toxicity was observed at a concentration of 0.5 and 1.9 g L- 1 of B, respectively, in the presence of Si, and 0.4 and 1.9 g L- 1 of B without it. In addition, the presence of Si in the B solution raised dry matter production in all B concentrations evaluated in this study. CONCLUSION: Our findings demonstrated that adding Si to a B solution is important in the foliar spraying of cotton plants because it increases proline and glycine-betaine production and reduces H2O2 and MDA concentration, in addition to mitigating the oxidative stress in cotton plants under B deficiency or toxicity.


Assuntos
Antioxidantes , Silício , Betaína , Boro/toxicidade , Glicina/farmacologia , Gossypium , Peróxido de Hidrogênio , Folhas de Planta , Prolina , Silício/farmacologia
8.
Front Plant Sci ; 13: 826512, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35498639

RESUMO

Climate change has prolonged periods of water deficit in sugarcane and energy cane crops. This condition induces an imbalance of the carbon (C): nitrogen (N): phosphorus (P) stoichiometric homeostasis, impairing accumulated nutrients from being converted into biomass. Silicon (Si) supplementation can mitigate the damage caused by water deficit in plants by improving the C:N:P balance, increasing C, N, and P use efficiencies and the biomass conversion, and reducing climate change effects on crops. This study assesses the beneficial effects of Si applied through fertigation associated with foliar spraying on the alleviation of damage caused by severe water deficit in sugarcane and energy cane for intermediate and long periods. In addition, the effects in maintenance of nutritional homeostasis we assessed and C, N, and P use efficiencies on sugarcane and energy cane under those conditions were increased. Four experiments were conducted during the first growth cycle of each species. The effect of fertigation associated with Si foliar spraying was evaluated by applying Si only during the seedling formation phase in sugarcane and energy cane grown under severe water deficit for 60 days after transplanting (intermediate period). Then, the effect of Si applied during seedling formation and supplemented after transplanting was evaluated in sugarcane and energy cane grown under severe water deficit for 160 days after transplanting (long period). The Si supply decreased C contents, modified the C:N:P ratio, and increased C, N, and P use efficiencies in plants of both species under water deficit at the intermediate and long periods after transplanting. The effects of applying Si through fertigation associated with foliar spraying during seedling formation mitigated the damage caused by severe water deficit in the intermediate period, which was mainly observed in sugarcane. When supplemented with Si after transplanting, the mitigating effects occurred in both species under severe long period water deficit. Therefore, the Si supply through fertigation associated with foliar spraying is a viable alternative to provide Si to the plant. It also comes with beneficial effects that partially reverse the damage to nutritional homeostasis and increase nutritional efficiency in plants under severe water deficit.

9.
Plant Direct ; 6(4): e387, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35434473

RESUMO

Sodium uptake is a factor that determines potassium use efficiency in plants as sodium can partially replace potassium in plant cells. Rice (Oryza sativa) roots usually exclude sodium but actively take it up when the plant is deficient in potassium. In rice roots, a sodium transporter OsHKT2;1 mediates active sodium uptake. We previously revealed that variation in the expression of OsHKT2;1 underlies the variation in sodium accumulation between a low-sodium-accumulating indica cultivar, IR64, and a high-sodium-accumulating japonica cultivar, Koshihikari. In the present study, we evaluated IR64 and its near-isogenic line IR64-K carrying OsHKT2;1 and neighboring genes inherited from Koshihikari for grain yield. IR64-K had a greater average grain yield and harvest index than IR64 in a pot culture experiment with three levels of potassium fertilizer. The differences were most significant under treatment without the potassium fertilizer. IR64-K also showed a slightly higher grain yield than IR64 when grown in a paddy field without applying the potassium fertilizer. These results suggest that enhanced sodium uptake ability improves the grain yield of rice plants under low-potassium-input conditions.

10.
Biol Trace Elem Res ; 200(5): 2528-2548, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34328614

RESUMO

Selenium (Se) is an essential micronutrient for diverse organisms such as mammals, bacteria, some insects and nematodes, archaea, and algae, as it is involved in a large number of physiological and metabolic processes and is part of approximately 25 selenoproteins in mammals. In plants, Se has no essential metabolic role, high concentrations of inorganic Se can lead to the formation of Se-amino acids, and its incorporation into selenoproteins can generate toxicity. Conversely, low doses of Se can trigger a variety of beneficial effects as an antioxidant, antimicrobial, or stress-modulating agent without being an essential element. Therefore, Se can generate toxicity depending on the dose and the chemical form in which it is supplied. Selenium nanoparticles (SeNPs) have emerged as an approach to reduce this negative effect and improve its biological properties. In turn, SeNPs have a wide range of potential advantages, making them an alternative for areas such as agriculture and food technology. This review focuses on the use of SeNPs and their different applications as antimicrobial agents, growth promoters, crop biofortification, and nutraceuticals in agriculture. In addition, the utilization of SeNPs in the generation of packaging with antioxidant and antimicrobial traits and Se enrichment of animal source foods for human consumption as part of food technology is addressed. Additionally, possible action mechanisms and potential adverse effects are discussed. The concentration, size, and synthesis method of SeNPs are determining factors of their biological properties.


Assuntos
Nanopartículas , Selênio , Animais , Antioxidantes/metabolismo , Biofortificação , Tecnologia de Alimentos , Mamíferos/metabolismo , Nanopartículas/química , Plantas/metabolismo , Selênio/metabolismo , Selenoproteínas/metabolismo
11.
Plant Environ Interact ; 1(2): 152-164, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37283727

RESUMO

The growth of tea plants (Camellia sinensis L.) is promoted by the presence of aluminum (Al), a beneficial element under acidic conditions, but the influence of rhizosphere pH on this interaction is not known. To understand the mechanisms underlying the adaptation to acidic rhizosphere conditions, we evaluated ionome profiles and the effect of pH on tea growth in hydroponic culture. The optimum pH for tea growth was around pH 4.2, and growth was inferior under a pH less than 3.8 or higher than 5.0. Under the optimum pH growth and Al accumulation were markedly stimulated by Al treatment. Al content and accumulation in new and mature leaves and new roots (the predominant tissues that accumulate minerals in tea plants) gradually declined with decrease in pH, especially in new roots. Ionome profiles drastically altered Al treatment, but changes were more pronounced in new roots than in new or mature leaves and did not depend on pH. Although the uptake of most cationic minerals in new roots was decreased by Al treatment, cationic mineral contents in new and mature leaves were not decreased by Al. In contrast to other plant species, the content and accumulation of manganese, despite it being a cationic nutrient, were significantly increased by Al treatment. These results indicated that one role of Al as a beneficial element was to maintain the shoot nutrient status by effectively utilizing Al-limited elements in the roots.

12.
J Hazard Mater ; 384: 121434, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31812481

RESUMO

Tolerance level to cadmium (Cd) toxicity is generally associated with reductions of the internal Cd accumulation in living organisms. In plants, Cd exposure frequently triggers negative effects on their growth and productivity. However, an increased number of studies has reported the improved performance of some plant species (or their accessions/genotypes/varieties/cultivars/clones) to Cd exposure, despite Cd accumulation in their roots and shoots. These results indicate that plants have developed protective strategies to neutralize the side-effects from Cd toxicity or, more controversially, mechanisms that employ Cd as beneficial element. Here, we gathered information about Cd-induced hormetic effects on plants, and explored the potential mechanisms that allow them to have a better performance under Cd exposure. The promotion of plant development depends on both direct and indirect Cd-induced alterations in the metabolism of plants and their surround environment. In addition, the mechanisms behind the positive Cd-induced transgenerational effects were also discussed in the present paper.


Assuntos
Cádmio/farmacologia , Hormese , Magnoliopsida/efeitos dos fármacos , Cádmio/toxicidade , Hormese/efeitos dos fármacos , Magnoliopsida/crescimento & desenvolvimento , Magnoliopsida/metabolismo
13.
Physiol Mol Biol Plants ; 24(1): 99-114, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29398842

RESUMO

Silicon (Si) frequently accumulates in plants tissues, mainly in roots of dicotyledons, such as cowpea. By contrast, Cadmium (Cd) is a metal that is extremely toxic to plant metabolism. This research aims to investigate if the deposition of Si in root can reduce Cd contents and minimize its negative effects on leaves, measuring gas exchange, chlorophyll fluorescence, antioxidant metabolism, photosynthetic pigments and growth, which may explain the possible role of Si in the attenuation of Cd toxicity in cowpea. This study had a factorial design, with all factors completely randomized and two Cd concentrations (0 and 500 µM Cd, termed as - Cd and + Cd, respectively) and three Si concentrations (0, 1.25 and 2.50 mM Si). Si reduced Cd contents in the roots and in other plant organs, such as stems and leaves. The Si contents were highest in roots, followed by stems and leaves, which was explained by the passive absorption of Si. The application of Si promoted increase in both the macro- and micronutrient contents in all tissues, suggesting that Si mitigates the effect of Cd on nutrient uptake. Si attenuated Cd-mediated effects on light absorption of photosystem II (PSII), increasing the effective quantum yield of PSII photochemistry and the electron transport rate. Additionally, toxic effects induced by Cd on gas exchange were mitigated by the action of Si. Plants treated with Cd + Si showed increase in the activities of antioxidant enzymes and reductions in oxidant compounds; these modifications were promoted by Si via detoxification mechanisms. Increases in the photosynthetic pigments and growth of plants treated with Si and exposed to Cd stress were detected and were due to the reduced deterioration of cell membranes and maintenance of chloroplasts, which had positive repercussions on growth and development. This study validated the hypothesis that the accumulation of Si in roots induces benefits on metabolism and alleviates the toxic effects caused by Cd in leaves of cowpea.

14.
Biol Trace Elem Res ; 182(2): 387-406, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28726073

RESUMO

The use of plants in treatments has been as old as humanity and it has preserved its popularity for centuries til now because of their availability, affordability and safeness. However, despite their widespread use, safety and quality issues have been major concerns in the world due to industrial- and anthropogenic-based heavy metal contamination risks. Thus, this study was attempted to analyze the heavy metal levels and mineral nutrient status of widely used medicinal plants in Turkey to have insights about their health implications on humans. The plant concentrations of B, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb and Zn were analyzed by ICP-OES in the leaves of 44 medical plants purchased from herbal markets of three different districts of Istanbul/Turkey. The measured lowest to highest concentrations were 0.065-79.749 mg kg-1 B, 921.802-12,854.410 mg kg-1 Ca, 0.020-0.558 mg kg-1 Cd, 0.015-4.978 mg kg-1 Cr, 0.042-8.489 mg kg-1 Cu, 34.356-858.446 mg kg-1 Fe, 791.323-15,569.349 mg kg-1 K, 102.236-2837.836 mg kg-1 Mg, 4.915-91.519 mg kg-1 Mn, 10.224-3213.703 mg kg-1 Na, 0.001-5.589 mg kg-1 Ni, 0.003-3.636 mg kg-1 Pb and 2.601-36.102 mg kg-1 Zn. Those levels in plants were in acceptable limits though some elements in some plants have high limits which were not harmful. Variations (above acceptable limits) in element concentrations also indicated that these plants could be contaminated with other metals and that genetic variations may influence accumulation of these elements at different contents. Overall, analyzed medicinal plants are expected not to pose any serious threat to human health.


Assuntos
Metais Pesados/análise , Minerais/análise , Folhas de Planta/química , Monitoramento Ambiental/métodos , Humanos , Metais Pesados/metabolismo , Minerais/metabolismo , Fitoterapia/métodos , Plantas Medicinais/química , Valores de Referência , Espectrofotometria Atômica , Turquia
15.
BMC Plant Biol ; 17(1): 210, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29157202

RESUMO

BACKGROUND: Arsenic is an important contaminant of many arable soils worldwide, while silicon, one of the most abundant elements in the earth's crust, interacts with As in the context of plant metabolism. As toxicity results largely from its stimulation of reactive oxygen species, and it is believed that Si can mitigate this process through reduction of the level of oxidative stress. Experiments targeting the proteomic impact of exposure to As and Si have to date largely focused on analyses of root, shoot and seed of a range of mainly non-solanaceous species, thus it remains unclear whether oxidative stress is the most important manifestation of As toxicity in Solanum lycopersicum fruit which during ripening go through drastic physiological and molecular readjustments. The role of Si also needs to be re-evaluated. RESULTS: A comparison was drawn between the proteomic responses to As and As + Si treatments of the fruit of two tomato cultivars (cvs. Aragon and Gladis) known to contrast for their ability to take up these elements and to translocate them into fruits. Treatments were applied at the beginning of the red ripening stage, and the fruit proteomes were captured after a 14 day period of exposure. For each cultivar, a set of differentially abundant fruit proteins (from non-treated and treated plants) were isolated by 2DGE and identified using mass spectrometry. In the fruit of cv. Aragon, the As treatment reprogrammed proteins largely involved in transcription regulation (growth- regulating factor 9-like), and cell structure (actin-51), while in the cv. Gladis, the majority of differentially expressed proteins were associated with protein ubiquitination and proteolysis (E3 ubiquitin protein, and hormones (1-aminocyclopropane 1-carboxylase). CONCLUSIONS: The present experiments were intended to establish whether Si supplementation can be used to reverse the proteomic disturbance induced by the As treatment; this reprogram was only partial and more effective in the fruit of cv. Gladis than in that of cv. Aragon. Proteins responsible for the protection of the fruits' quality in the face of As-induced stress were identified. Moreover, supplementation with Si seemed to limit to a degree the accumulation of As in the tomato fruit of cv. Aragon.


Assuntos
Arsênio/farmacologia , Frutas/efeitos dos fármacos , Proteínas de Plantas/efeitos dos fármacos , Silício/farmacologia , Solanum lycopersicum/efeitos dos fármacos , Eletroforese em Gel Bidimensional , Frutas/química , Frutas/metabolismo , Solanum lycopersicum/metabolismo , Proteínas de Plantas/análise , Proteínas de Plantas/isolamento & purificação , Proteoma/efeitos dos fármacos , Proteômica
16.
Appl Biochem Biotechnol ; 181(1): 464-482, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27687587

RESUMO

The essentiality of 14 mineral elements so far have been reported in plant nutrition. Eight of these elements were known as micronutrients due to their lower concentrations in plants (usually ≤100 mg/kg/dw). However, it is still challenging to mention an exact number of plant micronutrients since some elements have not been strictly proposed yet either as essential or beneficial. Micronutrients participate in very diverse metabolic processes, including from the primary and secondary metabolism to the cell defense, and from the signal transduction to the gene regulation, energy metabolism, and hormone perception. Thus, the attempt to understand the molecular mechanism(s) behind their transport has great importance in terms of basic and applied plant sciences. Moreover, their deficiency or toxicity also caused serious disease symptoms in plants, even plant destruction if not treated, and many people around the world suffer from the plant-based dietary deficiencies or metal toxicities. In this sense, shedding some light on this issue, the 13 mineral elements (Fe, B, Cu, Mn, Mo, Si, Zn, Ni, Cl, Se, Na, Al, and Co), required by plants at trace amounts, has been reviewed with the primary focus on the transport proteins (transporters/channels) in plant roots. So, providing the compiled but extensive information about the structural and functional roles of micronutrient transport genes/proteins in plant roots.


Assuntos
Metabolismo Energético , Micronutrientes/metabolismo , Plantas/metabolismo , Oligoelementos/metabolismo , Micronutrientes/química , Doenças das Plantas , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Plantas/química , Oligoelementos/química
17.
Front Plant Sci ; 7: 730, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27303423

RESUMO

The low content of iodine (I) and selenium (Se) forms available to plants in soil is one of the main causes of their insufficient transfer in the soil-plant-consumer system. Their deficiency occurs in food in the majority of human and farm animal populations around the world. Both elements are classified as beneficial elements. However, plant response to simultaneous fertilization with I and Se has not been investigated in depth. The study (conducted in 2012-2014) included soil fertilization of carrot cv. "Kazan F1" in the following combinations: (1) Control; (2) KI; (3) KIO3; (4) Na2SeO4; (5) Na2SeO3; (6) KI+Na2SeO4; (7) KIO3+Na2SeO4; (8) KI+Na2SeO3; (9) KIO3+Na2SeO3. I and Se were applied twice: before sowing and as top-dressing in a total dose of 5 kg I⋅ha(-1) and 1 kg Se⋅ha(-1). No negative effects of I and Se fertilization were noted with respect to carrot yield. Higher accumulation and the uptake by leaves and storage roots of I and Se were obtained after the application of KI than KIO3, as well as of Na2SeO4 than Na2SeO3, respectively. Transfer factor values for leaves and roots were about a dozen times higher for Se than for I. Selenomethionine content in carrot was higher after fertilization with Na2SeO4 than with Na2SeO3. However, it was the application of Na2SeO3, KI+Na2SeO3 and KIO3+Na2SeO3 that resulted in greater evenness within the years and a higher share of Se from selenomethionine in total Se in carrot plants. Consumption of 100 g f.w. of carrots fertilized with KI+Na2SeO3 and KIO3+Na2SeO3 can supply approximately or slightly exceed 100% of the Recommended Daily Allowance for I and Se. Moreover, the molar ratio of I and Se content in carrot fertilized with KI+Na2SeO3 and KIO3+Na2SeO3 was the best among the research plots.

18.
Ciênc. rural ; 46(3): 506-512, mar. 2016. tab
Artigo em Inglês | LILACS | ID: lil-769686

RESUMO

ABSTRACT: Aluminum (Al) is highly toxic to plants, causing stress and inhibiting growth and silicon (Si) is considered beneficial for plants. This chemical element has a high affinity with Al. The aim of this study was to investigate the potential of Si to mitigate the toxic effects of Al on potato ( Solanum tuberosum L.) plants and assess whether this behavior is different among genotypes with differing degrees of sensitivity to Al. Potato plants of the genotypes SMIJ319-7 (Al-sensitive) and SMIF212-3 (Al-tolerant) were grown for fourteen days in nutrient solution (without P and pH 4.5±0.1) under exposure to combinations of Al (0 and 1.85mM) and Si (0, 0.5 and 1.0mM). After this period, shoot and roots of the two genotypes were collected to determine Al content in tissues and assess morphological parameters of root and shoot growth. Roots of both genotypes accumulated more Al than shoots and the Al-tolerant genotype accumulated more Al than the sensitive one, both in roots and in shoot. Furthermore, the presence of 0.5 and 1.0mM Si together with Al reduced the Al content in shoot in both genotypes and in roots of the Al-tolerant genotype, respectively. Si ameliorated the toxic effects of Al with regard to number of root branches and leaf number in both potato genotypes. Si has the potential to mitigate the toxic effects of Al in potato plants regardless of Al sensitivity.


RESUMO: O alumínio (Al) é altamente tóxico para as plantas, causando estresse e inibindo o crescimento e o silício (Si) é considerado benéfico para as plantas. Este elemento químico tem uma alta afinidade com o Al. O objetivo deste estudo foi investigar o potencial do Si em amenizar os efeitos tóxicos do Al sobre plantas de batata ( Solanum tuberosum L.) e avaliar se esse comportamento é diferente entre os genótipos com diferente sensibilidade ao Al. Plantas de batata dos genótipos SMIJ319-7 (sensível ao Al) e SMIF212-3 (tolerante ao Al) foram cultivadas por 14 dias em solução nutritiva (sem P e pH 4,5±0,1), sob exposição a combinações de Al (0 e 1,85mM) e Si (0; 0,5 e 1,0mM). Após esse período, parte aérea e raízes dos dois genótipos foram coletadas para determinar o conteúdo de Al nos tecidos e avaliar parâmetros morfológicos das raízes e parte aérea. Raízes de ambos os genótipos acumularam mais Al do que a parte aérea, e o genótipo tolerante ao Al acumulou mais Al do que o sensível, tanto nas raízes quanto na parte aérea. Além disso, a presença de 0,5 e 1,0mM de Si juntamente com Al reduziu o conteúdo de Al na parte aérea em ambos os genótipos e nas raízes do genótipo tolerante ao Al, respectivamente. O Si amenizou os efeitos tóxicos do Al para número de ramificações de raízes e de folhas em ambos os genótipos de batata. Si tem o potencial para amenizar os efeitos tóxicos do Al em plantas de batata, independente da sensibilidade ao Al.

19.
J Dairy Sci ; 98(8): 5125-32, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26074242

RESUMO

The aim of this trial was to study the concentration of Ti, V, As, Rb, Sr, Mo, Cd, Cs, and Pb in donkey milk and blood serum. One hundred twelve individual milk and blood serum samples were collected from 16 lactating donkeys (Martina-Franca-derived population; 6 to 12 yr old; 3 to 7 parities; average live weight 205.4kg; 32 to 58 d after foaling at the beginning of the trial) during a 3-mo-long experiment. The samples were analyzed for the aforementioned elements by inductively coupled plasma-mass spectrometry. Feedstuff and drinking water were also analyzed for the investigated elements. Data were processed by ANOVA for repeated measures. Average milk concentrations (±SD) of Ti, Rb, Sr, Mo, Cs, and Pb were 77.3 (±7.7), 339.1 (±82.1), 881.7 (±270.4), 4.5 (±1.6), 0.49 (±0.09), and 3.2 (±2.7) µg/L, respectively. More than 80% of samples were below the limit of detection for V, As, and Cd in milk and for Cd, and Pb in blood serum. The lower bound calculated for milk V, As, and Cd was 0.03µg/L for the 3 elements, the upper bound was calculated at 0.23, 0.10, and 0.31µg/L and the maximum value was observed at 0.54, 0.15, and 0.51µg/L, respectively. The average milk concentrations of Ti, Rb, Sr, Mo, and Cs were 600, 458, 346, 16, and 294%, respectively, than those of blood serum. Yet, Cs concentrations were in the same order of magnitude in milk and serum. Moderate to strong positive and significant correlation coefficients were observed between milk and blood serum concentrations for Ti, Rb, Sr, and Cs. The effect of the stage of lactation was significant for all the investigated elements in milk and blood serum, but most of the elements showed only small changes or inconsistent trends, and only the concentrations of Rb and Sr showed decreasing trends both in milk and blood serum. The relationship between milk and blood serum element concentrations indicates that the mammary gland plays a role in determining the milk concentrations of Mo, Ti, Rb, Sr, Mo, and Cs. In the current experimental conditions, in agreement with the low levels in drinking water and feedstuff, donkey milk concentration of potentially toxic elements was very low and did not raise health concerns for human consumption.


Assuntos
Oligoelementos/metabolismo , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais/análise , Equidae , Feminino , Espectrometria de Massas , Leite/química , Distribuição Aleatória , Oligoelementos/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...