Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 212: 108753, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38781637

RESUMO

Biocompounds are metabolites synthesized by plants, with clinically proven capacity in preventing and treating degenerative diseases in humans. Carbon-based nanomaterials (CNMs) are atomic structures that assume different hybridization and shape. Due to the reactive property, CNMs can induce the synthesis of metabolites, such as biocompounds in cells and various plant species, by generating reactive oxygen species (ROS). In response, plants positively or negatively regulate the expression of various families of genes and enzymes involved in physiological and metabolomic pathways of plants, such as carbon and nitrogen metabolism, which are directly involved in plant development and growth. Likewise, ROS can modulate the expression of enzymes and genes related to the adaptation of plants to stress, such as the glutathione ascorbate cycle, the shikimic acid, and phenylpropanoid pathways, from which the largest amount of biocompounds in plants are derived. This document exposes the ability of three CNMs (fullerene, graphene, and carbon nanotubes) to positively or negatively regulate the activity of enzymes and genes involved in various plant species' primary and secondary metabolism. The mechanism of action of CNMs on the production of biocompounds and the effect of the translocation of CNMs on the growth and content of primary metabolites in plants are described. Adverse effects of CNMs on plants, prospects, and possible risks involved are also discussed. The use of CNMs as inducers of biocompounds in plants could have implications and relevance for human health, crop quality, and plant adaptation and resistance to biotic and abiotic stress.


Assuntos
Nanoestruturas , Plantas , Nanoestruturas/química , Plantas/metabolismo , Plantas/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Carbono/metabolismo , Nanotubos de Carbono , Fulerenos/farmacologia , Fulerenos/metabolismo , Grafite
2.
Pharmaceuticals (Basel) ; 16(4)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37111253

RESUMO

Natural product derivatives are essential in searching for compounds with important chemical, biological, and medical applications. Naphthoquinones are secondary metabolites found in plants and are used in traditional medicine to treat diverse human diseases. Considering this, the synthesis of naphthoquinone derivatives has been explored to contain compounds with potential biological activity. It has been reported that the chemical modification of naphthoquinones improves their pharmacological properties by introducing amines, amino acids, furan, pyran, pyrazole, triazole, indole, among other chemical groups. In this systematic review, we summarized the preparation of nitrogen naphthoquinones derivatives and discussed their biological effect associated with redox properties and other mechanisms. Preclinical evaluation of antibacterial and/or antitumoral naphthoquinones derivatives is included because cancer is a worldwide health problem, and there is a lack of effective drugs against multidrug-resistant bacteria. The information presented herein indicates that naphthoquinone derivatives could be considered for further studies to provide drugs efficient in treating cancer and multidrug-resistant bacteria.

3.
Braz. J. Microbiol. ; 49(2): 362-369, Apr.-June 2018. ilus, graf
Artigo em Inglês | VETINDEX | ID: vti-738153

RESUMO

Aspergillus sp., Fusarium sp., and Ramularia sp. were endophytic fungi isolated from Rumex gmelini Turcz (RGT), all of these three strains could produce some similar bioactive secondary metabolites of their host. However the ability to produce active components degraded significantly after cultured these fungi alone for a long time, and were difficult to recover. In order to obtain more bioactive secondary metabolites, the co-culture of tissue culture seedlings of RGT and its endophytic fungi were established respectively, and RGT seedling was selected as producer. Among these fungi, Aspergillus sp. showed the most significant enhancement on bioactive components accumulation in RGT seedlings. When inoculated Aspergillus sp. spores into media of RGT seedlings that had taken root for 20 d, and made spore concentration in co-culture medium was 1 × 104 mL-1, after co-cultured for 12 d, the yield of chrysophaein, resveratrol, chrysophanol, emodin and physcion were 3.52-, 3.70-, 3.60-, 4.25-, 3.85-fold of the control group. The extreme value of musizin yield was 0.289 mg, which was not detected in the control groups. The results indicated that co-culture with endophytic fungi could significantly enhance bioactive secondary metabolites production of RGT seedlings.(AU)

4.
Braz. j. microbiol ; Braz. j. microbiol;49(2): 362-369, Apr.-June 2018. graf
Artigo em Inglês | LILACS | ID: biblio-889228

RESUMO

Abstract Aspergillus sp., Fusarium sp., and Ramularia sp. were endophytic fungi isolated from Rumex gmelini Turcz (RGT), all of these three strains could produce some similar bioactive secondary metabolites of their host. However the ability to produce active components degraded significantly after cultured these fungi alone for a long time, and were difficult to recover. In order to obtain more bioactive secondary metabolites, the co-culture of tissue culture seedlings of RGT and its endophytic fungi were established respectively, and RGT seedling was selected as producer. Among these fungi, Aspergillus sp. showed the most significant enhancement on bioactive components accumulation in RGT seedlings. When inoculated Aspergillus sp. spores into media of RGT seedlings that had taken root for 20 d, and made spore concentration in co-culture medium was 1 × 104 mL-1, after co-cultured for 12 d, the yield of chrysophaein, resveratrol, chrysophanol, emodin and physcion were 3.52-, 3.70-, 3.60-, 4.25-, 3.85-fold of the control group. The extreme value of musizin yield was 0.289 mg, which was not detected in the control groups. The results indicated that co-culture with endophytic fungi could significantly enhance bioactive secondary metabolites production of RGT seedlings.


Assuntos
Humanos , Adolescente , Ascomicetos/metabolismo , Rumex/metabolismo , Rumex/microbiologia , Endófitos/metabolismo , Compostos Fitoquímicos/metabolismo , Ascomicetos/isolamento & purificação , Ascomicetos/crescimento & desenvolvimento , Fatores de Tempo , Técnicas de Cocultura , Rumex/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Plântula/microbiologia , Endófitos/isolamento & purificação , Endófitos/crescimento & desenvolvimento
5.
Braz J Microbiol ; 49(2): 362-369, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29254631

RESUMO

Aspergillus sp., Fusarium sp., and Ramularia sp. were endophytic fungi isolated from Rumex gmelini Turcz (RGT), all of these three strains could produce some similar bioactive secondary metabolites of their host. However the ability to produce active components degraded significantly after cultured these fungi alone for a long time, and were difficult to recover. In order to obtain more bioactive secondary metabolites, the co-culture of tissue culture seedlings of RGT and its endophytic fungi were established respectively, and RGT seedling was selected as producer. Among these fungi, Aspergillus sp. showed the most significant enhancement on bioactive components accumulation in RGT seedlings. When inoculated Aspergillus sp. spores into media of RGT seedlings that had taken root for 20d, and made spore concentration in co-culture medium was 1×104mL-1, after co-cultured for 12d, the yield of chrysophaein, resveratrol, chrysophanol, emodin and physcion were 3.52-, 3.70-, 3.60-, 4.25-, 3.85-fold of the control group. The extreme value of musizin yield was 0.289mg, which was not detected in the control groups. The results indicated that co-culture with endophytic fungi could significantly enhance bioactive secondary metabolites production of RGT seedlings.


Assuntos
Ascomicetos/metabolismo , Endófitos/metabolismo , Compostos Fitoquímicos/metabolismo , Rumex/metabolismo , Rumex/microbiologia , Adolescente , Ascomicetos/crescimento & desenvolvimento , Ascomicetos/isolamento & purificação , Técnicas de Cocultura , Endófitos/crescimento & desenvolvimento , Endófitos/isolamento & purificação , Humanos , Rumex/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Plântula/microbiologia , Fatores de Tempo
6.
Artigo em Inglês | VETINDEX | ID: vti-739175

RESUMO

Abstract Aspergillus sp., Fusarium sp., and Ramularia sp. were endophytic fungi isolated from Rumex gmelini Turcz (RGT), all of these three strains could produce some similar bioactive secondary metabolites of their host. However the ability to produce active components degraded significantly after cultured these fungi alone for a long time, and were difficult to recover. In order to obtain more bioactive secondary metabolites, the co-culture of tissue culture seedlings of RGT and its endophytic fungi were established respectively, and RGT seedling was selected as producer. Among these fungi, Aspergillus sp. showed the most significant enhancement on bioactive components accumulation in RGT seedlings. When inoculated Aspergillus sp. spores into media of RGT seedlings that had taken root for 20 d, and made spore concentration in co-culture medium was 1 × 104 mL-1, after co-cultured for 12 d, the yield of chrysophaein, resveratrol, chrysophanol, emodin and physcion were 3.52-, 3.70-, 3.60-, 4.25-, 3.85-fold of the control group. The extreme value of musizin yield was 0.289 mg, which was not detected in the control groups. The results indicated that co-culture with endophytic fungi could significantly enhance bioactive secondary metabolites production of RGT seedlings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA