Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Curr For Rep ; 10(5): 386-400, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39301227

RESUMO

Purpose of Review: Conventional formaldehyde-based adhesives for wood-based composite panels are subject to significant concerns due to their formaldehyde emissions. Over the past decade, the wood adhesive industry has undergone a considerable transformation that is characterized by a major push in bio-adhesive development. Various bio-based materials have been explored to create alternatives to conventional formaldehyde-based adhesives. Moreover, growing interest in circularity has led to increasingly exploiting industrial coproducts and by-products to find innovative solutions. Recent Findings: Industrial production generates many coproducts that can serve as renewable resources to produce eco-friendly materials. These coproducts offer alternative supply sources for material production without encroaching on food production. Many bio-based compounds or coproducts, such as saccharides, proteins, tannins, and lignocellulosic biomass, can also be used to develop bio-based adhesives. As part of ongoing efforts to reduce formaldehyde emissions, new hardeners and crosslinkers are being developed to replace formaldehyde and bio-scavengers. Other alternatives, such as binderless panels, are also emerging. Summary: This review focuses on sources of bio-based material derived from by-products of various industries, which have many advantages and disadvantages when incorporated into adhesives. Modification methods to enhance their properties and performance in wood-based panels are also discussed. Additionally, alternatives for developing low-emission or formaldehyde-free adhesives are addressed, including hardeners, bio-scavengers, and binderless options. Finally, the environmental impact of bio-based adhesives compared to that of synthetic alternatives is detailed.

2.
Ultrason Sonochem ; 110: 107055, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39241459

RESUMO

Lycopene is a carotenoid highly valuable to the food, pharmaceutical, dye, and cosmetic industries, present in ripe tomatoes and other fruits with a distinctive red color. The main source of lycopene is tomato crops. This bioactive component can be successfully isolated from tomato processing waste, commonly called tomato pomace, mostly made from tomato skins, seeds, and some residual tomato tissue. The main investigative focus in this work was the application of green engineering principles in each stage of the optimized ultrasound-assisted extraction (UAE) of enzymatically treated tomato skins to obtain functional extracts rich in lycopene. The experimental plan was designed to determine the influence of studied operating parameters: enzymatic reaction time (60, 120, and 180 min), extraction time (0, 5, 10, 15, 30, 60, and 120 min), and temperature (25, 35 and 45 ℃) on lycopene yield. Process optimization was performed based on the yield of lycopene [1018, 1067, and 1120 mg/kg] achieved at optimal operating conditions. An artificial neural network (ANN) model was developed and trained for predictive modeling of the closed extraction system, with operating parameters used as input neurons and experimentally obtained values for lycopene content defined as the output neural layer. Applied ANN architecture provided a high correlation of experimental output with ANN-generated data (R=0.99914) with a model deviation error for the entire data set of RMSE=5.3 mg/kg. The k-Nearest Neighbor algorithm was introduced to predict lycopene yield using experimental key features: operating temperature, extraction time, and time of enzymatic treatment, split into training and testing sets with an 85/15 ratio. The model interpretation was conducted through the SHAP (SHapley Additive exPlanations) methodology.


Assuntos
Carotenoides , Fracionamento Químico , Licopeno , Redes Neurais de Computação , Solanum lycopersicum , Ondas Ultrassônicas , Solanum lycopersicum/química , Licopeno/isolamento & purificação , Carotenoides/isolamento & purificação , Carotenoides/química , Fracionamento Químico/métodos , Temperatura , Manipulação de Alimentos/métodos
3.
Waste Manag Res ; 42(9): 842-854, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39162055

RESUMO

The recycling of bio-waste from households is an essential factor in achieving the recycling quotas for municipal waste laid down by the EU. A major problem is posed by impurities in the bio-waste collected, such as plastics, metals and glass. It is virtually impossible for compost producers to produce quality-assured compost from bio-waste with an impurity content of more than 3 wt%OS. The draft of the new Austrian Compost Ordinance stipulates a limit of 2 wt%OS of interfering substances in accepted bio-waste. A rapid measurement method has been developed and comprehensively validated for the immediate on-site checking of contaminant content at the bio-waste bin or in a vehicles. Data on the type and amount of impurities collected in the course of sorting analyses carried out over several years in 10 selected areas in Styria, Austria showed an average impurity content of 2.1 wt%OS. This impurity content can be considered representative for rural and urban communities in Austria. Among the interfering substances, plastics predominate, at 53%, of which pre-collection bags made of plastics form the highest proportion. A more detailed examination of pre-collection bags shows a higher proportion of use of biodegradable plastic bags, which have become more numerous in recent years in the more rural communities. In order to reduce mis-sorting, the effect of a wide variety of measures on citizens was tested in selected areas. Here, the distribution of paper bags as well as the threat of a cost increase due to special collections in combination with distribution of these bags were the methods with the greatest effect. Motivational letters and the threat of special collections, however, showed no significant result.


Assuntos
Reciclagem , Áustria , Reciclagem/métodos , Compostagem/métodos , Eliminação de Resíduos/métodos , Resíduos Sólidos/análise , Características da Família , Plásticos/análise , Gerenciamento de Resíduos/métodos
4.
Chemosphere ; 364: 143014, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39121955

RESUMO

Urban residential and industrial growth development affects sustainable and healthful indoor environments. Environmental issues are a global problem. The deterioration of indoor air quality has prompted the creation of several air cleansing techniques. This review explains how carbon-based materials have influenced the development of air purification systems using photocatalysis. These carbon-based materials offer unique properties and advantages in VOC removal processes. Biochar, produced from biomass pyrolysis, provides an environmentally sustainable solution with its porous structure and carbon-rich composition. Carbon quantum dots, with their quantum confinement effects and tunable surface properties, show promise in VOC sensing and removal applications. Polymers incorporating reduced graphene oxide demonstrate enhanced adsorption capabilities owing to the synergistic effects of graphene and polymer matrices. Activated carbon fibers, characterized by their high aspect ratio and interconnected porosity, provide efficient VOC removal with rapid kinetics. With their unique electronic and structural properties, graphitic carbon nitrides offer opportunities for photocatalytic degradation of VOCs under visible light. Catalysts integrated with MXene, a two-dimensional nanomaterial, exhibit enhanced catalytic activity for VOC oxidation reactions. Using various carbon-based materials in VOC removal showcases the versatility and effectiveness of carbon-based approaches in addressing environmental challenges associated with indoor air pollution. Metal-organic-framework materials are carbon-based compounds. It examines the correlation between VOC mineralization and specific characteristics of carbon materials, including surface area, adsorption capability, surface functional groups, and optoelectronic properties. Discussions include the basics of PCO, variables influencing how well catalysts degrade, and degradation mechanisms. It explores how technology will improve in the future to advance studies on healthy and sustainable indoor air quality.


Assuntos
Poluição do Ar em Ambientes Fechados , Carbono , Grafite , Nanocompostos , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/análise , Nanocompostos/química , Carbono/química , Poluição do Ar em Ambientes Fechados/prevenção & controle , Adsorção , Grafite/química , Carvão Vegetal/química , Poluentes Atmosféricos/química , Poluentes Atmosféricos/análise , Catálise , Pontos Quânticos/química , Polímeros/química
5.
J Fluoresc ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949753

RESUMO

Cellulose nanofiber (CNFs) obtained through TEMPO oxidation was structurally characterized using FT-IR (Fourier Transformed Infrared) and SEM (Scanning Electron Microscopy) spectroscopy. The molecular aggregation and spectroscopic properties of Rhodamine B (Rh-B) in CNFs suspension were investigated using molecular absorption and steady-state fluorescence spectroscopy techniques. The interaction between CNFs particles in the aqueous suspension and the cationic dye compound was examined in comparison to its behavior in deionized water. This interaction led to significant changes in the spectral features of Rh-B, resulting in an increase in the presence of H-dimer and H-aggregate in CNFs suspension. The H-type aggregates of Rh-B in CNFs suspensions were defined by the observation of a blue-shifted absorption band compared to that of the monomer. Even at diluted dye concentrations, the formation of Rh-B's H-aggregate was observed in CNFs suspension. The pronounced aggregation in suspensions originated from the strong interaction between negatively charged carboxylate ions and the dye. The aggregation behavior was discussed with deconvoluted absorption spectra. Fluorescence spectroscopy studies revealed a significant reduction in the fluorescence intensity of the dye in CNFs suspension due to H-aggregates. Furthermore, the presence of H-aggregates in the suspensions caused a decrease in the quantum yield of Rh-B compared to that in deionized water.

6.
Chemosphere ; 361: 142400, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38789052

RESUMO

Supercapacitor electrodes (SCs) of carbon-based materials with flexible structures and morphologies have demonstrated excellent electrical conductivity and chemical stability. Herein, a clean and cost-effective method for producing a 3D self-doped honeycomb-like carbonaceous material with KOH activation from bio-waste oyster shells (BWOSs) is described. A remarkable performance was achieved by the excellent hierarchical structured carbon (HSC-750), which has a large surface area and a reasonably high packing density. The enhanced BWOSs-derived HSC-750 shows an ultrahigh specific capacitance of 525 F/g at 0.5 A g-1 in 3 M KOH electrolyte, as well as high specific surface area (2377 m2 g-1), pore volume (1.35 cm3 g-1), nitrogen (4.70%), and oxygen (10.58%) doping contents. The SCs also exhibit exceptional cyclic stability, maintaining 98.5% of their capacitance after 10,000 charge/discharge cycles. The two-electrode approach provides a super high energy density of 28 Wh kg-1 at a power density of 250 W kg-1 in an alkaline solution, with remarkable cyclability after 10,000 cycles. The study demonstrates the innovative HSC synthesis from BWOSs precursor and cost-effective fabrication of 3D N/O self-doped heteroatom HSC for flexible energy storage.


Assuntos
Carbono , Capacitância Elétrica , Eletrodos , Nitrogênio , Porosidade , Carbono/química , Nitrogênio/química , Animais , Oxigênio/química , Ostreidae/química , Condutividade Elétrica
7.
Chemosphere ; 357: 141965, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38621491

RESUMO

In this work, we report a supercapacitor electrode material based on nano-flower like cobalt molybdate decorated on porous activated carbon derived from waste onion peels (ß-CoMoO4-POAC). The obtained POAC exhibits highly porous structure and after the hydrothermal treatment with salts of cobalt and molybdenum, we observed a uniform distribution of ß-cobalt molybdate (ß-CoMoO4) as nano-flowers on the surface of POAC. The chemical composition, morphology and porosity of the materials were thoroughly analyzed using field emission scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, infrared spectroscopy and Brunauer-Emmet-Teller surface area measurement. Due to its flower like and highly porous morphology, ß-CoMoO4@POAC exhibits a high specific capacitance of 1110.72 F/g at a current density of 1 mA/cm2 with superior cyclic retention of 96.03% after 2000 cycles. The best electrochemical performance exhibited by ß-CoMoO4@POAC is mainly due to its high surface area and porous nature of the material which assists in active transport of ions. This study reveals the exceptional electrochemical properties of ß-CoMoO4@POAC which could be considered as a potential material for advanced energy storage devices.


Assuntos
Cobalto , Capacitância Elétrica , Eletrodos , Molibdênio , Nanocompostos , Molibdênio/química , Cobalto/química , Nanocompostos/química , Porosidade , Carvão Vegetal/química , Carbono/química
8.
Polymers (Basel) ; 16(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38543395

RESUMO

The increasing number of IoT devices has led to more electronic waste production, which harms the environment and human health. Self-powered sensor systems are a solution, but they often use toxic materials. We propose using biocompatible peanut skin as the active material for a self-powered humidity sensor (PSP-SPHS) through integration with a peanut-skin-based triboelectric nanogenerator (PSP-TENG). The PSP-TENG was characterized electrically and showed promising results, including an open circuit voltage (162 V), short circuit current (0.2 µA), and instantaneous power (2.2 mW) at a loading resistance of 20 MΩ. Peanut skin is a great choice for the sensor due to its porous surface, large surface area, eco-friendliness, and affordability. PSP-TENG was further used as a power source for the PSP-humidity sensor. PSP-SPHS worked as a humidity-dependent resistor, whose resistance decreased with increasing relative humidity (%RH), which further resulted in decreasing voltage across the humidity sensor. This proposed PSP-SPHS exhibited a good sensitivity (0.8 V/RH%), fast response/recovery time (4/10 s), along with excellent stability and repeatability, making it a potential candidate for self-powered humidity sensor technology.

9.
Polymers (Basel) ; 16(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38543419

RESUMO

Biodegradable mulching films are a very attractive solution to agronomical practices intended to achieve more successful crop results. And, in this context, the employment of agricultural and industrial food residues as starting material for their production is an alternative with economic and environmental advantages. This work reports the preparation of bilayer films having two different wettability characteristics from three bio-derived biopolymers: TEMPO-oxidized cellulose nanofibers isolated from infused Yerba Mate residues, Chitosan and Polylactic acid. The infused Yerba Mate residues, the isolated and oxidized cellulose nanofibers, and the films were characterized. Nanofibrillation yield, optical transmittance, cationic demand, carboxyl content, intrinsic viscosity, degree of polymerization, specific surface area and length were studied for the (ligno)cellulose nanofibers. Textural and chemical analysis, thermal and mechanical properties studies, as well as water and light interactions were included in the characterization of the films. The bilayer films are promising materials to be used as mulching films.

10.
Polymers (Basel) ; 16(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38337310

RESUMO

Graphene-based materials have been widely studied in the field of supercapacitors. However, their electrochemical properties and applications are still restricted by the susceptibility of graphene-based materials to curling and agglomeration during production. This study introduces a facile method for synthesizing reduced graphene oxide (rGO) nanosheets and activated carbon based on olive stones (OS) with polyaniline (PAni) surface decoration for the development of supercapacitors. Several advanced techniques were used to examine the structural properties of the samples. The obtained PAni@OS-rGO (1:1) electrode exhibits a high electrochemical capacity of 582.6 F·g-1 at a current density of 0.1 A·g-1, and an energy density of 26.82 Wh·kg-1; thus, it demonstrates potential for efficacious energy storage. In addition, this electrode material exhibits remarkable cycling stability, retaining over 90.07% capacitance loss after 3000 cycles, indicating a promising long cycle life. Overall, this research highlights the potential of biomass-derived OS in the presence of PAni and rGO to advance the development of high-performance supercapacitors.

11.
Sci Total Environ ; 921: 171051, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38382616

RESUMO

Glyphosate (Gly) is a massively utilized toxic herbicide exceeding its statutory restrictions, causing adverse environmental and health impacts. Engineered nanomaterials, even though are integral to remediate Gly, their practical use is limited due to time and energy driven purifications, and negative environmental impacts. Here, a 3D wide area (~1.6 ± 0.4 cm2) Cu2O nanoparticle supported biotemplate is designed using fish-scale wastes as a sustainable approach for the ultra-efficient and selective hand-remediation of Gly from real-time samples from agro-farms. While the innate metal binding and reducing ability of collagenous scales aided self-synthesis cum grafting of Cu2O, the selective binding potential of Cu2O to Gly facilitated its hand-retrieval; as assessed using optical characterizations, Fourier transform infrared spectroscopy, thermogravimetric analysis and liquid chromatography mass spectrometry. Optimization studies revealed extractions of diverse pay-loads of Gly between 0.1 µg/mL to 40 µg/mL per 80 mg biotemplate grafted with ~6.354 µg of sub-5 nm Cu2O and was exponential to the number of Cu2O@biotemplates. Even though pH and surfactant didn't have any impact on the adsorption of Gly to the Cu2O@biotemplates, increase in the ionic strength led to a drastic increase in the adsorption. Density function theory simulations unveiled the involvement of phosphonic and carboxylic groups of Gly for interaction with Cu2O with a bond length of 1.826 Å and 1.833 Å, respectively. Overall, our sustainably generated, cost-efficient, hand-retrievable Cu2O supported biotemplate can be generalized to extract diverse organophosphorus toxins from agro-farms and other sewage embodiments. SYNOPSIS: Glyphosate is an excessively applied herbicide with potent health hazards and carcinogenicity. Thus, a hand removable Cu2O-supported biotemplate to selectively and efficiently remediate glyphosate from irrigation water is developed.


Assuntos
Glifosato , Herbicidas , Animais , Herbicidas/química , Água , Tensoativos , Bioengenharia
12.
Heliyon ; 10(3): e25800, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38356509

RESUMO

This article explores the use of phase change materials (PCMs) derived from waste, in energy storage systems. It emphasizes the potential of these PCMs in addressing concerns related to fossil fuel usage and environmental impact. This article also highlights the aspects of these PCMs including reduced reliance on renewable resources minimized greenhouse gas emissions and waste reduction. The study also discusses approaches such as integrating nanotechnology to enhance thermal conductivity and utilizing machine learning and deep learning techniques for predicting dynamic behavior. The article provides an overall view of research on biodegradable waste-based PCMs and how they can play a promising role in achieving energy-efficient and sustainable thermal storage systems. However, specific conclusions drawn from the presented results are not explicitly outlined, leaving room, for investigation and exploration in this evolving field. Artificial neural network (ANN) predictive models for thermal energy storage devices perform differently. With a 4% adjusted mean absolute error, the Gaussian radial basis function kernel Support Vector Regression (SVR) model captured heat-related charging and discharging issues. The ANN model predicted finned tube heat and heat flux better than the numerical model. SVM models outperformed ANN and ANFIS in some datasets. Material property predictions favored gradient boosting, but Linear Regression and SVR models performed better, emphasizing application- and dataset-specific model selection. These predictive models provide insights into the complex thermal performance of building structures, aiding in the design and operation of energy-efficient systems. Biodegradable waste-based PCMs' sustainability includes carbon footprint, waste reduction, biodegradability, and circular economy alignment. Nanotechnology, machine learning, and deep learning improve thermal conductivity and prediction. Circular economy principles include waste reduction and carbon footprint reduction. Specific results-based conclusions are not stated. Presenting a comprehensive overview of current research highlights biodegradable waste-based PCMs' potential for energy-efficient and sustainable thermal storage systems.

13.
J Sci Food Agric ; 104(1): 21-31, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37555350

RESUMO

Agriculture products form the foundation building blocks of our daily lives. Although they have been claimed to be renewable resources with a low carbon footprint, the agricultural community is constantly challenged to overcome two post-harvest bottlenecks: first, farm bio-waste, a substantial economic and environmental burden to the farming sector, and second, an inefficient agricultural processing sector, plagued by the need for significant energy input to generate the products. Both these sectors require extensive processing technologies that are demanding in their energy requirements and expensive. To address these issues, an enzyme(s)-based green chemistry is available to break down complex structures into bio-degradable compounds that source alternate energy with valuable by-products and co-products. α-Galactosidase is a widespread class of glycoside hydroxylases that hydrolyzes α-galactosyl moieties in simple and complex oligo and polysaccharides, glycolipids, and glycoproteins. As a result of its growing importance, in this review we discuss the source of the enzyme, production and purification systems, and enzyme properties. We also elaborate on the enzyme's potential in agricultural bio-waste management, secondary agricultural industries like sugar refining, soymilk derivatives, food and confectionery, and animal feed processing. Insight into this vital enzyme will provide new avenues for less expensive green chemistry-based secondary agricultural processing and agricultural sustainability. © 2023 Society of Chemical Industry.


Assuntos
Gerenciamento de Resíduos , alfa-Galactosidase , Animais , Agricultura , Fazendas , Pegada de Carbono
14.
Waste Manag ; 172: 140-150, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37918307

RESUMO

The progress of civilisation contributes, among other things, to an increase in the mass of waste produced in households. A significant part of it is bio-waste (about 31% in Poland). It is generally agreed that bio-waste is a suitable substrate for valorisation through fermentation with biogas production. Designing new and optimising existing facilities, however, requires precise data on the composition of bio-waste and its properties, which is challenging due to seasonal variability, place of origin (single- or multi-family housing, urban or rural) and collection method. This paper presents the method adopted for conducting the study and the results of an annual, monthly analysis of the morphological composition and selected properties of bio-waste from source-segregated households from 4 rural municipalities and 4 cities, from neighbourhoods with single-family and multi-family housing in Poland. In household bio-waste, the proportion of food waste content ranges from 36.7 to 47.6% (annual average values). The proportion of edible food waste in relation to the total weight of food waste is 5 to 7 times lower. The yearly percentage of garden waste varied from 35.8 to 52.8%. A considerable amount of impurities (such as plastics, glass, and stones) is present in the bio-waste stream. The waste collected in containers in urban areas with multi-family houses is the most polluted (16.6%). The proportion of pollutants in bio-waste collected in bags (rural areas and cities with single-family housing) does not exceed 10%.


Assuntos
Eliminação de Resíduos , Gerenciamento de Resíduos , Eliminação de Resíduos/métodos , Cidades , Alimentos , Habitação , Plásticos , Gerenciamento de Resíduos/métodos
15.
Plant Foods Hum Nutr ; 78(4): 710-719, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37864775

RESUMO

Vegetable wastes are generated during harvesting, processing, and distribution, which implies a wastage of nutrients and evidence inefficiencies in present food systems. Vegetable residues are rich in bioactive compounds, for which their valorisation and reintroduction into the food chain are crucial towards circular economy and food systems sustainability. In this work, upcycled powdered ingredients were obtained from vegetables wastes (carrot, white cabbage, celery, and leek) through a disruption, dehydration and milling process. Disruption pre-treatment at different intensities was followed by freeze-drying or hot-air drying (60 and 70 °C), and final milling to produce fine powders. Powdered products were characterized in terms of physicochemical, antioxidant and technological properties (water and oil interaction), after processing and during four months of storage. Antioxidant properties were generally favoured by hot-air drying, particularly at 70 °C, attributed to new compounds formation combined to less exposure time to drying conditions. The powders showed good water interaction properties, especially freeze-dried ones. Storage had a negative impact on the quality of powders: moisture increased, antioxidant compounds generally diminished, and colour changes were evidenced. Upcycled vegetable waste powders are proposed as ingredients to fortify foods, both processing and storage conditions having an impact on their properties.


Assuntos
Antioxidantes , Verduras , Antioxidantes/análise , Dessecação , Liofilização , Água
16.
Foods ; 12(17)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37685174

RESUMO

In this work, a comparison between the extracts of dehydrated yerba mate (Ilex paraguariensis) and bio-waste of yerba mate leaves from the Brazilian industry was made. The incorporation of the functional extract as a preservative/functional ingredient in a pastry product (pancakes) was tested. The individual profile of phenolic compounds was determined by HPLC-DAD-ESI/MS, and the bioactive potential was assessed using in vitro assays for antioxidant, anti-inflammatory, antimicrobial, and cytotoxic activities. The yerba mate extracts revealed a high antimicrobial potential against the tested strains and a very promising antioxidant and anti-inflammatory action. Additionally, revealed a cytotoxic capacity for MCF-7, CaCo and AGS tumor cell-lines. In the three types of pancakes, after 3 days of storage, the chemical and nutritional characteristics remain unchanged, proving the preservative efficiency of the extract. This study showed the benefits of the use bio-waste from agro-industrial sector, focusing on sustainable production and the development of circular economy.

17.
Waste Manag ; 172: 25-32, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37708809

RESUMO

Inadequate organic waste management have detrimental impact on the environment and on public health. Black soldier fly (BSF) larvae composting is a biological treatment for biodegradable waste that align with circular economy principles. The bioconversion efficiency of bio-waste into larval biomass is influenced by various factors, such as substrate type and the process parameters employed in the larval rearing process. In this study, the influence of these parameters on survival, material reduction (Mat.Red), waste-to-biomass conversion efficiency (BCE) and larval yield per rearing unit was investigated through two sets of experiments. In Experiment 1, the impact of larval density in five distinct rearing substrates was evaluated, while the effect of larval feed dose and substrate depth was assessed in Experiment 2, using a model substrate (dog food). In Experiment 1 it was found that higher larval density lead to an increase in BCE and larval yield, up to a threshold (around 6.25 larvae cm-2). Surpassing this threshold led to the production of smaller larvae, while the yield remained relatively consistent. In Experiment 2 it was found that supplying the substrate in a shallow layer (1-1.5 cm depth) and providing a low feed dose (0.1 g volatile solids (VS) larva-1) led to higher BCE and Mat.Red, albeit with a reduced overall yield per unit. Increasing feed load and substrate depth reduced the conversion efficiency, Mat.Red and larval survival. This study enhances the understanding of the effect of various process parameters used in the BSF larvae treatment, and how they interrelate.


Assuntos
Compostagem , Dípteros , Gerenciamento de Resíduos , Animais , Cães , Larva , Alimentos
18.
J Appl Biomater Funct Mater ; 21: 22808000231180390, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37688383

RESUMO

OBJECTIVES: Dentine hypersensitivity (DH) is a common concern in dentistry that has the potential to restrict daily activities and harm a person's quality of life. In this study, the remineralization characteristics of nano-hydroxyapatite (nHAp) extracted from waste eggshells and fish scales were comparatively assessed. MATERIALS AND METHODS: The extraction methods used to obtain nHAp from both fish scales and eggshells are also described. The effect of the extraction process and bio-waste source on the physicochemical characteristics of the nHAp such as Ca/P ratio, functional groups, crystallinity and phase change, and surface morphology are presented in the study. The remineralization properties were evaluated using dentine models (n = 15). A field scanning electron microscope was used to evaluate the effectiveness of the dentine tubules occlusion. The percentage occluded area for all the specimens was evaluated statistically using a one-way analysis of variance (α = 0.05). RESULTS: The results showed that there were variations in the physicochemical characteristics of the nHAp extracted, including the crystallinity, particle size, and surface morphology, and buffering effects against citric acids. The EnHAp extracted from eggshells had higher crystallinity, superior buffering effects, and smaller particle size compared to the nHAp extracted from fish scales, making it a more favourable material for remineralization of teeth. The statistical evidence showed that there were statistically significant differences in the dentine occluding properties measured in the nHAp (p < 0.001). The highest mean % occluded area was measured with the EnHAp group. CONCLUSIONS: The findings of this study provide insights into the use of bio-waste materials for the development of sustainable and effective products for oral health care.


Assuntos
Durapatita , Casca de Ovo , Animais , Humanos , Durapatita/química , Casca de Ovo/química , Qualidade de Vida , Microscopia Eletrônica de Varredura , Remineralização Dentária/métodos
19.
Tissue Eng Part C Methods ; 29(11): 535-544, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37578128

RESUMO

The management of large amounts of bio-wastes, such as bovine femurs from kitchens and slaughterhouses, has long been a challenging issue. However, through the utilization of a hydrothermal process, it is possible to transform these bio-wastes into valuable products. In this study, we focused on extracting hydroxyapatite (HAp), the primary inorganic component of bovine femurs, for potential use in bone tissue engineering scaffolds. By subjecting the femurs to hydrothermal treatment at varying times and solvents, we successfully decomposed and removed the organic matter present, resulting in the extraction of HAp. To comprehensively evaluate the properties of the extracted HAp, we employed several characterization techniques that provided valuable insights into the structure, morphology, and elemental composition of the extracted HAp. Furthermore, we conducted a Cell Counting Kit-8 assay, which confirmed the favorable biocompatibility of the extracted HAp. Overall, this study highlights the potential of hydrothermal treatment as an environmentally friendly and cost-effective method for handling bio-waste, specifically bovine femurs. The extracted HAp exhibits promising characteristics, making it suitable for a wide range of biomedical applications. This research contributes to the sustainable utilization of bio-waste and underscores the importance of resourceful exploitation for environmental protection.


Assuntos
Durapatita , Alicerces Teciduais , Animais , Bovinos , Durapatita/química , Alicerces Teciduais/química , Engenharia Tecidual , Fêmur
20.
Waste Manag ; 170: 166-176, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37586221

RESUMO

The EU Green Deal aims at solving the challenges related to plastic production, (mis-)use, and pollution. While the bioplastic industry is identified as one of the possible avenues to tackle the problem, bioplastic waste collection and management practices are still far from full-development and harmonisation. To inform policy makers on the best practices and their feasibility, this study quantifies environmental and economic impacts of compostable plastic packaging (CPP) waste management schemes by means of Life Cycle Assessment and Costing. Results show that, with respect to climate change and financial costs, the scheme leading to the highest benefits is collecting CPP with conventional plastic waste followed by mechanical sorting and recycling (saving ca. 306 kg CO2eq. t-1 at a net income of 3.7 EUR t-1). The second best option is collecting CPP with bio-waste followed by biological treatment (saving ca. 69 kg CO2eq. t-1 at a cost of 197 EUR t-1). Collecting CPP with conventional plastics followed by sorting and biological treatment is to be avoided. The trend on the other impact categories generally follows climate change. Ideally, closed loop is therefore preferred, but conditioned by (i) having high share of CPP in municipal waste (else sorting is economically unfeasible), (ii) good citizen's behaviour at source-segregation, and (iii) an established market for secondary material. Currently, overall benefits are limited by the low amounts, suggesting that the management choice could ultimately be based on rather simple technical and economic feasibility criteria while regulatory and management efforts should be focused on other waste streams with greater implications on environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA