Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 287
Filtrar
1.
Neurobiol Dis ; 201: 106689, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39366457

RESUMO

Beta band oscillations in the sensorimotor cortex and subcortical structures, such as the subthalamic nucleus (STN) and internal pallidum (GPi), are closely linked to motor control. Recent research suggests that low-beta (14.5-23.5 Hz) and high-beta (23.5-35 Hz) cortico-STN coherence arise through distinct networks, possibly reflecting indirect and hyperdirect pathways. In this study, we sought to probe whether low- and high-beta coherence also exhibit different functional roles in facilitating and inhibiting movement. Twenty patients with Parkinson's disease who had deep brain stimulation electrodes implanted in either STN or GPi performed a classical go/nogo task while undergoing simultaneous magnetoencephalography and local field potentials recordings. Subjects' expectations were manipulated by presenting go- and nogo-trials with varying probabilities. We identified a lateral source in the sensorimotor cortex for low-beta coherence, as well as a medial source near the supplementary motor area for high-beta coherence. Task-related coherence time courses for these two sources revealed that low-beta coherence was more strongly implicated than high-beta coherence in the performance of go-trials. Accordingly, average pre-stimulus low-beta but not high-beta coherence or spectral power correlated with overall reaction time across subjects. High-beta coherence during unexpected nogo-trials was higher compared to expected nogo-trials at a relatively long latency of 3 s after stimulus presentation. Neither low- nor high-beta coherence showed a significant correlation with patients' symptom severity at baseline assessment. While low-beta cortico-subcortical coherence appears to be related to motor output, the role of high-beta coherence requires further investigation.

2.
Brain Commun ; 6(5): fcae301, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39386091

RESUMO

Functional movement disorders are amongst the most common and disabling neurological conditions, placing a significant burden on the healthcare system. Despite the frequency and importance of functional movement disorders, our understanding of the underlying pathophysiology is limited, hindering the development of causal treatment options. Traditionally, functional movement disorders were considered as a psychiatric condition, associated with involuntary movements triggered by psychological stressors. Recent neurophysiological studies have unveiled cognitive alterations in affected individuals, suggesting that functional movement disorders might be better characterized by overarching neural principles governing cognitive functions. For instance, recent research has shown that the retrieval of stimulus-response bindings is altered in patients with functional movement disorders. Building upon these recent findings, our study delves into whether the initial integration of stimulus and response information is also disrupted in patients with functional movement disorders. To accomplish this, we reanalysed previously collected EEG data using refined analysis methods that provide insights into oscillatory activity and functional neuroanatomy associated with the integration of stimulus-response bindings. Our results demonstrate that post-movement beta synchronization (i) predicts behavioural stimulus-response binding and (ii) is significantly increased in patients with functional movement disorders compared to healthy controls. Utilizing beamformer analysis, we localized the difference effect to a cluster centred around the left supplementary motor area and the correlation effect to the right supplementary motor area. Extending beyond recent research that focused on the retrieval of stimulus-response bindings, our present findings reveal that the integration of stimulus and response information is already impaired in patients with functional movement disorders. These results uncover a phenomenon of hyperbinding between perception and action, which may represent a fundamental mechanism contributing to the movement impairments in patients with functional movement disorders.

3.
Front Neurosci ; 18: 1425527, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39371612

RESUMO

Due to the interconnected nature of the brain, changes in one region are likely to affect other structurally and functionally connected regions. Emerging evidence indicates that single-site transcranial alternating current stimulation (tACS) can modulate functional connectivity between stimulated and interconnected unstimulated brain regions. However, our understanding of the network response to tACS is incomplete. Here, we investigated the effect of beta tACS of different intensities on phase-based connectivity between the left and right primary motor cortices in 21 healthy young adults (13 female; mean age 24.30 ± 4.84 years). Participants underwent four sessions of 20 min of 20 Hz tACS of varying intensities (sham, 0.5 mA, 1.0 mA, or 1.5 mA) applied to the left primary motor cortex at rest. We recorded resting-state and event-related electroencephalography (EEG) before and after tACS, analyzing changes in sensorimotor beta (13-30 Hz) imaginary coherence (ImCoh), an index of functional connectivity. Event-related EEG captured movement-related beta activity as participants performed self-paced button presses using their right index finger. For resting-state connectivity, we observed intensity-dependent changes in beta ImCoh: sham and 0.5 mA stimulation resulted in an increase in beta ImCoh, while 1.0 mA and 1.5 mA stimulation decreased beta ImCoh. For event-related connectivity, 1.5 mA stimulation decreased broadband ImCoh (4-90 Hz) during movement execution. None of the other stimulation intensities significantly modulated event-related ImCoh during movement preparation, execution, or termination. Interestingly, changes in ImCoh during movement preparation following 1.0 mA and 1.5 mA stimulation were significantly associated with participants' pre-tACS peak beta frequency, suggesting that the alignment of stimulation frequency and peak beta frequency affected the extent of neuromodulation. Collectively, these results suggest that beta tACS applied to a single site influences connectivity within the motor network in a manner that depends on the intensity and frequency of stimulation. These findings have significant implications for both research and clinical applications.

4.
Cogn Affect Behav Neurosci ; 24(5): 839-859, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39147929

RESUMO

The value associated with reward is sensitive to external factors, such as the time between the choice and reward delivery as classically manipulated in temporal discounting tasks. Subjective preference for two reward options is dependent on objective variables of reward magnitude and reward delay. Single neuron correlates of reward value have been observed in regions, including ventral striatum, orbital, and medial prefrontal cortex. Brain imaging studies show cortico-striatal-limbic network activity related to subjective preferences. To explore how oscillatory dynamics represent reward processing across brain regions, we measured local field potentials of rats performing a temporal discounting task. Our goal was to use a data-driven approach to identify an electrophysiological marker that correlates with reward preference. We found that reward-locked oscillations at beta frequencies signaled the magnitude of reward and decayed with longer temporal delays. Electrodes in orbitofrontal/medial prefrontal cortex, anterior insula, ventral striatum, and amygdala individually increased power and were functionally connected at beta frequencies during reward outcome. Beta power during reward outcome correlated with subjective value as defined by a computational model fit to the discounting behavior. These data suggest that cortico-striatal beta oscillations are a reward signal correlated, which may represent subjective value and hold potential to serve as a biomarker and potential therapeutic target.


Assuntos
Ritmo beta , Recompensa , Animais , Masculino , Ritmo beta/fisiologia , Ratos , Desvalorização pelo Atraso/fisiologia , Córtex Pré-Frontal/fisiologia , Córtex Pré-Frontal/diagnóstico por imagem , Corpo Estriado/fisiologia , Corpo Estriado/diagnóstico por imagem , Estriado Ventral/fisiologia , Estriado Ventral/diagnóstico por imagem , Ratos Long-Evans
5.
Neurol Sci ; 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39096396

RESUMO

BACKGROUND: The blink reflex excitability, assessed through paired electrical stimuli responses, has been modulated using traditional non-invasive neurostimulation techniques. Recently, transcranial Alternating Current Stimulation (tACS) emerged as a tool to modulate brain oscillations implicated in various motor, perceptual, and cognitive functions. This study aims to investigate the influence of 20-Hz and 10-Hz tACS sessions on the primary motor cortex and their impact on blink reflex excitability. MATERIALS AND METHODS: Fifteen healthy volunteers underwent 10-min tACS sessions (intensity 1 mA) with active/reference electrodes placed over C4/Pz, delivering 20-Hz, 10-Hz, and sham stimulation. The blink reflex recovery cycle (BRrc) was assessed using the R2 amplitude ratio at various interstimulus intervals (ISIs) before (T0), immediately after (T1), and 30 min post-tACS (T2). RESULTS: Both 10-Hz and 20-Hz tACS sessions significantly increased R2 ratio at T1 (10-Hz: p = 0.02; 20-Hz: p < 0.001) and T2 (10-Hz: p = 0.01; 20-Hz: p < 0.001) compared to baseline (T0). Notably, 20-Hz tACS induced a significantly greater increase in blink reflex excitability compared to sham at both T1 (p = 0.04) and T2 (p < 0.001). CONCLUSION: This study demonstrates the modulatory effect of tACS on trigemino-facial reflex circuits, with a lasting impact on BRrc. Beta-band frequency tACS exhibited a more pronounced effect than alpha-band frequency, highlighting the influential role of beta-band oscillations in the motor cortex on blink reflex excitability modulation.

6.
Artigo em Inglês | MEDLINE | ID: mdl-39214911

RESUMO

PURPOSE: Pregnant women are particularly vulnerable to experiencing mental health difficulties, especially anxiety. Anxiety in pregnancy can be characterized as having two components: general symptomology experienced in the general population, and pregnancy-related anxiety more focused on pregnancy, delivery, and the future child. In addition, women also commonly report experiencing attentional control and self-regulation difficulties across the peripartum period. However, links between anxiety and neural and cognitive functioning in pregnancy remain unclear. The present study investigated whether anxiety is associated with neural markers of attention and self-regulation measured using electroencephalography (EEG). Specifically, we examined associations between general and pregnancy-related anxiety and (1) beta oscillations, a neural marker of attentional processing; and (2) the coupling of beta and delta oscillations, a neural marker of self-regulation, in frontal and prefrontal regions. METHODS: A sample of 135 women in the third trimester of their pregnancy completed a resting-state EEG session. RESULTS: General anxiety was associated with increased beta oscillations, in line with research in the general population, interpreted as reflecting hyperarousal. Pregnancy-related anxiety was associated with decreased beta oscillations, interpreted as reflecting inattention and mind-wandering. Moreover, pregnancy-related anxiety, but not general anxiety, was linked to stronger delta-beta coupling, suggesting anxiety specifically related to the pregnancy is associated with investing greater effort in self-regulation. CONCLUSION: Our results suggest that general and pregnancy-related anxiety may differentially relate to neural patterns underlying attention and self-regulation in pregnancy.

7.
Neurobiol Dis ; 201: 106652, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39209070

RESUMO

Defining spatial synchronisation of pathological beta oscillations is important, given that many theories linking them to parkinsonian symptoms propose a reduction in the dimensionality of the coding space within and/or across cortico-basal ganglia structures. Such spatial synchronisation could arise from a single process, with widespread entrainment of neurons to the same oscillation. Alternatively, the partially segregated structure of cortico-basal ganglia loops could provide a substrate for multiple ensembles that are independently synchronized at beta frequencies. Addressing this question requires an analytical approach that identifies groups of signals with a statistical tendency for beta synchronisation, which is unachievable using standard pairwise measures. Here, we utilized such an approach on multichannel recordings of background unit activity (BUA) in the external globus pallidus (GP) and subthalamic nucleus (STN) in parkinsonian rats. We employed an adapted version of a principle and independent component analysis-based method commonly used to define assemblies of single neurons (i.e., neurons that are synchronized over short timescales). This analysis enabled us to define whether changes in the power of beta oscillations in local ensembles of neurons (i.e., the BUA recorded from single contacts) consistently covaried over time, forming a "beta ensemble". Multiple beta ensembles were often present in single recordings and could span brain structures. Membership of a beta ensemble predicted significantly higher levels of short latency (<5 ms) synchrony in the raw BUA signal and phase synchronisation with cortical beta oscillations, suggesting that they comprised clusters of neurons that are functionally connected at multiple levels, despite sometimes being non-contiguous in space. Overall, these findings suggest that beta oscillations do not comprise of a single synchronisation process, but rather multiple independent activities that can bind both spatially contiguous and non-contiguous pools of neurons within and across structures. As previously proposed, such ensembles provide a substrate for beta oscillations to constrain the coding space of cortico-basal ganglia circuits.

8.
J Integr Neurosci ; 23(6): 114, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38940083

RESUMO

Deep brain stimulation (DBS) is a common therapy for managing Parkinson's disease (PD) in clinical practice. However, a complete understanding of its mode of action is still needed. DBS is believed to work primarily through electrical and neurochemical pathways. Furthermore, DBS has other mechanisms of action. This review explores the fundamental concepts and applications of DBS in treating PD, including its mechanisms, clinical implications, and recent research.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Doença de Parkinson/terapia , Doença de Parkinson/fisiopatologia , Humanos , Encéfalo/fisiopatologia , Animais
9.
medRxiv ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38853875

RESUMO

The left supramarginal gyrus (LSMG) may mediate attention to memory, and gauge memory state and performance. We performed a secondary analysis of 142 verbal delayed free recall experiments, in patients with medically-refractory epilepsy with electrode contacts implanted in the LSMG. In 14 of 142 experiments (in 14 of 113 patients), the cross-validated convolutional neural networks (CNNs) that used 1-dimensional(1-D) pairs of convolved high-gamma and beta tensors, derived from the LSMG recordings, could label recalled words with an area under the receiver operating curve (AUROC) of greater than 60% [range: 60-90%]. These 14 patients were distinguished by: 1) higher amplitudes of high-gamma bursts; 2) distinct electrode placement within the LSMG; and 3) superior performance compared with a CNN that used a 1-D tensor of the broadband recordings in the LSMG. In a pilot study of 7 of these patients, we also cross-validated CNNs using paired 1-D convolved high-gamma and beta tensors, from the LSMG, to: a) distinguish word encoding epochs from free recall epochs [AUC 0.6-1]; and distinguish better performance from poor performance during delayed free recall [AUC 0.5-0.86]. These experiments show that bursts of high-gamma and beta generated in the LSMG are biomarkers of verbal memory state and performance.

10.
Brain Res Bull ; 215: 111021, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38942396

RESUMO

The ability to accurately encode the temporal information of sensory events and hence to make prompt action is fundamental to humans' prompt behavioral decision-making. Here we examined the ability of ensemble coding (averaging multiple inter-intervals in a sound sequence) and subsequent immediate reproduction of target duration at half, equal, or double that of the perceived mean interval in a sensorimotor loop. With magnetoencephalography (MEG), we found that the contingent magnetic variation (CMV) in the central scalp varied as a function of the averaging tasks, with a faster rate for buildup amplitudes and shorter peak latencies in the "half" condition as compared to the "double" condition. ERD (event-related desynchronization) -to-ERS (event-related synchronization) latency was shorter in the "half" condition. A robust beta band (15-23 Hz) power suppression and recovery between the final tone and the action of key pressing was found for time reproduction. The beta modulation depth (i.e., the ERD-to-ERS power difference) was larger in motor areas than in primary auditory areas. Moreover, results of phase slope index (PSI) indicated that beta oscillations in the left supplementary motor area (SMA) led those in the right superior temporal gyrus (STG), showing SMA to STG directionality for the processing of sequential (temporal) auditory interval information. Our findings provide the first evidence to show that CMV and beta oscillations predict the coupling between perception and action in time averaging.


Assuntos
Ritmo beta , Tomada de Decisões , Magnetoencefalografia , Humanos , Magnetoencefalografia/métodos , Tomada de Decisões/fisiologia , Masculino , Feminino , Adulto , Adulto Jovem , Ritmo beta/fisiologia , Percepção Auditiva/fisiologia , Estimulação Acústica/métodos , Desempenho Psicomotor/fisiologia , Tempo de Reação/fisiologia , Percepção do Tempo/fisiologia , Mapeamento Encefálico
11.
Clin Neurophysiol ; 165: 1-15, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38941959

RESUMO

OBJECTIVE: Parkinsonian motor symptoms are linked to pathologically increased beta oscillations in the basal ganglia. Studies with externalised deep brain stimulation electrodes showed that Parkinson patients were able to rapidly gain control over these pathological basal ganglia signals through neurofeedback. Studies with fully implanted deep brain stimulation systems duplicating these promising results are required to grant transferability to daily application. METHODS: In this study, seven patients with idiopathic Parkinson's disease and one with familial Parkinson's disease were included. In a postoperative setting, beta oscillations from the subthalamic nucleus were recorded with a fully implanted deep brain stimulation system and converted to a real-time visual feedback signal. Participants were instructed to perform bidirectional neurofeedback tasks with the aim to modulate these oscillations. RESULTS: While receiving regular medication and deep brain stimulation, participants were able to significantly improve their neurofeedback ability and achieved a significant decrease of subthalamic beta power (median reduction of 31% in the final neurofeedback block). CONCLUSION: We could demonstrate that a fully implanted deep brain stimulation system can provide visual neurofeedback enabling patients with Parkinson's disease to rapidly control pathological subthalamic beta oscillations. SIGNIFICANCE: Fully-implanted DBS electrode-guided neurofeedback is feasible and can now be explored over extended timespans.


Assuntos
Ritmo beta , Estimulação Encefálica Profunda , Neurorretroalimentação , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/terapia , Doença de Parkinson/fisiopatologia , Neurorretroalimentação/métodos , Estimulação Encefálica Profunda/métodos , Estimulação Encefálica Profunda/instrumentação , Masculino , Feminino , Pessoa de Meia-Idade , Ritmo beta/fisiologia , Idoso , Núcleo Subtalâmico/fisiopatologia , Núcleo Subtalâmico/fisiologia , Eletrodos Implantados
12.
Neuroimage ; 296: 120686, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38871037

RESUMO

Centromedian nucleus (CM) is one of several intralaminar nuclei of the thalamus and is thought to be involved in consciousness, arousal, and attention. CM has been suggested to play a key role in the control of attention, by regulating the flow of information to different brain regions such as the ascending reticular system, basal ganglia, and cortex. While the neurophysiology of attention in visual and auditory systems has been studied in animal models, combined single unit and LFP recordings in human have not, to our knowledge, been reported. Here, we recorded neuronal activity in the CM nucleus in 11 patients prior to insertion of deep brain stimulation electrodes for the treatment of epilepsy while subjects performed an auditory attention task. Patients were requested to attend and count the infrequent (p = 0.2) odd or "deviant" tones, ignore the frequent standard tones and report the total number of deviant tones at trial completion. Spikes were discriminated, and LFPs were band pass filtered (5-45 Hz). Average peri­stimulus time histograms and spectra were constructed by aligning on tone onsets and statistically compared. The firing rate of CM neurons showed selective, multi-phasic responses to deviant tones in 81% of the tested neurons. Local field potential analysis showed selective beta and low gamma (13-45 Hz) modulations in response to deviant tones, also in a multi-phasic pattern. The current study demonstrates that CM neurons are under top-down control and participate in the selective processing during auditory attention and working memory. These results, taken together, implicate the CM in selective auditory attention and working memory and support a role of beta and low gamma oscillatory activity in cognitive processes. It also has potential implications for DBS therapy for epilepsy and non-motor symptoms of PD, such as apathy and other disorders of attention.


Assuntos
Atenção , Percepção Auditiva , Núcleos Intralaminares do Tálamo , Memória de Curto Prazo , Neurônios , Humanos , Atenção/fisiologia , Masculino , Feminino , Memória de Curto Prazo/fisiologia , Adulto , Percepção Auditiva/fisiologia , Núcleos Intralaminares do Tálamo/fisiologia , Pessoa de Meia-Idade , Neurônios/fisiologia , Adulto Jovem , Estimulação Acústica , Estimulação Encefálica Profunda/métodos
13.
Brain Cogn ; 178: 106177, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38749353

RESUMO

Numerous studies have explored the concept of social dominance and its implications for leadership within the behavioral and cognitive sciences in recent years. The current study aims to address the gap regarding the neural correlates of social dominance by investigating the associations between psychological measures of social dominance and neural features among a sample of leaders. Thirty healthy male volunteers engaged in a monetary gambling task while their resting-state and task-based electroencephalography data were recorded. The results revealed a positive association between social dominance and resting-state beta oscillations in central electrodes. Furthermore, a negative association was observed between social dominance and task-based reaction time as well as the amplitude of the feedback-related negativity component of the event-related potentials during the gain, but not the loss condition. These findings suggest that social dominance is associated with enhanced reward processing which has implications for social and interpersonal interactions.


Assuntos
Eletroencefalografia , Potenciais Evocados , Predomínio Social , Humanos , Masculino , Eletroencefalografia/métodos , Adulto Jovem , Potenciais Evocados/fisiologia , Adulto , Encéfalo/fisiologia , Recompensa , Tempo de Reação/fisiologia , Ritmo beta/fisiologia , Jogo de Azar
14.
Neurobiol Dis ; 197: 106529, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38740349

RESUMO

Parkinson's disease (PD) is characterized by the disruption of repetitive, concurrent and sequential motor actions due to compromised timing-functions principally located in cortex-basal ganglia (BG) circuits. Increasing evidence suggests that motor impairments in untreated PD patients are linked to an excessive synchronization of cortex-BG activity at beta frequencies (13-30 Hz). Levodopa and subthalamic nucleus deep brain stimulation (STN-DBS) suppress pathological beta-band reverberation and improve the motor symptoms in PD. Yet a dynamic tuning of beta oscillations in BG-cortical loops is fundamental for movement-timing and synchronization, and the impact of PD therapies on sensorimotor functions relying on neural transmission in the beta frequency-range remains controversial. Here, we set out to determine the differential effects of network neuromodulation through dopaminergic medication (ON and OFF levodopa) and STN-DBS (ON-DBS, OFF-DBS) on tapping synchronization and accompanying cortical activities. To this end, we conducted a rhythmic finger-tapping study with high-density EEG-recordings in 12 PD patients before and after surgery for STN-DBS and in 12 healthy controls. STN-DBS significantly ameliorated tapping parameters as frequency, amplitude and synchrony to the given auditory rhythms. Aberrant neurophysiologic signatures of sensorimotor feedback in the beta-range were found in PD patients: their neural modulation was weaker, temporally sluggish and less distributed over the right cortex in comparison to controls. Levodopa and STN-DBS boosted the dynamics of beta-band modulation over the right hemisphere, hinting to an improved timing of movements relying on tactile feedback. The strength of the post-event beta rebound over the supplementary motor area correlated significantly with the tapping asynchrony in patients, thus indexing the sensorimotor match between the external auditory pacing signals and the performed taps. PD patients showed an excessive interhemispheric coherence in the beta-frequency range during the finger-tapping task, while under DBS-ON the cortico-cortical connectivity in the beta-band was normalized. Ultimately, therapeutic DBS significantly ameliorated the auditory-motor coupling of PD patients, enhancing the electrophysiological processing of sensorimotor feedback-information related to beta-band activity, and thus allowing a more precise cued-tapping performance.


Assuntos
Ritmo beta , Sincronização Cortical , Estimulação Encefálica Profunda , Dedos , Levodopa , Córtex Motor , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/terapia , Doença de Parkinson/fisiopatologia , Masculino , Feminino , Pessoa de Meia-Idade , Estimulação Encefálica Profunda/métodos , Idoso , Ritmo beta/fisiologia , Córtex Motor/fisiopatologia , Córtex Motor/fisiologia , Sincronização Cortical/fisiologia , Levodopa/uso terapêutico , Núcleo Subtalâmico/fisiopatologia , Antiparkinsonianos/uso terapêutico , Eletroencefalografia
15.
Trends Cogn Sci ; 28(7): 662-676, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38658218

RESUMO

Beta oscillations are linked to the control of goal-directed processing of sensory information and the timing of motor output. Recent evidence demonstrates they are not sustained but organized into intermittent high-power bursts mediating timely functional inhibition. This implies there is a considerable moment-to-moment variation in the neural dynamics supporting cognition. Beta bursts thus offer new opportunities for studying how sensory inputs are selectively processed, reshaped by inhibitory cognitive operations and ultimately result in motor actions. Recent method advances reveal diversity in beta bursts that provide deeper insights into their function and the underlying neural circuit activity motifs. We propose that brain-wide, spatiotemporal patterns of beta bursting reflect various cognitive operations and that their dynamics reveal nonlinear aspects of cortical processing.


Assuntos
Ritmo beta , Encéfalo , Cognição , Humanos , Cognição/fisiologia , Ritmo beta/fisiologia , Animais , Encéfalo/fisiologia
16.
Front Neurosci ; 18: 1338624, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38449736

RESUMO

Increasing evidence suggests slow-wave sleep (SWS) dysfunction in Parkinson's disease (PD) is associated with faster disease progression, cognitive impairment, and excessive daytime sleepiness. Beta oscillations (8-35 Hz) in the basal ganglia thalamocortical (BGTC) network are thought to play a role in the development of cardinal motor signs of PD. The role cortical beta oscillations play in SWS dysfunction in the early stage of parkinsonism is not understood, however. To address this question, we used a within-subject design in a nonhuman primate (NHP) model of PD to record local field potentials from the primary motor cortex (MC) during sleep across normal and mild parkinsonian states. The MC is a critical node in the BGTC network, exhibits pathological oscillations with depletion in dopamine tone, and displays high amplitude slow oscillations during SWS. The MC is therefore an appropriate recording site to understand the neurophysiology of SWS dysfunction in parkinsonism. We observed a reduction in SWS quantity (p = 0.027) in the parkinsonian state compared to normal. The cortical delta (0.5-3 Hz) power was reduced (p = 0.038) whereas beta (8-35 Hz) power was elevated (p = 0.001) during SWS in the parkinsonian state compared to normal. Furthermore, SWS quantity positively correlated with delta power (r = 0.43, p = 0.037) and negatively correlated with beta power (r = -0.65, p < 0.001). Our findings support excessive beta oscillations as a mechanism for SWS dysfunction in mild parkinsonism and could inform the development of neuromodulation therapies for enhancing SWS in people with PD.

17.
eNeuro ; 11(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490743

RESUMO

Research into the role of brain oscillations in basic perceptual and cognitive functions has suggested that the alpha rhythm reflects functional inhibition while the beta rhythm reflects neural ensemble (re)activation. However, little is known regarding the generalization of these proposed fundamental operations to linguistic processes, such as speech comprehension and production. Here, we recorded magnetoencephalography in participants performing a novel rule-switching paradigm. Specifically, Dutch native speakers had to produce an alternative exemplar from the same category or a feature of a given target word embedded in spoken sentences (e.g., for the word "tuna", an exemplar from the same category-"seafood"-would be "shrimp", and a feature would be "pink"). A cue indicated the task rule-exemplar or feature-either before (pre-cue) or after (retro-cue) listening to the sentence. Alpha power during the working memory delay was lower for retro-cue compared with that for pre-cue in the left hemispheric language-related regions. Critically, alpha power negatively correlated with reaction times, suggestive of alpha facilitating task performance by regulating inhibition in regions linked to lexical retrieval. Furthermore, we observed a different spatiotemporal pattern of beta activity for exemplars versus features in the right temporoparietal regions, in line with the proposed role of beta in recruiting neural networks for the encoding of distinct categories. Overall, our study provides evidence for the generalizability of the role of alpha and beta oscillations from perceptual to more "complex, linguistic processes" and offers a novel task to investigate links between rule-switching, working memory, and word production.


Assuntos
Encéfalo , Idioma , Humanos , Encéfalo/fisiologia , Magnetoencefalografia , Compreensão/fisiologia , Linguística , Ritmo alfa/fisiologia
18.
Neuroimage ; 290: 120572, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38490584

RESUMO

Inhibitory control has been linked to beta oscillations in the fronto-basal ganglia network. Here we aim to investigate the functional role of the phase of this oscillatory beta rhythm for successful motor inhibition. We applied 20 Hz transcranial alternating current stimulation (tACS) to the pre-supplementary motor area (pre-SMA) while presenting stop signals at 4 (Experiment 1) and 8 (Experiment 2) equidistant phases of the tACS entrained beta oscillations. Participants showed better inhibitory performance when stop signals were presented at the trough of the beta oscillation whereas their inhibitory control performance decreased with stop signals being presented at the oscillatory beta peak. These results are consistent with the communication through coherence theory, in which postsynaptic effects are thought to be greater when an input arrives at an optimal phase within the oscillatory cycle of the target neuronal population. The current study provides mechanistic insights into the neural communication principles underlying successful motor inhibition and may have implications for phase-specific interventions aimed at treating inhibitory control disorders such as PD or OCD.


Assuntos
Córtex Motor , Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Córtex Motor/fisiologia , Inibição Psicológica , Ritmo beta/fisiologia , Transmissão Sináptica
19.
Brain Res Bull ; 209: 110911, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432496

RESUMO

Bradykinesia, a debilitating symptom characterized by impaired movement initiation and reduced speed in Parkinson's disease (PD), is associated with abnormal oscillatory activity in the motor cortex-basal ganglia circuit. We investigated the interplay between abnormal beta and gamma oscillations in relation to bradykinesia in parkinsonian rats. Our findings showed reduced movement activities in parkinsonian rats, accompanied by enhanced high beta oscillations in the motor cortex, which are closely associated with movement transitional difficulties. Additionally, gamma oscillations correlated with movement velocity in control rats but not in parkinsonian rats. We observed selective coupling between high beta oscillation phase and gamma oscillation amplitude in PD, as well as cortical high beta-broadband gamma phase-amplitude coupling (PAC) negatively influencing locomotor activities in control and PD rats. These findings suggest a collaborative role of cortical beta and gamma oscillations in facilitating movement execution, with beta oscillations being linked to movement initiation and gamma oscillations associated with movement speed. Importantly, the aberrant alterations of these oscillations are closely related to the development of bradykinesia. Furthermore, PAC hold promise as a biomarker for comprehensive assessment of movement performance in PD.


Assuntos
Córtex Motor , Doença de Parkinson , Ratos , Animais , Hipocinesia , Gânglios da Base , Movimento , Ritmo beta
20.
Brain Stimul ; 17(2): 197-201, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38341176

RESUMO

BACKGROUND: Deep brain stimulation (DBS) of the thalamus can effectively reduce tics in severely affected patients with Tourette syndrome (TS). Its effect on cortical oscillatory activity is currently unknown. OBJECTIVE: We assessed whether DBS modulates beta activity at fronto-central electrodes. We explored concurrent EEG sources and probabilistic stimulation maps. METHODS: Resting state EEG of TS patients treated with thalamic DBS was recorded in repeated DBS-on and DBS-off states. A mixed linear model was employed for statistical evaluation. EEG sources were estimated with eLORETA. Thalamic probabilistic stimulation maps were obtained by assigning beta power difference scores (DBS-on minus DBS-off) to stimulation sites. RESULTS: We observed increased beta power in DBS-on compared to DBS-off states. Modulation of cortical beta activity was localized to the midcingulate cortex. Beta modulation was more pronounced when stimulating the thalamus posteriorly, peaking in the ventral posterior nucleus. CONCLUSION: Thalamic DBS in TS patients modulates beta frequency oscillations presumably important for sensorimotor function and relevant to TS pathophysiology.


Assuntos
Ritmo beta , Estimulação Encefálica Profunda , Tálamo , Síndrome de Tourette , Humanos , Síndrome de Tourette/terapia , Síndrome de Tourette/fisiopatologia , Estimulação Encefálica Profunda/métodos , Masculino , Tálamo/fisiopatologia , Tálamo/fisiologia , Adulto , Ritmo beta/fisiologia , Feminino , Eletroencefalografia , Adulto Jovem , Córtex Cerebral/fisiopatologia , Córtex Cerebral/fisiologia , Pessoa de Meia-Idade , Adolescente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA