Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.616
Filtrar
1.
Front Chem ; 12: 1425867, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39086986

RESUMO

BAR502, a bile acid analogue, is active as dual FXR/GPBAR1 agonist and represents a promising lead for the treatment of cholestasis and NASH. In this paper we report the synthesis and the biological evaluation of a library of hybrid compounds prepared by combining, through high-yield condensation reaction, some fibrates with BAR502.The activity of the new conjugates was evaluated towards FXR, GPBAR1 and PPARα receptors, employing transactivation or cofactor recruitment assays. Compound 1 resulted as the most promising of the series and was subjected to further pharmacological investigation, together with stability evaluation and cell permeation assessment. We have proved by LCMS analysis that compound 1 is hydrolyzed in mice releasing clofibric acid and BAR505, the oxidized metabolite of BAR502, endowed with retained dual FXR/GPBAR1 activity.

2.
Mol Nutr Food Res ; : e2400274, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39091068

RESUMO

SCOPE: This study aims to identify the gut enterotypes that explain differential responses to intervention with whole grain rye by proposing an "enterotype - metabolic" model. METHODS AND RESULTS: A 12-week randomized controlled trial is conducted in Chinese adults, with 79 subjects consuming whole grain products with fermented rye bran (FRB) and 77 consuming refined wheat products in this exploratory post-hoc analysis. Responders or non-responders are identified according to whether blood glucose decreased by more than 10% after rye intervention. Compared to non-responders, responders in FRB have higher baseline Bacteroides (p < 0.001), associated with reduced blood glucose (p < 0.001), increased Faecalibacterium (p = 0.020) and Erysipelotrichaceae_UCG.003 (p = 0.022), as well as deceased 7ß-hydroxysteroid dehydrogenase (p = 0.033) after intervention. The differentiated gut microbiota and metabolites between responders and non-responders after intervention are enriched in aminoacyl-tRNA biosynthesis. CONCLUSION: The work confirms the previously suggested importance of microbial enterotypes in differential responses to whole grain interventions and supports taking enterotypes into consideration for improved efficacy of whole grain intervention for preventing type 2 diabetes. Altered short-chain fatty acids and bile acid metabolism might be a potential mediator for the beneficial effects of whole grain rye on glucose metabolism.

3.
J Lipid Res ; : 100616, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39111549

RESUMO

Progressive familial intrahepatic cholestasis (PFIC) is a liver disease that occurs during childhood and requires liver transplantation. ABCB4 is localized along the canalicular membranes of hepatocytes, transports phosphatidylcholine into bile, and its mutation causes PFIC3. Abcb4 gene-deficient mice established as animal models of PFIC3 exhibit cholestasis-induced liver injury. However, their phenotypes are often milder than those of human PFIC3, partly because of the existence of large amounts of less toxic hydrophilic bile acids synthesized by the rodent-specific enzymes Cyp2c70 and Cyp2a12. Mice with double deletions of Cyp2c70/Cyp2a12 (CYPDKO mice) have a human-like hydrophobic bile acid composition. PFIC-related gene mutations were induced in CYPDKO mice to determine whether these triple-gene-deficient mice are a better model for PFIC. To establish a PFIC3 mouse model using CYPDKO mice, we induced abcb4 gene deletion in vivo using adeno-associated viruses expressing SaCas9 under the control of a liver-specific promoter and abcb4-target gRNAs. Compared to Abcb4-deficient wild-type mice, Abcb4-deficient CYPDKO mice showed more pronounced liver injury along with an elevation of inflammatory and fibrotic markers. The proliferation of intrahepatic bile ductal cells and hematopoietic cell infiltration were also observed. CYPDKO/abcb4-deficient mice show a predominance of taurine-conjugated chenodeoxycholic acid and lithocholic acid in the liver. In addition, phospholipid levels in the gallbladder bile were barely detectable. Mice with human-like bile acids exhibit severe cholestatic liver injury when Abcb4 is knocked down using genome editing technology. This mouse model is useful for studying human cholestatic diseases and developing new treatments.

4.
Int J Biol Macromol ; 277(Pt 4): 134607, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39127294

RESUMO

Cordyceps guangdongensis, a novel edible mushroom in China, has shown many positive health effects. In this study, we extracted the C. guangdongensis polysaccharides (CGP) from the fruiting bodies, and investigated the mechanism for CGP improved high-fat diet-induced (HFDI) metabolic diseases. We found that CGP notably reduced fat mass, improved blood lipid levels and hepatic damage, and restored the gut microbiota dysbiosis induced by high-fat diet (HFD). Metabolome analyses showed that CGP changed the composition of bile acids, and regulated HFDI metabolic disorder in hepatic tissue. Transcriptome comparison showed that the improvement of hepatic steatosis for CGP was mainly related to lipid and carbohydrate metabolism. Association analysis result revealed that Odoribacter, Bifidobacterium and Bi. pseudolongum were negatively correlated to fat and blood lipid indicators, and were significantly associated with genes and metabolites related to carbohydrate and lipid metabolism. Collectively, these results indicate that CGP may be a promising supplement for the treatment of obesity and related metabolic diseases.

5.
J Clin Transl Hepatol ; 12(8): 701-712, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39130625

RESUMO

Background and Aims: Organic anion-transporting polypeptides (OATPs) play a crucial role in the transport of bile acids and bilirubin. In our previous study, interleukin 6 (IL-6) reduced OATP1B3 levels in cholestatic disease. However, it remains unclear whether IL-6 inhibits OATP1B1 expression in cholestatic diseases. This study aimed to investigate whether IL-6 can inhibit OATP1B1 expression and explore the underlying mechanisms. Methods: The effect of stimulator of interferon genes (STING) signaling on inflammatory factors was investigated in a cholestatic mouse model using RT-qPCR and enzyme-linked immunosorbent assay. To assess the impact of inflammatory factors on OATP1B1 expression in hepatocellular carcinoma, we analyzed OATP1B1 expression by RT-qPCR and Western Blot after treating PLC/PRF/5 cells with TNF-α, IL-1ß, and IL-6. To elucidate the mechanism by which IL-6 inhibits OATP1B1 expression, we examined the expression of the OATP1B1 regulator TCF4 in PLC/PRF/5 and HepG2 cells using RT-qPCR and Western Blot. The interaction mechanism between ß-catenin/TCF4 and OATP1B1 was investigated by knocking down ß-catenin/TCF4 through siRNA transfection. Results: The STING inhibitor decreased inflammatory factor levels in the cholestatic mouse model, with IL-6 exhibiting the most potent inhibitory effect on OATP1B1. IL-6 downregulated ß-catenin/TCF4, leading to decreased OATP1B1 expression. Knocking-down ß-catenin/TCF4 counteracted the ß-catenin/TCF4-mediated repression of OATP1B1. Conclusions: STING-mediated IL-6 up-regulation may inhibit OATP1B1, leading to reduced transport of bile acids and bilirubin by OATP1B1. This may contribute to altered pharmacokinetics in patients with diseases associated with increased IL-6 production.

6.
Foods ; 13(15)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39123636

RESUMO

BACKGROUND: Coffee leaves are a major source of bioactive components and are used as ethnomedicine. However, despite their traditional medicinal use, information about their effects on antihyperlipidemia remains limited. METHODS: The aims of this study were to evaluate the main components of leaf extracts from Arabica and Robusta coffees and to examine the potential of these coffee leaves in reducing lipid digestion and absorption in vitro. RESULTS: Coffee leaf extracts from Arabica coffee contain a high amount of caffeine, whereas extracts from Robusta coffee contain high amounts of chlorogenic acid (CGA) and caffeine. Additionally, leaf extracts from Arabica and Robusta coffee demonstrated the inhibition of pancreatic lipase, decreased micellar cholesterol solubility, and reduced bile acid binding. Furthermore, these extracts resulted in a reduction in cholesterol uptake in Caco-2 cells. Molecular docking experiments supported this discovery, showing CGA and caffeine binding to Niemann-Pick C1-like 1 (NPC1L1), a key protein in cholesterol absorption. The results indicated that CGA and caffeine can competitively bind to NPC1L1 at the cholesterol binding pocket, reducing its cholesterol binding rate. These findings suggest that coffee leaves might help suppress lipid absorption and digestion, highlighting their potential use in preventing and treating hyperlipidemia.

7.
J Nutr ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39128547

RESUMO

BACKGROUND: Prior researches have highlighted inverse associations between levels of circulating very-long chain saturated fatty acids (VLCSFAs) and coronary heart disease (CHD). However, the intricate links involving VLCSFAs, gut microbiota, and bile acids remain underexplored. OBJECTIVE: This study examined the association of erythrocyte VLCSFAs with CHD incidence, focusing on the mediating role of gut microbiota and fecal bile acids. METHODS: This 10-year prospective study included 2383 participants without CHD at baseline. Erythrocyte VLCSFAs (arachidic acid [C20:0], behenic acid [C22:0], and lignoceric acid [C24:0]) were measured using gas chromatography at baseline and 274 CHD incidents were documented in triennial follow-ups. Gut microbiota in 1744 participants and fecal bile acid metabolites in 945 participants were analyzed using 16S rRNA sequencing and UPLC-MS/MS at middle-term. RESULTS: The multivariable-adjusted HRs (95%CI) for CHD incidence in highest vs. lowest quartiles were 0.87 (0.61, 1.25) for C20:0, 0.63 (0.42,0.96) for C22:0, 0.59 (0.41,0.85) for C24:0, and 0.57 (0.39, 0.83) for total VLCSFAs. Participants with higher total VLCSFA levels exhibited increased abundances of Holdemanella, Coriobacteriales Incertae Sedis spp., Ruminococcaceae UCG-005 and UCG-010, and Lachnospiraceae ND3007 group. These five genera generated microbial score (ODMS) that accounted for 11.52% of the total VLCSFAs-CHD association (Pmediation =0.018). Bile acids tauro_α_ and tauro_ß_muricholic acid (T_α_ and T_ß_MCA) were inversely associated with ODMS and positively associated with incident CHD. Opposite associations were found for glycolithocholic acid (GLCA), glycodeoxycholic acid (GDCA). Mediation analyses indicated that GLCA, GDCA, and T_α_ and T_ß_MCA explained 56.40%, 35.19%, and 26.17% of the ODMS-CHD association, respectively (Pmediation =0.002, 0.008, and 0.020). CONCLUSIONS: Elevated erythrocyte VLCSFAs are inversely associated with CHD risk in the Chinese population, with gut microbiota and fecal bile acid profiles potentially mediating this association. The identified microbiota and bile acid metabolites may serve as potential intervention targets in future studies. CLINICAL TRIAL REGISTRY NUMBER: NCT03179657.

9.
Cells ; 13(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39120326

RESUMO

Cholestatic liver diseases, including primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC), result from an impairment of bile flow that leads to the hepatic retention of bile acids, causing liver injury. Until recently, the only approved treatments for PBC were ursodeoxycholic acid (UDCA) and obeticholic acid (OCA). While these therapies slow the progression of PBC in the early stage of the disease, approximately 40% of patients respond incompletely to UDCA, and advanced cases do not respond. UDCA does not improve survival in patients with PSC, and patients often have dose-limiting pruritus reactions to OCA. Left untreated, these diseases can progress to fibrosis and cirrhosis, resulting in liver failure and the need for transplantation. These shortcomings emphasize the urgent need for alternative treatment strategies. Recently, nuclear hormone receptors have been explored as pharmacological targets for adjunct therapy because they regulate enzymes involved in bile acid metabolism and detoxification. In particular, the peroxisome proliferator-activated receptor (PPAR) has emerged as a therapeutic target for patients with PBC or PSC who experience an incomplete response to UDCA. PPARα is predominantly expressed in the liver, and it plays an essential role in the regulation of cytochrome P450 (CYP) and uridine 5'-diphospho-glucuronosyltransferase (UGT) enzymes, both of which are critical enzyme families involved in the regulation of bile acid metabolism and glucuronidation, respectively. Importantly, PPARα agonists, e.g., fenofibrate, have shown therapeutic benefits in reducing elevated markers of cholestasis in patients with PBC and PSC, and elafibranor, the first PPAR (dual α, ß/δ) agonist, has been FDA-approved for the second-line treatment of PBC. Additionally, newer PPAR agonists that target various PPAR isoforms (ß/δ, γ) are under development as an adjunct therapy for PBC or PSC, although their impact on glucuronidation pathways are less characterized. This review will focus on PPAR-mediated bile acid glucuronidation as a therapeutic pathway to improve outcomes for patients with PBC and PSC.


Assuntos
Ácidos e Sais Biliares , Humanos , Ácidos e Sais Biliares/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/agonistas , Colestase/metabolismo , Colestase/tratamento farmacológico , Animais , Cirrose Hepática Biliar/metabolismo , Cirrose Hepática Biliar/tratamento farmacológico , Colangite Esclerosante/tratamento farmacológico , Colangite Esclerosante/metabolismo
10.
J Anim Sci Biotechnol ; 15(1): 113, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39135090

RESUMO

BACKGROUND: High-fat diets (HFD) are known to enhance feed conversion ratio in broiler chickens, yet they can also result in hepatic fat accumulation. Bile acids (BAs) and gut microbiota also play key roles in the formation of fatty liver. In this study, our objective was to elucidate the mechanisms through which BA supplementation reduces hepatic fat deposition in broiler chickens, with a focus on the involvement of gut microbiota and liver BA composition. RESULTS: Newly hatched broiler chickens were allocated to either a low-fat diet (LFD) or HFD, supplemented with or without BAs, and subsequently assessed their impacts on gut microbiota, hepatic lipid metabolism, and hepatic BA composition. Our findings showed that BA supplementation significantly reduced plasma and liver tissue triglyceride (TG) levels in 42-day-old broiler chickens (P < 0.05), concurrently with a significant decrease in the expression levels of fatty acid synthase (FAS) in liver tissue (P < 0.05). These results suggest that BA supplementation effectively diminishes hepatic fat deposition. Under the LFD, BAs supplementation increased the BA content and ratio of Non 12-OH BAs/12-OH BAs in the liver and increased the Akkermansia abundance in cecum. Under the HFD, BA supplementation decreased the BAs and increased the relative abundances of chenodeoxycholic acid (CDCA) and cholic acid (CA) in hepatic tissue, while the relative abundances of Bacteroides were dramatically reduced and the Bifidobacterium, Escherichia, and Lactobacillus were increased in cecum. Correlation analyses showed a significant positive correlation between the Akkermansia abundance and Non 12-OH BA content under the LFD, and presented a significant negative correlation between the Bacteroides abundance and CA or CDCA content under the HFD. CONCLUSIONS: The results indicate that supplementation of BAs in both LFD and HFD may ameliorate hepatic fat deposition in broiler chickens with the involvement of differentiated microbiota-bile acid profile pathways.

11.
Clin Chem Lab Med ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39097844

RESUMO

OBJECTIVES: 7α-Hydroxy-4-cholesten-3-one (C4) is the common intermediary of both primary bile acids. C4 is recommended by the British Society of Gastroenterology for the investigation of bile acid diarrhoea (BAD) in patients with chronic diarrhoea. This project aimed to develop and validate an assay to quantitate C4 in serum and assess the stability of C4 in unseparated blood. METHODS: Accuracy was underpinned by calibrating to quantitative nuclear magnetic resonance analysis. C4 was analysed in a 96-well plate format with a deuterated C4 internal standard and liquid-liquid extraction. Validation followed the 2018 Food and Drug Administration guidelines. To assess C4 stability, healthy volunteers (n=12) donated 8 fasted samples each. Samples were incubated at 20 °C for up to 72 h and retrieved, centrifuged, aliquoted and frozen for storage at different time points prior to C4 analysis. RESULTS: The C4 method demonstrated excellent analytical performance and passed all validation criteria. The method was found to be accurate, precise, free from matrix effects and interference. After 72 h of delayed sample separation, C4 concentration gradually declined by up to 14 % from baseline. However, the change was not significant for up to 12 h. CONCLUSIONS: We present a robust method of analysing serum C4, offering a convenient alternative to 75SeHCAT for BAD investigation. C4 was found to decline in unseparated blood over time; however, after 12 h the mean change was <5 % from baseline. Our results suggest C4 is suitable for collection from both primary and secondary care prior to gastroenterology referral.

12.
Heliyon ; 10(14): e34349, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39104498

RESUMO

Inflammatory bowel disease (IBD) is a refractory disease with immune abnormalities and pathological changes. Intestinal macrophages are considered to be the main factor in establishing and maintaining intestinal homeostasis. The immunoregulatory and anti-inflammatory activity of fibrinogen-like protein 2 (FGL2) can regulate macrophage polarization. However, its function in IBD is unclear. In this study, we explored the effect of FGL2 on macrophage polarization, autophagy, and apoptosis in bone marrow-derived macrophages (BMDMs) treated with lipopolysaccharide (LPS) and further investigated changes in the intestinal barrier, flora, and bile acid in dextran sodium sulfate (DSS)-treated mice. Our results demonstrated that FGL2-/- weakened ERK signaling to promote M1 polarization and upregulate inflammation, autophagy, and apoptosis in LPS-stimulated BMDMs. rFGL2 treatment reversed these effects. FGL2-/- mice exhibited higher sensitivity to DSS exposure, with faster body weight loss, shorter colon lengths, and higher disease activity index (DAI) values. rFGL2 treatment protected against experimental ulcerative colitis (UC), restrained excessive autophagy, apoptosis, and improved gut barrier impairment. Gut microbiota structure and bile acid homeostasis were more unbalanced in FGL2-/- DSS mice than in wild-type (WT) DSS mice. rFGL2 treatment improved gut microbiota structure and bile acid homeostasis. Altogether, our results established that FGL2 is a potential therapeutic target for IBD.

13.
Heliyon ; 10(14): e34352, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39114032

RESUMO

The bile acids (BA) in the intestine promote inflammation by interacting with immune cells, playing a crucial role in the progression of UC, but the specific mechanism between the two remains elusive. This study aims to explore the relationship between BAMand UC inflammation and determine its potential mechanisms.Firstly, we employed a hybrid approach using Lasso regression and support vector machine (SVM) feature selection in bioinformatics to identify genes linked to UC and BAM. The relationship between these genes and immune infiltration was explored, along with their correlation with immune factors in the Tumor-Immune System Interaction Database (TISIDB) database. Gene Set Enrichment Analysis (GSEA) pathway enrichment analysis was then used to predict signaling pathways associated with key genes in UC. Single-cell data from the GSE13464 dataset was also analyzed. Finally, Five differentially expressed genes (DEGs) related to BAM (APOA1, AMACR, PEX19, CH25H, and AQP9) were significantly upregulated/downregulated in UC immune cells. The expression of important genes in UC tissue was confirmed in the experimental validation section and AQP9, which showed significant differential expression, was chosen for further validation. The results showed that the AQP9 gene may regulate the IFN - γ/JAK signaling axis, thereby promoting CD8+T cell activation. This research has greatly advanced our comprehension of the pathogenesis and underlying mechanism of BAM in immune cells linked to UC.

14.
Front Endocrinol (Lausanne) ; 15: 1430720, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39076513

RESUMO

Background: Bile acids (BAs), products of gut microbiota metabolism, have long been implicated in atherosclerotic disease pathogenesis. Characterizing the serum bile acid profile and exploring its potential role in carotid atherosclerosis (CAS) development are crucial tasks. Methods: In this study, we recruited 73 patients with CAS as the disease group and 77 healthy individuals as the control group. We systematically measured the serum concentrations of 15 bile acids using ultrahigh-performance liquid chromatography-mass spectrometry (UPLC-MS/MS). Multivariate logistic regression and least absolute shrinkage and selection operator (LASSO) regression were applied to analyze the impact of bile acids on the disease and select the key BAs. The possible molecular mechanism was elucidated by network pharmacology. Results: (1) The BA profile of patients with CAS significantly differed. (2) Multifactorial logistic regression analysis identified elevated levels of GCDCA (OR: 1.01, P < 0.001), DCA (OR: 1.01, P = 0.005), and TDCA (OR: 1.05, P = 0.002) as independent risk factors for CAS development. Conversely, GCA (OR: 0.99, P = 0.020), LCA (OR: 0.83, P = 0.002), and GUDCA (OR: 0.99, P = 0.003) were associated with protective effects against the disease. GCA, DCA, LCA, and TDCA were identified as the four key BAs. (3) TNF, FXR, GPBAR1, ESR1 and ACE were predicted to be targets of BAs against AS. These four BAs potentially impact AS progression by triggering signaling pathways, including cAMP, PPAR, and PI3K-AKT pathways, via their targets. Conclusion: This study offers valuable insights into potential therapeutic strategies for atherosclerosis that target bile acids.


Assuntos
Ácidos e Sais Biliares , Doenças das Artérias Carótidas , Metabolômica , Farmacologia em Rede , Humanos , Ácidos e Sais Biliares/metabolismo , Ácidos e Sais Biliares/sangue , Masculino , Feminino , Doenças das Artérias Carótidas/metabolismo , Doenças das Artérias Carótidas/tratamento farmacológico , Doenças das Artérias Carótidas/sangue , Pessoa de Meia-Idade , Metabolômica/métodos , Idoso , Estudos de Casos e Controles , Biomarcadores/sangue , Receptores Acoplados a Proteínas G/metabolismo , Espectrometria de Massas em Tandem
15.
J Biol Chem ; : 107613, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39079629

RESUMO

Shigella spp. are highly pathogenic members of the Enterobacteriaceae family, causing ∼269 million cases of bacillary dysentery and >200,000 deaths each year. Like many Gram-negative pathogens, Shigella rely on their type three secretion system (T3SS) to inject effector proteins into eukaryotic host cells, driving both cellular invasion and evasion of host immune responses. Exposure to the bile salt deoxycholate (DOC) significantly enhances Shigella virulence and is proposed to serve as a critical environmental signal present in the small intestine that prepares Shigella's T3SS for efficient infection of the colonic epithelium. Here, we uncover critical mechanistic details of the Shigella-specific DOC signaling process by describing the role of a π-helix secondary structure element within the T3SS tip protein IpaD. Biophysical characterization and high-resolution structures of IpaD mutants lacking the π-helix show that it is not required for global protein structure, but that it defines the native DOC binding site and prevents off target interactions. Additionally, Shigella strains expressing the π-helix deletion mutants illustrate the pathogenic importance of its role in guiding DOC interaction as flow cytometry and gentamycin protection assays show that the IpaD π-helix is essential for DOC-mediated apparatus maturation and enhanced invasion of eukaryotic cells. Together, these findings add to our understanding of the complex Shigella pathogenesis pathway and its evolution to respond to environmental bile salts by identifying the π-helix in IpaD as a critical structural element required for translating DOC exposure to virulence enhancement.

16.
Platelets ; 35(1): 2322733, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38968449

RESUMO

Liver failure and cirrhosis are characterized by abnormal hemostasis with aberrant platelet activation. In particular, the consequences of cholestatic liver disease and molecular mechanisms, including the role of bile acids leading to impaired platelet responses, are not well understood. Here, we demonstrate that bile acids inhibit human and murine platelet activation, adhesion and spreading, leading to reduced thrombus formation under flow conditions. We identified the G-protein coupled receptor TGR5 in platelets and provide support for its role as mediator of bile acid-induced impairment of platelet activation. In the liver, TGR5 couples to Gαs proteins, activates the adenylate cyclase to induce a transient cAMP rise and stimulates the MAPK signaling pathway to regulate cholangiocyte proliferation, hepatocyte survival and inflammation. In this report, we demonstrate that the genetic deficiency of TGR5 in mice led to enhanced platelet activation and thrombus formation, suggesting that TGR5 plays an important role in hemostasis. Mechanistically, platelet inhibition is achieved by TGR5 mediated PKA activation and modulation of AKT and ERK1/2 phosphorylation. Thus, this report provides evidence for the ability of TGR5 ligands to reduce platelet activation and identifies TGR5 agonism as a new target for the prevention of cardiovascular diseases.


What is the context? Liver failure or cirrhosis are related to impaired hemostasis and a role of bile acids in impaired platelet responses is known but only less understood.Platelets express the bile acid receptor FXR. Ligand binding to the FXR on platelets causes a shift in platelet reactivity and is atheroprotective suggesting that the FXR is a potential target for the prevention of atherothrombotic diseases.What is new? Treatment of murine and human blood with bile acids in low molecular quantity led to reduced platelet activation, adhesion and thrombus formation.The bile acid receptor TGR5 was identified on human and murine platelets.TGR5 plays an important role in hemostasis because TGR5 deficient mice showed elevated platelet reactivity and enhanced thrombus formation.Loss of TGR5 led to enhanced PKA activation and modulated the phosphorylation of MAPK such as AKT and ERK1/2.What is the impact? Impairment of platelet activation by bile acids is mediated by TGR5 via the protein kinase A signaling pathway.Our findings provide evidence for the modulation of TGR5 activation as a potential new target of both, anti-platelet therapy in cardiovascular diseases and the restoration of hemostasis upon liver injury.


Assuntos
Ativação Plaquetária , Receptores Acoplados a Proteínas G , Trombose , Receptores Acoplados a Proteínas G/metabolismo , Animais , Camundongos , Humanos , Ativação Plaquetária/efeitos dos fármacos , Trombose/metabolismo , Plaquetas/metabolismo , Ácidos e Sais Biliares/metabolismo , Camundongos Knockout , Transdução de Sinais
17.
Eur J Intern Med ; 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39069430

RESUMO

Bile acid malabsorption (BAM) is an important disorder of digestive pathophysiology as it generates chronic diarrhoea. This condition originates from intricate pathways involving bile acid synthesis and metabolism in the liver and gut, the composition of gut microbiota, enterohepatic circulation and key receptors as farnesoid X receptor (FXR), fibroblast growth factor receptor 4 (FGFR4), and the G-protein bile acid receptor-1 (GPBAR-1). Although symptoms can resemble those related to disorders of gut brain interaction, accurate diagnosis of BAM may greatly benefit the patient. The empiric diagnosis of BAM is primarily based on the clinical response to bile acid sequestrants. Specific tests including the 48-hour fecal bile acid test, serum levels of 7α-hydroxy-4-cholesten-3-one (C4) and fibroblast growth factor 19 (FGF19), and the 75Selenium HomotauroCholic Acid Test (SeHCAT) are not widely available. Nevertheless, lack of diagnostic standardization of BAM may account for poor recognition and delayed management. Beyond bile acid sequestrants, therapeutic approaches include the use of FXR agonists, FGF19 analogues, glucagon-like peptide-1 (GLP-1) receptor agonists, and microbiota modulation. These novel agents can best make their foray into the therapeutic armamentarium if BAM does not remain a diagnosis of exclusion. Ignoring BAM as a specific condition may continue to contribute to increased healthcare costs and reduced quality of life. Here, we aim to provide a comprehensive review of the pathophysiology, diagnosis, and management of BAM.

18.
Metabolites ; 14(7)2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39057717

RESUMO

Huntington's disease (HD) is characterized by progressive involuntary chorea movements and cognitive decline. Recent research indicates that metabolic disturbance may play a role in its pathogenesis. Bile acids, produced during cholesterol metabolism in the liver, have been linked to neurodegenerative conditions. This study investigated variations in plasma bile acid profiles among individuals with HD. Plasma levels of 16 primary and secondary bile acids and their conjugates were analyzed in 20 healthy controls and 33 HD patients, including 24 with symptoms (symHD) and 9 carriers in the presymptomatic stage (preHD). HD patients exhibited significantly higher levels of glycochenodeoxycholic acid (GCDCA) and glycoursodeoxycholic acid (GUDCA) compared to healthy controls. Conversely, isolithocholic acid levels were notably lower in the HD group. Neurotoxic bile acids (glycocholic acid (GCA) + glycodeoxycholic acid (GDCA) + GCDCA) were elevated in symHD patients, while levels of neuroprotective bile acids (ursodeoxycholic acid (UDCA) + GUDCA + tauroursodeoxycholic acid (TUDCA)) were higher in preHD carriers, indicating a compensatory response to early neuronal damage. These results underscore the importance of changes in plasma bile acid profiles in HD and their potential involvement in disease mechanisms. The identified bile acids (GCDCA, GUDCA, and isolithocholic acid) could potentially serve as markers to distinguish between HD stages and healthy individuals. Nonetheless, further research is warranted to fully understand the clinical implications of these findings and their potential as diagnostic or therapeutic tools for HD.

19.
Nutrients ; 16(14)2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39064765

RESUMO

The human microbiome functions as a separate organ in a symbiotic relationship with the host. Disruption of this host-microbe symbiosis can lead to serious health problems. Modifications to the composition and function of the microbiome have been linked to changes in host metabolic outcomes. Industrial lifestyles with high consumption of processed foods, alcoholic beverages and antibiotic use have significantly altered the gut microbiome in unfavorable ways. Therefore, understanding the causal relationship between the human microbiome and host metabolism will provide important insights into how we can better intervene in metabolic health. In this review, I will discuss the potential use of the human microbiome as a therapeutic target to improve host metabolism.


Assuntos
Microbioma Gastrointestinal , Doenças Metabólicas , Humanos , Microbioma Gastrointestinal/fisiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Doenças Metabólicas/microbiologia , Doenças Metabólicas/terapia , Simbiose , Disbiose , Probióticos/uso terapêutico , Interações entre Hospedeiro e Microrganismos/fisiologia
20.
J Adv Res ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38969095

RESUMO

INTRODUCTION: The human gut microbiome plays a pivotal role in health and disease, notably through its interaction with bile acids (BAs). BAs, synthesized in the liver, undergo transformation by the gut microbiota upon excretion into the intestine, thus influencing host metabolism. However, the potential mechanisms of dicaffeoylquinic acids (DiCQAs) from Ilex kudingcha how to modulate lipid metabolism and inflammation via gut microbiota remain unclear. OBJECTIVES AND METHODS: The objectives of the present study were to investigate the regulating effects of DiCQAs on diabetes and the potential mechanisms of action. Two mice models were utilized to investigate the anti-diabetic effects of DiCQAs. Additionally, analysis of gut microbiota structure and functions was conducted concurrently with the examination of DiCQAs' impact on gut microbiota carrying the bile salt hydrolase (BSH) gene, as well as on the enterohepatic circulation of BAs and related signaling pathways. RESULTS: Our findings demonstrated that DiCQAs alleviated diabetic symptoms by modulating gut microbiota carrying the BSH gene. This modulation enhanced intestinal barrier integrity, increased enterohepatic circulation of conjugated BAs, and inhibited the farnesoid X receptor-fibroblast growth factor 15 (FGF15) signaling axis in the ileum. Consequently, the protein expression of hepatic FGFR4 fibroblast growth factor receptor 4 (FGFR4) decreased, accompanied by heightened BA synthesis, reduced hepatic BA stasis, and lowered levels of hepatic and plasma cholesterol. Furthermore, DiCQAs upregulated glucolipid metabolism-related proteins in the liver and muscle, including v-akt murine thymoma viral oncogene homolog (AKT)/glycogen synthase kinase 3-beta (GSK3ß) and AMP-activated protein kinase (AMPK), thereby ameliorating hyperglycemia and mitigating inflammation through the down-regulation of the MAPK signaling pathway in the diabetic group. CONCLUSION: Our study elucidated the anti-diabetic effects and mechanism of DiCQAs from I. kudingcha, highlighting the potential of targeting gut microbiota, particularly Acetatifactor sp011959105 and Acetatifactor muris carrying the BSH gene, as a therapeutic strategy to attenuate FXR-FGF15 signaling and ameliorate diabetes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA