Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.514
Filtrar
1.
Animals (Basel) ; 14(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731303

RESUMO

An 8-week feeding trial was performed to investigate the effects of dietary bile acids on growth, glucose metabolism, and intestinal health in spotted seabass (Lateolabrax maculatus) reared at high temperatures (33 °C). The fish (20.09 ± 1.12 g) were fed diets supplemented with bile acids: 0 (Con), 400 (BA400), 800 (BA800), and 1200 (BA1200) mg/kg, respectively. The results showed that the growth was promoted in fish at the BA800 treatment compared with the control (p < 0.05). Increased enzyme activities and transcripts of gluconeogenesis in the liver were observed, whereas decreased enzyme activities and transcripts of glycolysis, as well as glycogen content, were shown in the BA800 treatment (p < 0.05). The transcripts of bile acid receptors fxr in the liver were up-regulated in the BA800 treatment (p < 0.05). A bile acid supplementation of 800 mg/kg improved the morphological structure in the intestine. Meanwhile, intestinal antioxidant physiology and activities of lipase and trypsin were enhanced in the BA800 treatment. The transcripts of genes and immunofluorescence intensity related to pro-inflammation cytokines (il-1ß, il-8, and tnf-α) were inhibited, while those of genes related to anti-inflammation (il-10 and tgf-ß) were induced in the BA800 treatment. Furthermore, transcripts of genes related to the NF-κB pathway in the intestine (nfκb, ikkα, ikkß, and ikbα1) were down-regulated in the BA800 treatment. This study demonstrates that a dietary bile acid supplementation of 800 mg/kg could promote growth, improve glucose metabolism in the liver, and enhance intestinal health by increasing digestive enzyme activity and antioxidant capacity and inhibiting inflammatory response in L. maculatus.

2.
Molecules ; 29(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38731514

RESUMO

While FXR has shown promise in regulating bile acid synthesis and maintaining glucose and lipid homeostasis, undesired side effects have been observed in clinical trials. To address this issue, the development of intestinally restricted FXR modulators has gained attention as a new avenue for drug design with the potential for safer systematic effects. Our review examines all currently known intestinally restricted FXR ligands and provides insights into the steps taken to enhance intestinal selectivity.


Assuntos
Receptores Citoplasmáticos e Nucleares , Humanos , Receptores Citoplasmáticos e Nucleares/metabolismo , Ligantes , Animais , Ácidos e Sais Biliares/metabolismo , Ácidos e Sais Biliares/química , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Intestinos/efeitos dos fármacos
3.
Front Neurol ; 15: 1334319, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38721114

RESUMO

Background: Many disorders of gut-brain interaction (DGBIs) are more prevalent in women than men and feature alterations in gastrointestinal motility and bile acid homeostasis. Mechanisms by which bile acids regulate gastrointestinal motility are poorly characterized. We recently validated an adapted tissue bath technique using everted mouse ileum, which revealed differential contractile responses to ursodeoxycholic acid (UDCA) and deoxycholic acid (DCA). Here, we aimed to determine whether these responses are dependent on host sex, the plasma membrane bile acid receptor TGR5, or the apical sodium-dependent bile acid transporter ASBT. Methods: Ileal segments from male and female mice were everted and suspended in tissue baths. Contractile responses to physiologic concentrations of UDCA and DCA were quantified with or without TGR5 or ASBT inhibitors. Phosphorylation of extracellular signal-regulated kinase (ERK) and myosin light chain (MLC), markers of TGR5 activation and smooth muscle contraction, respectively, were assessed with western blot. Results: There were no sex differences in the dose-dependent contractile responses to bile acids. At 100 µmol/L, UDCA but not DCA increased MLC phosphorylation and increased contractility. TGR5 inhibition decreased ERK phosphorylation and led to decreases in contractility, phosphorylated MLC, and surprisingly, total MLC. ASBT inhibition did not affect contractile responses. Conclusion: Differential effects of UDCA and DCA on ileal smooth muscle contractility are not dependent on host sex or ASBT-mediated transport. Bile acids signal through mucosal TGR5, which regulates smooth muscle contractility by complex mechanisms. Understanding how bile acids differentially regulate gastrointestinal motility could facilitate new therapeutic options for specific DGBIs.

4.
J Pharm Pharmacol ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727186

RESUMO

OBJECTIVES: Bile acids (BAs), as signaling molecules to regulate metabolism, have received considerable attention. Genipin is an iridoid compound extracted from Fructus Gradeniae, which has been shown to relieve adiposity and metabolic syndrome. Here, we investigated the mechanism of genipin counteracting obesity and its relationship with BAs signals in diet-induced obese (DIO) rats. METHODS: The DIO rats were received intraperitoneal injections of genipin for 10 days. The body weight, visceral fat, lipid metabolism in the liver, thermogenic genes expressions in brown fat, BAs metabolism and signals, and key enzymes for BAs synthesis were determined. KEY FINDINGS: Genipin inhibited fat synthesis and promoted lipolysis in the liver, and upregulated thermogenic gene expressions in brown adipose tissue of DIO rats. Genipin increased bile flow rate and upregulated the expressions of aquaporin 8 and the transporters of BAs in liver. Furthermore, genipin changed BAs composition by promoting alternative pathways and inhibiting classical pathways for BAs synthesis and upregulated the expressions of bile acid receptors synchronously. CONCLUSIONS: These results suggest that genipin ameliorate obesity through BAs-mediated signaling pathways.

5.
World J Diabetes ; 15(5): 898-913, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38766436

RESUMO

BACKGROUND: The understanding of bile acid (BA) and unsaturated fatty acid (UFA) profiles, as well as their dysregulation, remains elusive in individuals with type 2 diabetes mellitus (T2DM) coexisting with non-alcoholic fatty liver disease (NAFLD). Investigating these metabolites could offer valuable insights into the pathophy-siology of NAFLD in T2DM. AIM: To identify potential metabolite biomarkers capable of distinguishing between NAFLD and T2DM. METHODS: A training model was developed involving 399 participants, comprising 113 healthy controls (HCs), 134 individuals with T2DM without NAFLD, and 152 individuals with T2DM and NAFLD. External validation encompassed 172 participants. NAFLD patients were divided based on liver fibrosis scores. The analytical approach employed univariate testing, orthogonal partial least squares-discriminant analysis, logistic regression, receiver operating characteristic curve analysis, and decision curve analysis to pinpoint and assess the diagnostic value of serum biomarkers. RESULTS: Compared to HCs, both T2DM and NAFLD groups exhibited diminished levels of specific BAs. In UFAs, particular acids exhibited a positive correlation with NAFLD risk in T2DM, while the ω-6:ω-3 UFA ratio demonstrated a negative correlation. Levels of α-linolenic acid and γ-linolenic acid were linked to significant liver fibrosis in NAFLD. The validation cohort substantiated the predictive efficacy of these biomarkers for assessing NAFLD risk in T2DM patients. CONCLUSION: This study underscores the connection between altered BA and UFA profiles and the presence of NAFLD in individuals with T2DM, proposing their potential as biomarkers in the pathogenesis of NAFLD.

6.
Anim Nutr ; 17: 87-99, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38766518

RESUMO

The prevalent practice of substituting fishmeal with plant protein frequently leads to disturbances in bile acid metabolism, subsequently increasing the incidence of metabolic liver diseases. Bile acid nutrients such as cholesterol, taurine and glycine have been shown to enhance bile acid synthesis and confer beneficial effects on growth. Therefore, this study aimed to investigate the effects of cholesterol-taurine-glycine (Ch-Tau-Gly) supplement on bile acid metabolism and liver health in spotted seabass (Lateolabrax maculatus) fed a plant-based diet. Two isonitrogenous and isolipidic diets were formulated: (1) plant protein-based diet (PP); (2) PP supplemented 0.5% cholesterol, 0.5% taurine and 1.3% glycine (CTG). Each experimental diet was randomly fed to quadruplicate groups of 30 feed-trained spotted seabass in each tank. The results revealed that supplementing plant-based diet with Ch-Tau-Gly supplement led to an increase in carcass ratio (meat yield) in spotted seabass (P < 0.05), indirectly contributing positively to their growth. The dietary supplement effectively suppressed endogenous cholesterol synthesis in the liver, promoted the expression of bile acid synthesis enzyme synthesis, and simultaneously the expression of intestinal fxr and its downstream genes, including hnf4α and shp (P < 0.05). The reduction in Lactobacillus_salivarius and bile salt hydrolase (BSH) were observed in CTG group with concurrently increased conjugated chenodeoxycholic acid (CDCA) bile acids (P < 0.05), suggesting the enhancement of the hydrophilicity of the bile acid pool. In CTG group, fatty liver was alleviated with a corresponding increase in lipid metabolism, characterized by a downregulation of genes associated with lipogenesis and lipid droplet deposition, along with an upregulation of genes related to lipolysis. Our study underscored the ability of Ch-Tau-Gly supplement to influence the gut microbiota, leading to an increase in the levels of conjugated CDCA (P < 0.05) in the bile acid pool of spotted seabass. The interplay between the gut microbiota and bile acids might constitute a crucial pathway in the promotion of liver health. These findings offer a promising solution, suggesting that Ch-Tau-Gly supplement have the potential to promote the growth of aquatic species and livestock fed on plant-based diets while addressing issues related to metabolic fatty liver.

7.
Gut Microbes ; 16(1): 2356284, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38769683

RESUMO

Inflammatory bowel disease (IBD) is a chronic and recurrent condition affecting the gastrointestinal tract. Disturbed gut microbiota and abnormal bile acid (BA) metabolism are notable in IBD, suggesting a bidirectional relationship. Specifically, the diversity of the gut microbiota influences BA composition, whereas altered BA profiles can disrupt the microbiota. IBD patients often exhibit increased primary bile acid and reduced secondary bile acid concentrations due to a diminished bacteria population essential for BA metabolism. This imbalance activates BA receptors, undermining intestinal integrity and immune function. Consequently, targeting the microbiota-BA axis may rectify these disturbances, offering symptomatic relief in IBD. Here, the interplay between gut microbiota and bile acids (BAs) is reviewed, with a particular focus on the role of gut microbiota in mediating bile acid biotransformation, and contributions of the gut microbiota-BA axis to IBD pathology to unveil potential novel therapeutic avenues for IBD.


Assuntos
Bactérias , Ácidos e Sais Biliares , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Humanos , Ácidos e Sais Biliares/metabolismo , Animais , Bactérias/metabolismo , Bactérias/classificação , Bactérias/genética , Disbiose/microbiologia , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/metabolismo
8.
J Sci Food Agric ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38757804

RESUMO

BACKGROUND: Okra contains flavonoids and vitamin C as antioxidants and it contains polysaccharides as immunomodulators. Flavonoids regulate the inflammatory response in mice and may be related to gut microbiota. This study therefore aimed to investigate the impact of okra extract (OE) on inflammation in mice and to elucidate its underlying mechanism. METHOD: Forty male Kunming (KM) mice were categorized into four groups: the control (CON) group, the lipopolysaccharide stimulation (LPS) group, the 5 mg mL-1 OE intervention (LPS + OE) group, and the 5 mg mL-1 OE supplementation plus mixed antibiotics (LPS + OE + ABX) group. RESULTS: The results showed that, compared with the OE group, the expression of inflammatory signaling pathway genes was upregulated and gut barrier genes were inhibited in the OE + ABX group. The Fxr receptor was activated and the abundance of Akkermansia was increased after OE supplementation, whereas the effect was reversed in the OE + ABX group. Meanwhile, Fxr was correlated positively with Akkermansia. CONCLUSION: The OE supplementation alleviated the inflammatory response in mice under LPS stimulation, accompanied by changes in gut microbiota and bile acid receptors, whereas the addition of antibiotics caused a disturbance to the gut microbiota in the OE group, thus reducing the effect of OE in alleviating the inflammatory response. © 2024 Society of Chemical Industry.

9.
J Drug Target ; : 1-35, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758361

RESUMO

The use of anti-oxidants could thus prove an effective medication to prevent or facilitate recovery from oxidative stress-induced sensorineural hearing loss (SNHL). One promising strategy to prevent SNHL is developing probucol (PB)-based nanoparticles using encapsulation technology and administering them to the inner ear via the established intratympanic route. The preclinical, clinical and epidemiological studies support that probucol is a proven anti-oxidant that could effectively prevent oxidative stress in different study models. Such findings suggest its applicability in preventing oxidative stress within the inner ear and its associated neural cells. However, several hurdles, such as overcoming the blood-labyrinth barrier, ensuring sustained release, minimizing systemic side effects, and optimizing targeted delivery in the intricate inner ear structures, must be overcome to efficiently deliver PB to the inner ear. This review explores the background and pathogenesis of hearing loss, the potential of PB in treating oxidative stress and its cellular mechanisms, and the obstacles linked to inner ear drug delivery for effectively introducing PB to the inner ear.

10.
J Nat Med ; 78(3): 633-643, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38704807

RESUMO

Hepatocellular carcinoma (HCC) is a malignant tumor with extremely high mortality. The tumor microenvironment is the "soil" of its occurrence and development, and the inflammatory microenvironment is an important part of the "soil". Bile acid is closely related to the occurrence of HCC. Bile acid metabolism disorder is not only directly involved in the occurrence and development of HCC but also affects the inflammatory microenvironment of HCC. Yinchenhao decoction, a traditional Chinese medicine formula, can regulate bile acid metabolism and may affect the inflammatory microenvironment of HCC. To determine the effect of Yinchenhao decoction on bile acid metabolism in mice with HCC and to explore the possible mechanism by which Yinchenhao decoction improves the inflammatory microenvironment of HCC by regulating bile acid metabolism, we established mice model of orthotopic transplantation of hepatocellular carcinoma. These mice were treated with three doses of Yinchenhao decoction, then liver samples were collected and tested. Yinchenhao decoction can regulate the disorder of bile acid metabolism in liver cancer mice. Besides, it can improve inflammatory reactions, reduce hepatocyte degeneration and necrosis, and even reduce liver weight and the liver index. Taurochenodeoxycholic acid, hyodeoxycholic acid, and taurohyodeoxycholic acid are important molecules in the regulation of the liver inflammatory microenvironment, laying a foundation for the regulation of the liver tumor inflammatory microenvironment based on bile acids. Yinchenhao decoction may improve the inflammatory microenvironment of mice with HCC by ameliorating hepatic bile acid metabolism.


Assuntos
Ácidos e Sais Biliares , Carcinoma Hepatocelular , Medicamentos de Ervas Chinesas , Neoplasias Hepáticas , Microambiente Tumoral , Animais , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Camundongos , Ácidos e Sais Biliares/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Masculino , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo
11.
Cell Mol Life Sci ; 81(1): 217, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748186

RESUMO

The vertebrate sense of taste allows rapid assessment of the nutritional quality and potential presence of harmful substances prior to ingestion. Among the five basic taste qualities, salty, sour, sweet, umami, and bitter, bitterness is associated with the presence of putative toxic substances and elicits rejection behaviors in a wide range of animals including humans. However, not all bitter substances are harmful, some are thought to be health-beneficial and nutritious. Among those compound classes that elicit a bitter taste although being non-toxic and partly even essential for humans are bitter peptides and L-amino acids. Using functional heterologous expression assays, we observed that the 5 dominant human bitter taste receptors responsive to bitter peptides and amino acids are activated by bile acids, which are notorious for their extreme bitterness. We further demonstrate that the cross-reactivity of bitter taste receptors for these two different compound classes is evolutionary conserved and can be traced back to the amphibian lineage. Moreover, we show that the cross-detection by some receptors relies on "structural mimicry" between the very bitter peptide L-Trp-Trp-Trp and bile acids, whereas other receptors exhibit a phylogenetic conservation of this trait. As some bile acid-sensitive bitter taste receptor genes fulfill dual-roles in gustatory and non-gustatory systems, we suggest that the phylogenetic conservation of the rather surprising cross-detection of the two substance classes could rely on a gene-sharing-like mechanism in which the non-gustatory function accounts for the bitter taste response to amino acids and peptides.


Assuntos
Ácidos e Sais Biliares , Peptídeos , Receptores Acoplados a Proteínas G , Paladar , Ácidos e Sais Biliares/metabolismo , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Animais , Paladar/fisiologia , Peptídeos/metabolismo , Filogenia , Células HEK293 , Aminoácidos/metabolismo , Membrana Celular/metabolismo
12.
Sci Total Environ ; 933: 173161, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38735313

RESUMO

Enterohepatic circulation has been reported to play a significant role in the bioaccumulation of PFASs. In this study, the tissue distribution and excretion of PFOS and its alternatives, namely 6:2 and 8:2 fluorotelomer sulfonic acid (FTSA) was investigated using a mouse assay with a focus on role of enterohepatic circulation. Liver was the primarily accumulating organ for PFOS and 8:2 FTSA (33.4 % and 25.8 % of total doses absorbed after 14 days), whereas 65 % of 6:2 FTSA was excreted via urine within 24 h. Peak levels of 8:2 FTSA and PFOS were found in the gallbladder, implying the important role of enterohepatic circulation in PFASs reabsorption. The role of enterohepatic circulation was further evaluated through co-exposure of 8:2 FTSA and PFOS with medicines (namely metformin (MET) and ursodeoxycholic acid (UDCA)). MET reduced accumulation of 8:2 FTSA and PFOS in the liver by 68.6 % and 65.8 %, through down-regulation of bile acid transporter (Asbt) and enhancement of fecal excretion. Conversely, UDCA raised their concentrations by 21.9 % and 34.6 % compared to that exposed solely to PFASs. A strong positive correlation was identified between PFASs serum levels and Asbt expression. This study illuminated PFAS bioaccumulation mechanisms and suggested potential strategies to mitigate the exposure risks.

13.
J Anim Sci Biotechnol ; 15(1): 79, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38760843

RESUMO

BACKGROUND: Infection with pathogenic bacteria during nonantibiotic breeding is one of the main causes of animal intestinal diseases. Oleanolic acid (OA) is a pentacyclic triterpene that is ubiquitous in plants. Our previous work demonstrated the protective effect of OA on intestinal health, but the underlying molecular mechanisms remain unclear. This study investigated whether dietary supplementation with OA can prevent diarrhea and intestinal immune dysregulation caused by enterotoxigenic Escherichia coli (ETEC) in piglets. The key molecular role of bile acid receptor signaling in this process has also been explored. RESULTS: Our results demonstrated that OA supplementation alleviated the disturbance of bile acid metabolism in ETEC-infected piglets (P < 0.05). OA supplementation stabilized the composition of the bile acid pool in piglets by regulating the enterohepatic circulation of bile acids and significantly increased the contents of UDCA and CDCA in the ileum and cecum (P < 0.05). This may also explain why OA can maintain the stability of the intestinal microbiota structure in ETEC-challenged piglets. In addition, as a natural ligand of bile acid receptors, OA can reduce the severity of intestinal inflammation and enhance the strength of intestinal epithelial cell antimicrobial programs through the bile acid receptors TGR5 and FXR (P < 0.05). Specifically, OA inhibited NF-κB-mediated intestinal inflammation by directly activating TGR5 and its downstream cAMP-PKA-CREB signaling pathway (P < 0.05). Furthermore, OA enhanced CDCA-mediated MEK-ERK signaling in intestinal epithelial cells by upregulating the expression of FXR (P < 0.05), thereby upregulating the expression of endogenous defense molecules in intestinal epithelial cells. CONCLUSIONS: In conclusion, our findings suggest that OA-mediated regulation of bile acid metabolism plays an important role in the innate immune response, which provides a new diet-based intervention for intestinal diseases caused by pathogenic bacterial infections in piglets.

14.
J Cell Sci ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700490

RESUMO

Hepatocyte organoids (HOs) generated in vitro recently are powerful tools for liver regeneration. However, the reported HOs were mostly fetal in nature with low expression levels of metabolic genes characteristic of adult liver functions, hampering their application in studying metabolic regulations and therapeutic testing for liver disorders. We report development of novel culture conditions that contains optimized levels of Triiodothyronine (T3) with the removal of growth factors, enabled successful generation of mature hepatocyte organoids (MHOs) with metabolic functions characteristic of adult livers of both mouse and human origins. We showed that the MHOs can be used to study various metabolic functions including bile and urea production, zonal metabolic gene expression, and metabolic alterations in both alcoholic and non-alcoholic fatty liver diseases as well hepatocyte proliferation, injury, and cell fate changes. Notably, the MHOs derived from human fetal hepatoblasts also showed improved hepatitis B virus (HBV) infection. Therefore, these MHOs provide a powerful in vitro model for studies of human liver physiology and diseases. The human MHOs are potentially a robust research tools for therapeutic development as well.

15.
Arch Toxicol ; 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38703205

RESUMO

Consumption of herbal products containing pyrrolizidine alkaloids (PAs) is one of the major causes for hepatic sinusoidal obstruction syndrome (HSOS), a deadly liver disease. However, the crucial metabolic variation and biomarkers which can reflect these changes remain amphibious and thus to result in a lack of effective prevention, diagnosis and treatments against this disease. The aim of the study was to determine the impact of HSOS caused by PA exposure, and to translate metabolomics-derived biomarkers to the mechanism. In present study, cholic acid species (namely, cholic acid, taurine conjugated-cholic acid, and glycine conjugated-cholic acid) were identified as the candidate biomarkers (area under the ROC curve 0.968 [95% CI 0.908-0.994], sensitivity 83.87%, specificity 96.55%) for PA-HSOS using two independent cohorts of patients with PA-HSOS. The increased primary bile acid biosynthesis and decreased liver expression of farnesoid X receptor (FXR, which is known to inhibit bile acid biosynthesis in hepatocytes) were highlighted in PA-HSOS patients. Furtherly, a murine PA-HSOS model induced by senecionine (50 mg/kg, p.o.), a hepatotoxic PA, showed increased biosynthesis of cholic acid species via inhibition of hepatic FXR-SHP singling and treatment with the FXR agonist obeticholic acid restored the cholic acid species to the normal levels and protected mice from senecionine-induced HSOS. This work elucidates that increased levels of cholic acid species can serve as diagnostic biomarkers in PA-HSOS and targeting FXR may represent a therapeutic strategy for treating PA-HSOS in clinics.

16.
Biomed Pharmacother ; 175: 116658, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38701562

RESUMO

The global prevalence of nonalcoholic fatty liver disease (NAFLD) has reached 30 %, with an annual increase. The incidence of NAFLD-induced cirrhosis is rapidly rising and has become the leading indicator for liver transplantation in the US. However, there are currently no US Food and Drug Administration-approved drugs for NAFLD. Increasing evidence underscores the close association between NAFLD and bile acid metabolism disorder, highlighting the feasibility of targeting the bile acid signaling pathway for NAFLD treatment. The farnesoid X receptor (FXR) is an endogenous receptor for bile acids that exhibits favorable effects in ameliorating the metabolic imbalance of bile acids, lipid disorders, and disruption of intestinal homeostasis, all of which are key characteristics of NAFLD, making FXR a promising therapeutic target for NAFLD. The present review provides a comprehensive overview of the diverse mechanisms through which FXR improves NAFLD, with particular emphasis on its involvement in regulating bile acid homeostasis and the recent advancements in drug development targeting FXR for NAFLD treatment.

17.
Sci Rep ; 14(1): 10127, 2024 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698075

RESUMO

Analyzing blood lipid and bile acid profile changes in colorectal cancer (CRC) patients. Evaluating the integrated model's diagnostic significance for CRC. Ninety-one individuals with colorectal cancer (CRC group) and 120 healthy volunteers (HC group) were selected for comparison. Serum levels of total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and apolipoproteins (Apo) A1, ApoA2, ApoB, ApoC2, and ApoC3 were measured using immunoturbidimetric and colorimetric methods. Additionally, LC-MS/MS was employed to detect fifteen bile acids in the serum, along with six tumor markers: carcinoembryonic antigen (CEA), carbohydrate antigens (CA) 125, CA19-9, CA242, CA50, and CA72-4. Group comparisons utilized independent sample t-tests and Mann-Whitney U tests. A binary logistic regression algorithm was applied to fit the indicators and establish a screening model; the diagnostic accuracy of individual Indicators and the model was analyzed using receiver operating characteristic (ROC) curves. The CRC group showed significantly lower levels in eight serum lipid indicators and eleven bile acids compared to the HC group (P < 0.05). Conversely, serum levels of TG, CA19-9, and CEA were elevated (P < 0.05). Among the measured parameters, ApoA2 stands out for its strong correlation with the presence of CRC, showcasing exceptional screening efficacy with an area under the curve (AUC) of 0.957, a sensitivity of 85.71%, and a specificity of 93.33%. The screening model, integrating ApoA1, ApoA2, lithocholic acid (LCA), and CEA, attained an impressive AUC of 0.995, surpassing the diagnostic accuracy of individual lipids, bile acids, and tumor markers. CRC patients manifest noteworthy alterations in both blood lipids and bile acid profiles. A screening model incorporating ApoA1, ApoA2, LCA, and CEA provides valuable insights for detecting CRC.


Assuntos
Ácidos e Sais Biliares , Biomarcadores Tumorais , Neoplasias Colorretais , Detecção Precoce de Câncer , Humanos , Neoplasias Colorretais/sangue , Neoplasias Colorretais/diagnóstico , Masculino , Feminino , Pessoa de Meia-Idade , Biomarcadores Tumorais/sangue , Detecção Precoce de Câncer/métodos , Ácidos e Sais Biliares/sangue , Idoso , Curva ROC , Estudos de Casos e Controles , Apolipoproteínas/sangue , Antígeno Carcinoembrionário/sangue , Adulto , Lipídeos/sangue
18.
Ecotoxicol Environ Saf ; 279: 116451, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38759535

RESUMO

Bile acid homeostasis is critical to human health. Low-level exposure to antibiotics has been suggested to potentially disrupt bile acid homeostasis by affecting gut microbiota, but relevant data are still lacking in humans, especially for the level below human safety threshold. We conducted a cross-sectional study in 4247 Chinese adults by measuring 34 parent antibiotics and their metabolites from six common categories (i.e., tetracyclines, qinolones, macrolides, sulfonamides, phenicols, and lincosamides) and ten representative bile acids in fasting morning urine using liquid chromatography coupled to mass spectrometry. Daily exposure dose of antibiotics was estimated from urinary concentrations of parent antibiotics and their metabolites. Urinary bile acids and their ratios were used to reflect bile acid homeostasis. The estimated daily exposure doses (EDED) of five antibiotic categories with a high detection frequency (i.e., tetracyclines, qinolones, macrolides, sulfonamides, and phenicols) were significantly associated with urinary concentrations of bile acids and decreased bile acid ratios in all adults and the subset of 3898 adults with a cumulative ratio of antibiotic EDED to human safety threshold of less than one. Compared to a negative detection of antibiotics, the lowest EDED quartiles of five antibiotic categories and four individual antibiotics with a high detection frequency (i.e., ciprofloxacin, ofloxacin, trimethoprim, and florfenicol) in the adults with a positive detection of antibiotics had a decrease of bile acid ratio between 6.6% and 76.6%. Except for macrolides (1.2×102 ng/kg/day), the medians of the lowest EDED quartile of antibiotic categories and individual antibiotics ranged from 0.32 ng/kg/day to 10 ng/kg/day, which were well below human safety thresholds. These results suggested that low-level antibiotic exposure could disrupt bile acid homeostasis in adults and existing human safety thresholds may be inadequate in safeguarding against the potential adverse health effects of low-level exposure to antibiotics.

19.
Arch Toxicol ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753187

RESUMO

Drug-induced cholestasis results in drug discontinuation and market withdrawal, and the prediction of cholestasis risk is critical in the early stages of drug development. Animal tests and membrane vesicle assay are currently being conducted to assess the risk of cholestasis in the preclinical stage. However, these methods have drawbacks, such as species differences with humans and difficulties in evaluating the effects of drug metabolism and other transporters, implying the need for a cholestasis risk assessment system using human hepatocytes. However, human hepatocytes hardly form functional, extended bile canaliculi, a requirement for cholestasis risk assessment. We previously established a culture protocol for functional, extended bile canaliculi formation in human iPSC-derived hepatocytes. In this study, we modified this culture protocol to support the formation of functional, extended bile canaliculi in human cryopreserved hepatocytes (cryoheps). The production of bile acids, which induces bile canaliculi extension, increased time-dependently during bile canaliculi formation using this protocol, suggesting that increased bile acid production may be involved in the extended bile canaliculi formation. We have also shown that our culture protocol can be applied to cryoheps from multiple donors and that bile canaliculi can be formed stably among different culture batches. Furthermore, this protocol enables long-term maintenance of bile canaliculi and scaling down to culture in 96-well plates. We expect our culture protocol to be a breakthrough for in vitro cholestasis risk assessment.

20.
Artigo em Inglês | MEDLINE | ID: mdl-38721685

RESUMO

Hepatitis B virus (HBV) is a hepatotropic non-cytopathic virus characterized by liver-specific gene expression. HBV infection highjacks bile acid metabolism, notably impairing bile acid uptake via sodium taurocholate cotransporting polypeptide (NTCP), which is a functional receptor for HBV entry. Concurrently, HBV infection induces changes in bile acid synthesis and the size of the bile acid pool. Conversely, bile acid facilitates HBV replication and expression through the signaling molecule farnesoid X receptor (FXR), a nuclear receptor activated by bile acid. However, in HepaRG cells and primary hepatocytes, FXR agonists suppress HBV RNA expression and the synthesis and secretion of DNA. In the gut, the size and composition of the bile acid pool significantly influence the gut microbiota. In turn, the gut microbiota impacts bile acid metabolism and innate immunity, potentially promoting HBV clearance. Thus, the bile acid-gut microbiota axis represents a complex and evolving relationship in the context of HBV infection. This review explores the interplay between bile acid and gut microbiota in HBV infection and discusses the development of HBV entry inhibitors targeting NTCP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...