Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 277(Pt 2): 134058, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39038576

RESUMO

A robust and stable carbonic anhydrase (CA) system is indispensable for effectively sequestering carbon dioxide to mitigate climate change. While microbial surface display technology has been employed to construct an economically promising cell-displayed CO2-capturing biocatalyst, the displayed CA enzymes were prone to inactivation due to their low stability in harsh conditions. Herein, drawing inspiration from biomineralized diatom frustules, we artificially introduced biosilica shell materials to the CA macromolecules displayed on Escherichia coli surfaces. Specifically, we displayed a fusion of CA and the diatom-derived silica-forming Sil3K peptide (CA-Sil3K) on the E. coli surface using the membrane anchor protein Lpp-OmpA linker. The displayed CA-Sil3K (dCA-Sil3K) fusion protein underwent a biosilicification reaction under mild conditions, resulting in nanoscale self-encapsulation of the displayed enzyme in biosilica. The biosilicified dCA-Sil3K (BS-dCA-Sil3K) exhibited improved thermal, pH, and protease stability and retained 63 % of its initial activity after ten reuses. Additionally, the BS-dCA-Sil3K biocatalyst significantly accelerated the CaCO3 precipitation rate, reducing the time required for the onset of CaCO3 formation by 92 % compared to an uncatalyzed reaction. Sedimentation of BS-dCA-Sil3K on a membrane filter demonstrated a reliable CO2 hydration application with superior long-term stability under desiccation conditions. This study may open new avenues for the nanoscale-encapsulation of enzymes with biosilica, offering effective strategies to provide efficient, stable, and economic cell-displayed biocatalysts for practical applications.


Assuntos
Dióxido de Carbono , Anidrases Carbônicas , Escherichia coli , Dióxido de Silício , Anidrases Carbônicas/metabolismo , Anidrases Carbônicas/química , Anidrases Carbônicas/genética , Dióxido de Carbono/metabolismo , Dióxido de Carbono/química , Escherichia coli/genética , Escherichia coli/metabolismo , Dióxido de Silício/química , Biocatálise , Estabilidade Enzimática , Sequestro de Carbono , Concentração de Íons de Hidrogênio , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/química , Carbonato de Cálcio/química , Carbonato de Cálcio/metabolismo , Enzimas Imobilizadas/metabolismo , Enzimas Imobilizadas/química
2.
BMC Genomics ; 25(1): 560, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840265

RESUMO

BACKGROUND: Nitzschia closterium f. minutissima is a commonly available diatom that plays important roles in marine aquaculture. It was originally classified as Nitzschia (Bacillariaceae, Bacillariophyta) but is currently regarded as a heterotypic synonym of Phaeodactylum tricornutum. The aim of this study was to obtain the draft genome of the marine microalga N. closterium f. minutissima to understand its phylogenetic placement and evolutionary specialization. Given that the ornate hierarchical silicified cell walls (frustules) of diatoms have immense applications in nanotechnology for biomedical fields, biosensors and optoelectric devices, transcriptomic data were generated by using reference genome-based read mapping to identify significantly differentially expressed genes and elucidate the molecular processes involved in diatom biosilicification. RESULTS: In this study, we generated 13.81 Gb of pass reads from the PromethION sequencer. The draft genome of N. closterium f. minutissima has a total length of 29.28 Mb, and contains 28 contigs with an N50 value of 1.23 Mb. The GC content was 48.55%, and approximately 18.36% of the genome assembly contained repeat sequences. Gene annotation revealed 9,132 protein-coding genes. The results of comparative genomic analysis showed that N. closterium f. minutissima was clustered as a sister lineage of Phaeodactylum tricornutum and the divergence time between them was estimated to be approximately 17.2 million years ago (Mya). CAFF analysis demonstrated that 220 gene families that significantly changed were unique to N. closterium f. minutissima and that 154 were specific to P. tricornutum, moreover, only 26 gene families overlapped between these two species. A total of 818 DEGs in response to silicon were identified in N. closterium f. minutissima through RNA sequencing, these genes are involved in various molecular processes such as transcription regulator activity. Several genes encoding proteins, including silicon transporters, heat shock factors, methyltransferases, ankyrin repeat domains, cGMP-mediated signaling pathways-related proteins, cytoskeleton-associated proteins, polyamines, glycoproteins and saturated fatty acids may contribute to the formation of frustules in N. closterium f. minutissima. CONCLUSIONS: Here, we described a draft genome of N. closterium f. minutissima and compared it with those of eight other diatoms, which provided new insight into its evolutionary features. Transcriptome analysis to identify DEGs in response to silicon will help to elucidate the underlying molecular mechanism of diatom biosilicification in N. closterium f. minutissima.


Assuntos
Diatomáceas , Perfilação da Expressão Gênica , Filogenia , Diatomáceas/genética , Diatomáceas/metabolismo , Diatomáceas/classificação , Genoma , Transcriptoma , Anotação de Sequência Molecular
3.
Int J Biol Macromol ; 269(Pt 2): 132196, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723818

RESUMO

Enzymatic synthesis of biochemicals in vitro is vital in synthetic biology for its efficiency, minimal by-products, and easy product separation. However, challenges like enzyme preparation, stability, and reusability persist. Here, we introduced a protein scaffold and biosilicification coupled system, providing a singular process for the purification and immobilization of multiple enzymes. Using d-mannitol as a model, we initially constructed a self-assembling EE/KK protein scaffold for the co-immobilization of glucose dehydrogenase and mannitol dehydrogenase. Under an enzyme-to-scaffold ratio of 1:8, a d-mannitol yield of 0.692 mol/mol was achieved within 4 h, 2.16-fold higher than the free enzymes. The immobilized enzymes retained 70.9 % of the initial joint activity while the free ones diminished nearly to inactivity after 8 h. Furthermore, we incorporated the biosilicification peptide CotB into the EE/KK scaffold, inducing silica deposition, which enabled the one-step purification and immobilization process assisted by Spy/Snoop protein-peptide pairs. The coupled system demonstrated a comparable d-mannitol yield to that of EE/KK scaffold and 1.34-fold higher remaining activities after 36 h. Following 6 cycles of reaction, the immobilized system retained the capability to synthesize 56.4 % of the initial d-mannitol titer. The self-assembly co-immobilization platform offers an effective approach for enzymatic synthesis of d-mannitol and other biochemicals.


Assuntos
Enzimas Imobilizadas , Manitol , Manitol/química , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Glucose 1-Desidrogenase/metabolismo , Glucose 1-Desidrogenase/química , Manitol Desidrogenases/metabolismo , Manitol Desidrogenases/química
4.
J Biosci Bioeng ; 137(4): 254-259, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342665

RESUMO

Biosilicification is the process by which organisms incorporate soluble, monomeric silicic acid, Si(OH)4, in the form of polymerized insoluble silica, SiO2. Although the mechanisms underlying eukaryotic biosilicification have been intensively investigated, prokaryotic biosilicification has only recently begun to be studied. We previously reported that biosilicification occurs in the gram-positive, spore-forming bacterium Bacillus cereus, and that silica is intracellularly deposited on the spore coat as a protective coating against acids, although the underlying mechanism is not yet fully understood. In eukaryotic biosilicifying organisms, such as diatoms and siliceous sponges, several relevant biomolecules are embedded in biogenic silica (biosilica). These biomolecules include peptides, proteins, and long-chain polyamines. In this study, we isolated organic compounds embedded in B. cereus biosilica to investigate the biomolecules involved in the prokaryotic biosilicification process and identified long-chain polyamines with a chemical structure of H2N-(CH2)4-[NH-(CH2)3]n-NH2 (n: up to 55). Our results demonstrate the common presence of long-chain polyamines in different evolutionary lineages of biosilicifying organisms, i.e., diatoms, siliceous sponges, and B. cereus, suggesting a common mechanism underlying eukaryotic and prokaryotic biosilicification.


Assuntos
Diatomáceas , Poliaminas , Poliaminas/metabolismo , Dióxido de Silício/química , Bacillus cereus , Proteínas/química , Esporos/metabolismo , Diatomáceas/metabolismo
5.
Membranes (Basel) ; 13(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37999355

RESUMO

The lack of information on structural basis where proteins are involved, as well as the biomineralization processes of different systems such as bones, diatom frustules, and eggshells, have intrigued scientists from different fields for decades. This scientific curiosity has led to the use of methodologies that help understand the mechanism involved in the formation of these complex structures. Therefore, this work focuses on the use of eggshell membranes from different species of ratites (emu and ostrich) and reptiles (two species of crocodiles) as a model to differentiate biocalcification and biosilicification by introducing calcium phosphate or silica inside the membrane fiber mantles. We performed this to obtain information about the process of eggshell formation as well as the changes that occur in the membrane during crystal formation. In order to identify and understand the early processes leading to the formation of the microstructures present in the eggshell, we decided to carry out the synthesis of silica-carbonate of calcium, barium, and strontium called biomorph in the presence of intramineral proteins. This was carried out to evaluate the influence of these proteins on the formation of specific structures. We found that the proteins on untreated membranes, present a structural growth similar to those observed in the inner part of the eggshell, while in treated membranes, the structures formed present a high similarity with those observed in the outer and intermediate part of the eggshell. Finally, a topographic and molecular analysis of the biomorphs and membranes was performed by scanning electron microscopy (SEM), Raman and Fourier-transform Infrared (FTIR) spectroscopies.

6.
Plant Signal Behav ; 18(1): 2233179, 2023 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-37431740

RESUMO

Biomineralization in plant roots refers to the process of cell-induced self-assembly to form nanostructures on the root surface. Silicon (Si) is the second most abundant element in soils, and beneficial to plant growth. Meanwhile, silicon is shown to participate in the process of biomineralization, which is useful for improving mechanical strength and alleviating biotic and abiotic stress, for example silicic acid polymerizes to form amorphous silica (SiO2-nH2O) in the process of growing to resist fungi and environmental stress. This process alters physical and chemical properties of cell wall. However, the mechanistic basis of this process remains unclear. Aluminum toxicity is a major constraint affecting plant performance in acid soil. This paper summarizes recent research advances in the field of plant biomineralization and describes the effects of silicon biomineralization on plant aluminum tolerance and its adaptive significance, using aluminum toxicity as a case study.


Assuntos
Dióxido de Silício , Silício , Silício/farmacologia , Alumínio/toxicidade , Biomineralização , Ciclo Celular , Solo
7.
Appl Environ Microbiol ; 89(6): e0204822, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37184266

RESUMO

The Fe content and the morphometry of asbestos are two major factors linked to its toxicity. This study explored the use of microbe-mineral interactions between asbestos (and asbestos-like) minerals and thermophilic chemolithoautotrophic microorganisms as possible mineral dissolution treatments targeting their toxic properties. The removal of Fe from crocidolite was tested through chemolithoautotrophic Fe(III) reduction activities at 60°C. Chrysotile and tremolite-actinolite were tested for dissolution and potential release of elements like Si and Mg through biosilicification processes at 75°C. Our results show that chemolithoautotrophic Fe(III) reduction activities by Deferrisoma palaeochoriense were supported with crocidolite as the sole source of Fe(III) used as a terminal electron acceptor during respiration. Microbial Fe(III) reduction activities resulted in higher Fe release rates from crocidolite in comparison to previous studies on Fe leaching from crocidolite through Fe assimilation activities by soil fungi. Evidence of biosilicification in Thermovibrio ammonificans did not correspond with increased Si and Mg release from chrysotile or tremolite-actinolite dissolution. However, overall Si and Mg release from chrysotile into our experimental medium outmatched previously reported capabilities for Si and Mg release from chrysotile by fungi. Differences in the profiles of elements released from chrysotile and tremolite-actinolite during microbe-mineral experiments with T. ammonificans underscored the relevance of underlying crystallochemical differences in driving mineral dissolution and elemental bioavailability. Experimental studies targeting the interactions between chemolithoautotrophs and asbestos (or asbestos-like) minerals offer new access to the mechanisms behind crystallochemical mineral alterations and their role in the development of tailored asbestos treatments. IMPORTANCE We explored the potential of chemosynthetic microorganisms growing at high temperatures to induce the release of key elements (mainly iron, silicon, and magnesium) involved in the known toxic properties (iron content and fibrous mineral shapes) of asbestos minerals. We show for the first time that the microbial respiration of iron from amphibole asbestos releases some of the iron contained in the mineral while supporting microbial growth. Another microorganism imposed on the two main types of asbestos minerals (serpentines and amphiboles) resulted in distinct elemental release profiles for each type of asbestos during mineral dissolution. Despite evidence of microbially mediated dissolution in all minerals, none of the microorganisms tested disrupted the structure of the asbestos mineral fibers. Further constraints on the relationships between elemental release rates, amount of starting asbestos, reaction volumes, and incubation times will be required to better compare asbestos dissolution treatments studied to date.


Assuntos
Asbestos Serpentinas , Amianto , Asbestos Serpentinas/química , Asbesto Crocidolita , Compostos Férricos , Amianto/química , Minerais , Ferro/química , Bactérias Anaeróbias
8.
Mater Today Bio ; 17: 100461, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36278145

RESUMO

Nature has a vast array of biomineralization mechanisms. The commonly shared mechanism by many living organisms to form hardened tissues is the nucleation of mineral structures via proteins. Living materials, thanks to synthetic biology, are providing many opportunities to program cells for many functionalities. Here we have demonstrated a living material system for biosilicification. Silaffins are utilized to synthesize silicified cell walls by one of the most abundant organism groups called diatoms. The R5 peptide motif of the silaffins is known for its ability to precipitate silica in ambient conditions. Therefore, various studies have been conducted to implement the silicification activity of R5 in different application areas, such as regenerative medicine and tissue engineering. However, laborious protein purification steps are required prior to silica nanoparticle production in recombinant approaches. In this study, we aimed to engineer an alternative bacterial platform to achieve silicification using released and bacteria-intact forms of R5-attached fluorescent proteins (FP). Hence, we displayed R5-FP hybrids on the cell surface of E. coli via antigen 43 (Ag43) autotransporter system and managed to demonstrate heat-controllable release from the surface. We also showed that the bacteria cells displaying R5-FP can be used in silicification reactions. Lastly, considering the stimulating effect of silica on osteogenic differentiation, we treated human dental pulp stem cells (hDPSCs) with the silica aggregates formed via R5-FP hybrids. Earlier calcium crystal deposition around the hDPSCs was observed. We envision that our platform can serve as a faster and more economical alternative for biosilicification applications, including endodontics.

9.
Microb Cell Fact ; 21(1): 94, 2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35643504

RESUMO

BACKGROUND: NADPH is used as a reductant in various biosynthetic reactions. Cell-free bio-systems have gained considerable attention owing to their high energy utilization and time efficiency. Efforts have been made to continuously supply reducing power to the reaction mixture in a cyclical manner. The thylakoid membrane (TM) is a promising molecular energy generator, producing NADPH under light. Thus, TM sustainability is of major relevance for its in vitro utilization. RESULTS: Over 70% of TMs prepared from Synechocystis sp. PCC6803 existed in a sealed vesicular structure, with the F1 complex of ATP synthase facing outward (right-side-out), producing NADPH and ATP under light. The NADPH generation activity of TM increased approximately two-fold with the addition of carbonyl cyanide-p-(trifluoromethoxy) phenylhydrazone (FCCP) or removal of the F1 complex using EDTA. Thus, the uncoupling of proton translocation from the electron transport chain or proton leakage through the Fo complex resulted in greater NADPH generation. Biosilicified TM retained more than 80% of its NADPH generation activity after a week at 30°C in the dark. However, activity declined sharply to below 30% after two days in light. The introduction of engineered water-forming NADPH oxidase (Noxm) to keep the electron transport chain of TM working resulted in the improved sustainability of NADPH generation activity in a ratio (Noxm to TM)-dependent manner, which correlated with the decrease of singlet oxygen generation. Removal of reactive oxygen species (ROS) by catalase further highlighted the sustainable NADPH generation activity of up to 80% in two days under light. CONCLUSION: Reducing power generated by light energy has to be consumed for TM sustainability. Otherwise, TM can generate singlet oxygen, causing oxidative damage. Thus, TMs should be kept in the dark when not in use. Although NADPH generation activity by TM can be extended via silica encapsulation, further removal of hydrogen peroxide results in an improvement of TM sustainability. Therefore, as long as ROS formation by TM in light is properly handled, it can be used as a promising source of reducing power for in vitro biochemical reactions.


Assuntos
Synechocystis , Trifosfato de Adenosina , NADP , Prótons , Espécies Reativas de Oxigênio , Oxigênio Singlete , Tilacoides
10.
Polymers (Basel) ; 13(15)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34372054

RESUMO

Capturing and storing CO2 is of prime importance. The rate of CO2 sequestration is often limited by the hydration of CO2, which can be greatly accelerated by using carbonic anhydrase (CA, EC 4.2.1.1) as a catalyst. In order to improve the stability and reusability of CA, a silica-condensing peptide (R5) was fused with the fastest known CA from Sulfurihydrogenibium azorense (SazCA) to form R5-SazCA; the fusion protein successfully performed in vitro silicification. The entrapment efficiency reached 100% and the silicified form (R5-SazCA-SP) showed a high activity recovery of 91%. The residual activity of R5-SazCA-SP was two-fold higher than that of the free form when stored at 25 °C for 35 days; R5-SazCA-SP still retained 86% of its activity after 10 cycles of reuse. Comparing with an uncatalyzed reaction, the time required for the onset of CaCO3 formation was shortened by 43% and 33% with the addition of R5-SazCA and R5-SazCA-SP, respectively. R5-SazCA-SP shows great potential as a robust and efficient biocatalyst for CO2 sequestration because of its high activity, high stability, and reusability.

11.
J Colloid Interface Sci ; 601: 78-84, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34058554

RESUMO

Iron oxide nanoparticles have been extensively studied for a wide variety of applications. However, there remains a challenge in developing hierarchical magnetic iron oxide nanoparticles as existing synthetic techniques require harsh, toxic chemical conditions and high temperatures or give poorly defined product with weak magnetic properties. In addition, drug loading is limited to post-loading methods such as chemical conjugation or surface adsorption that have poor loading efficiency and are prone to premature drug release. We report a facile biomimetic method for making iron oxide nanoparticle-loaded silica nanocapsules based on a bimodal catalytic peptide surfactant stabilized nanoemulsion template. Iron oxide nanoparticles can be preloaded into the oil phase of the nanoemulsion at tunable concentrations, and the excellent surface activity of the designed bimodal peptide in combination with sufficient electrostatic repulsion promotes the stability of the nanoemulsions. Biosilicification induced by the catalytic peptide module leads to the formation of silica shell nanocapsules containing a magnetic oil core. The bioinspired silica nanocapsules encapsulating iron oxide nanoparticles demonstrate the next-generation of magnetic nanostructures for drug delivery applications.


Assuntos
Nanocápsulas , Sistemas de Liberação de Medicamentos , Compostos Férricos , Dióxido de Silício
12.
Biomater Res ; 25(1): 13, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33883043

RESUMO

BACKGROUND: Bioceramic ß-tricalcium phosphate (ß-TCP) is used as a bone-grafting material and a therapeutic drug carrier for treatment of bone defects in the oral and maxillofacial regions due to the osteoconductivity and biocompatibility. However, the low mechanical strength and limited osteoinductivity of ß-TCP agglomerate restrict bone regenerating performance in clinical settings. METHODS: Herein, a biomimetic composite is proposed as a bone morphogenetic protein-2 (BMP-2)-delivering bone graft substitute to achieve a robust bone grafting and augmented bone regeneration. RESULTS: The sequential processes of brown algae-inspired biosilicification and collagen coating on the surface of ß-TCP enable the effective incorporation of BMP-2 into the coating layer without losing its bioactivity. The sustained delivery of BMP-2 from the biosilicated collagen and ß-TCP composites promoted in vitro osteogenic behaviors of pre-osteoblasts and remarkedly accelerated in vivo bone regeneration within a rat calvarial bone defect. CONCLUSIONS: Our multicomposite bone substitutes can be practically applied to improve bone tissue growth in bone grafting applications with further expansion to general bone tissue engineering.

13.
Biosci Biotechnol Biochem ; 85(6): 1324-1331, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-33877302

RESUMO

Biosilicification is the process by which organisms incorporate soluble, monomeric silicic acid, Si(OH)4, in the form of polymerized insoluble silica, SiO2. Biosilicifying eukaryotes, including diatoms, siliceous sponges, and higher plants, have been the targets of intense research to study the molecular mechanisms underlying biosilicification. By contrast, prokaryotic biosilicification has been less well studied, partly because the biosilicifying capability of well-known bacteria was not recognized until recently. This review summarizes recent findings on bacterial extracellular and intracellular biosilicification, the latter of which has been demonstrated only recently in bacteria. The topics discussed herein include bacterial (and archaeal) extracellular biosilicification in geothermal environments, encapsulation of Bacillus spores within a silica layer, and silicon accumulation in marine cyanobacteria. The possible contribution of bacterial biosilicification to the global silicon cycle is also discussed.


Assuntos
Bactérias/metabolismo , Silício/metabolismo
14.
Biotechnol Biofuels ; 14(1): 67, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33722279

RESUMO

BACKGROUND: Cumulative reported evidence has indicated that renewable feedstocks are a promising alternative source to fossil platforms for the production of fuels and chemicals. In that regard, the development of new, highly active, selective, and easy to recover and reuse catalysts for biomass conversions is urgently needed. The combination of enzymatic and inorganic heterogeneous catalysis generates an unprecedented platform that combines the advantages of both, the catalytic efficiency and selectivity of enzymes with the ordered structure, high porosity, mechanical, thermal and chemical resistance of mesoporous materials to obtain enzymatic heterogeneous catalysts. Enzymatic mineralization with an organic silicon precursor (biosilicification) is a promising and emerging approach for the generation of solid hybrid biocatalysts with exceptional stability under severe use conditions. Herein, we assessed the putative advantages of the biosilicification technology for developing an improved efficient and stable biocatalyst for sustainable biofuel production. RESULTS: A series of solid enzymatic catalysts denominated LOBE (low ordered biosilicified enzyme) were synthesized from Pseudomonas fluorescens lipase and tetraethyl orthosilicate. The microscopic structure and physicochemical properties characterization revealed that the enzyme formed aggregates that were contained in the heart of silicon-covered micelles, providing active sites with the ability to process different raw materials (commercial sunflower and soybean oils, Jatropha excisa oil, waste frying oil, acid oil from soybean soapstock, and pork fat) to produce first- and second-generation biodiesel. Ester content ranged from 81 to 93% wt depending on the raw material used for biodiesel synthesis. CONCLUSIONS: A heterogeneous enzymatic biocatalyst, LOBE4, for efficient biodiesel production was successfully developed in a single-step synthesis reaction using biosilicification technology. LOBE4 showed to be highly efficient in converting refined, non-edible and residual oils (with high water and free fatty acid contents) and ethanol into biodiesel. Thus, LOBE4 emerges as a promising tool to produce second-generation biofuels, with significant implications for establishing a circular economy and reducing the carbon footprint.

15.
Acta Biomater ; 120: 38-56, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-32447061

RESUMO

The rational design and controllable synthesis of functional silica-based materials have gained increased interest in a variety of biomedical and biotechnological applications due to their unique properties. The current review shows that marine organisms, such as siliceous sponges and diatoms, could be the inspiration for the fabrication of advanced biohybrid materials. Several biomolecules were involved in the molecular mechanism of biosilicification in vivo. Mimicking their behavior, functional silica-based biomaterials have been generated via biomimetic and bioinspired silicification in vitro. Additionally, several advanced technologies were developed for in vitro and in vivo immobilization of biomolecules with potential applications in biocatalysis, biosensors, bioimaging, and immunoassays. A thin silica layer could coat a single living cell or virus as a protective shell offering new opportunities in biotechnology and nanomedicine fields. Promising nanotechnologies have been developed for drug encapsulation and delivery in a targeted and controlled manner, in particular for poorly soluble hydrophobic drugs. Moreover, biomimetic silica, as a morphogenetically active biocompatible material, has been utilized in the field of bone regeneration and in the development of biomedical implantable devices. STATEMENT OF SIGNIFICANCE: In nature, silica-based biomaterials, such as diatom frustules and sponge spicules, with high mechanical and physical properties were created under biocompatible conditions. The fundamental knowledge underlying the molecular mechanisms of biosilica formation could inspire engineers and chemists to design novel hybrid biomaterials using molecular biomimetic strategies. The production of such biohybrid materials brings the biosilicification field closer to practical applications. This review starts with the biosilicification process of sponges and diatoms with recently updated researches. Then, this article covers recent advances in the design of silica-based biomaterials and their potential applications in the fields of biotechnology and nanomedicine, highlighting several promising technologies for encapsulation of functional proteins and living cells, drug delivery and the preparation of scaffolds for bone regeneration.


Assuntos
Materiais Biomiméticos , Diatomáceas , Materiais Biocompatíveis , Biomimética , Nanomedicina , Dióxido de Silício
16.
Acta Biomater ; 120: 203-212, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33160114

RESUMO

Understanding the properties and behavior of biomineralized protein-based materials at the organic-inorganic interface is critical to optimize the performance of such materials for biomedical applications. To that end, this work investigates biomineralized protein-based films with applications for bone regeneration. These films were generated using a chimeric protein fusing the consensus repeat derived from the spider Nephila clavipes major ampullate dragline silk with the silica-promoting peptide R5 derived from the Cylindrotheca fusiformis silaffin gene. The effect of pH on the size of silica nanoparticles during their biomineralization on silk films was investigated, as well as the potential impact of nanoparticle size on the differentiation of human mesenchymal stem cells (hMSCs) into osteoblasts. To that end, induction of the integrin αV subunit and the osteogenic markers Runx2 transcription factor and Bone Sialoprotein (BSP) was followed. The results indicated that pH values of 7-8 during biomineralization maximized the coverage of the film surface by silica nanoparticles yielding nanoparticles ranging 200-500 nm and showing enhanced osteoinduction in gene expression analysis. Lower (3-5) or high (10) pH values led to lower biomineralization and poor coverage of the protein surfaces, showing reduced osteoinduction. Molecular dynamics simulations confirmed the activation of the integrin αVß3 in contact with silica nanoparticles, correlating with the experimental data on the induction of osteogenic markers. This work sheds light on the optimal conditions for the development of fit-for-purpose biomaterial designs for bone regeneration, while the agreement between experimental and computational results shows the potential of computational methods to predict the expression of osteogenic markers for biomaterials. STATEMENT OF SIGNIFICANCE: The ability of biomineralized materials to induce hMSCs differentiation for bone tissue regeneration applications was analyzed. Biomaterials were created using a recombinant protein formed by the consensus repeat derived from the spider Nephila clavipes major ampullate dragline silk and the silica-promoting peptide R5 derived from the Cylindrotheca fusiformis silaffin gene. A combination of computational and experimental techniques revealed the optimal conditions for the synthesis of biomineralized silk-silica films with enhanced expression of markers related to bone regeneration.


Assuntos
Nanocompostos , Nanopartículas , Aranhas , Animais , Humanos , Dióxido de Silício , Seda
17.
Plants (Basel) ; 9(11)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33233677

RESUMO

Silicon (Si) accumulation protects plants from biotic and abiotic stresses. It is transported and distributed within the plant body through a cooperative system of channel type (e.g., OsLsi1) and efflux (Lsi2s e.g., OsLsi2) Si transporters (SITs) that belong to Noduline-26 like intrinsic protein family of aquaporins and an uncharacterized anion transporter family, respectively. Si is deposited in plant tissues as phytoliths and the process is known as biosilicification but the knowledge about the proteins involved in this process is limited. In the present study, we explored channel type SITs and Lsi2s, and siliplant1 protein (Slp1) in 80 green plant species. We found 80 channel type SITs and 133 Lsi2s. The channel type SITs characterized by the presence of two NPA motifs, GSGR or STAR selectivity filter, and 108 amino acids between two NPA motifs were absent from Chlorophytes, while Streptophytes evolved two different types of channel type SITs with different selectivity filters. Both channel type SITs and Lsi2s evolved two types of gene structures each, however, Lsi2s are ancient and were also found in Chlorophyta. Homologs of Slp1 (225) were present in almost all Streptophytes regardless of their Si accumulation capacity. In Si accumulator plant species, the Slp1s were characterized by the presence of H, D-rich domain, P, K, E-rich domain, and P, T, Y-rich domain, while moderate Si accumulators lacked H, D-rich domain and P, T, Y-rich domains. The digital expression analysis and coexpression networks highlighted the role of channel type and Lsi2s, and how Slp1 homologs were ameliorating plants' ability to withstand different stresses by co-expressing with genes related to structural integrity and signaling. Together, the in-silico exploration made in this study increases our knowledge of the process of biosilicification in plants.

18.
Adv Mater ; 31(49): e1904341, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31621958

RESUMO

Current approaches to fabrication of nSC composites for bone tissue engineering (BTE) have limited capacity to achieve uniform surface functionalization while replicating the complex architecture and bioactivity of native bone, compromising application of these nanocomposites for in situ bone regeneration. A robust biosilicification strategy is reported to impart a uniform and stable osteoinductive surface to porous collagen scaffolds. The resultant nSC composites possess a native-bone-like porous structure and a nanosilica coating. The osteoinductivity of the nSC scaffolds is strongly dependent on the surface roughness and silicon content in the silica coating. Notably, without the use of exogenous cells and growth factors (GFs), the nSC scaffolds induce successful repair of a critical-sized calvarium defect in a rabbit model. It is revealed that topographic and chemical cues presented by nSC scaffolds could synergistically activate multiple signaling pathways related to mesenchymal stem cell recruitment and bone regeneration. Thus, this facile surface biosilicification approach could be valuable by enabling production of BTE scaffolds with large sizes, complex porous structures, and varied osteoinductivity. The nanosilica-functionalized scaffolds can be implanted via a cell/GF-free, one-step surgery for in situ bone regeneration, thus demonstrating high potential for clinical translation in treatment of massive bone defects.


Assuntos
Regeneração Óssea , Colágeno/química , Nanoestruturas/química , Dióxido de Silício/química , Alicerces Teciduais/química , Animais , Materiais Biomiméticos/química , Biomimética , Células Cultivadas , Materiais Revestidos Biocompatíveis/química , Células-Tronco Mesenquimais/citologia , Nanoestruturas/ultraestrutura , Osteogênese , Porosidade , Coelhos , Crânio/lesões , Crânio/fisiologia
19.
Plants (Basel) ; 8(8)2019 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-31357485

RESUMO

Silica is deposited extra- and intracellularly in plants in solid form, as phytoliths. Phytoliths have emerged as accepted taxonomic tools and proxies for reconstructing ancient flora, agricultural economies, environment, and climate. The discovery of silicon transporter genes has aided in the understanding of the mechanism of silicon transport and deposition within the plant body and reconstructing plant phylogeny that is based on the ability of plants to accumulate silica. However, a precise understanding of the process of silica deposition and the formation of phytoliths is still an enigma and the information regarding the proteins that are involved in plant biosilicification is still scarce. With the observation of various shapes and morphologies of phytoliths, it is essential to understand which factors control this mechanism. During the last two decades, significant research has been done in this regard and silicon research has expanded as an Earth-life science superdiscipline. We review and integrate the recent knowledge and concepts on the uptake and transport of silica and its deposition as phytoliths in plants. We also discuss how different factors define the shape, size, and chemistry of the phytoliths and how biosilicification evolved in plants. The role of channel-type and efflux silicon transporters, proline-rich proteins, and siliplant1 protein in transport and deposition of silica is presented. The role of phytoliths against biotic and abiotic stress, as mechanical barriers, and their use as taxonomic tools and proxies, is highlighted.

20.
Int J Biol Macromol ; 134: 1156-1169, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31128196

RESUMO

Bioinspired silicification is an attractive route for achieving unique silica nanocomposites. Herein, a novel, facile and inexpensive route for biosilica synthesis is developed using the stimuli-responsive elastin-like polypeptide (ELP). The ELP is precisely tailored to a silica-mineralizing peptide by programming it with lysine residues. The resulting cationic ELP[KV8F-40] is purified in ultrahigh yield using a chromatography-free ITC purification technique based on thermal-responsive property. Excitingly, the specific activity of ELP is 40-fold higher than that of silaffin. Besides, efficient and strong entrapment of ELP is achieved with over 98% of immobilization yield and less than 2% of leakage. These imply that cationic ELP may be used as a bifunctional tag (purification and immobilization) for fusion protein. An enzyme (xylanase) is therefore chosen to genetically fuse to ELP. The ELP-fused xylanase is purified by ELP with high purity (~98%) and enables the rapid (within minutes) self-immobilization. The immobilization yield was greater than 95%, and the immobilized xylanases hardly leaked from the silica matrix, demonstrating high efficiency of the self-immobilization process. The strategy developed here may provide a new opportunity for fabricating functional silica nanocomposites in a feasible and inexpensive pathway, which will have great potentials in the field of biotechnology.


Assuntos
Biomimética , Enzimas Imobilizadas , Nanocompostos , Peptídeos , Dióxido de Silício , Biomimética/métodos , Nanocompostos/química , Nanocompostos/ultraestrutura , Peptídeos/química , Peptídeos/genética , Engenharia de Proteínas , Estabilidade Proteica , Dióxido de Silício/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA