Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.553
Filtrar
1.
J Proteome Res ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38959414

RESUMO

Protein-protein interaction studies using proximity labeling techniques, such as biotin ligase-based BioID, have become integral in understanding cellular processes. Most studies utilize conventional 2D cell culture systems, potentially missing important differences in protein behavior found in 3D tissues. In this study, we investigated the protein-protein interactions of a protein, Bcl-2 Agonist of cell death (BAD), and compared conventional 2D culture conditions to a 3D system, wherein cells were embedded within a 3D extracellular matrix (ECM) mimic. Using BAD fused to the engineered biotin ligase miniTurbo (BirA*), we identified both overlapping and distinct BAD interactomes under 2D and 3D conditions. The known BAD binding proteins 14-3-3 isoforms and Bcl-XL interacted with BAD in both 2D and 3D. Of the 131 BAD-interactors identified, 56% were specific to 2D, 14% were specific to 3D, and 30% were common to both conditions. Interaction network analysis demonstrated differential associations between 2D and 3D interactomes, emphasizing the impact of the culture conditions on protein interactions. The 2D-3D overlap interactome encapsulated the apoptotic program, which is a well-known role of BAD. The 3D unique pathways were enriched in ECM signaling, suggestive of hitherto unknown functions for BAD. Thus, exploring protein-protein interactions in 3D provides novel clues into cell behavior. This exciting approach has the potential to bridge the knowledge gap between tractable 2D cell culture and organoid-like 3D systems.

2.
Food Chem ; 458: 140316, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38968711

RESUMO

To enhance curcumin's application in photodynamic inactivation (PDI) of liquid foods, a supramolecular complex of biotin-modified ß-cyclodextrin and curcumin (Biotin-CD@Cur) was synthesized. This complex significantly improves curcumin's solubility, stability, and PDI efficiency. Following PDI, Biotin-CD@Cur can be magnetically separated from the liquid matrix using streptavidin-coated magnetic beads (SA-MBs). Leveraging the reversible binding between streptavidin and biotin, Biotin-CD@Cur and SA-MBs fully dissociate in ultrapure water at 70 °C, enabling reuse. Antibacterial tests in freshly squeezed orange juice demonstrated that a low dose of 1.5 J/cm2 from a 420 nm LED array and 10 µg/mL of Biotin-CD@Cur achieved log reductions of 3.287 ± 0.015 for Staphylococcus aureus and 2.961 ± 0.011 for Listeria monocytogenes, while preserving the juice's flavor and nutritional contents. The PDI system remained effective for at least four cycles. Ultra-performance liquid chromatography and atomic absorption spectroscopy confirmed no residues of system components in the juice after magnetic separation.

3.
Int J Biol Macromol ; 275(Pt 1): 133580, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960227

RESUMO

Streptococcus pneumoniae is a leading cause of community-acquired pneumonia and is responsible for acute invasive and non-invasive infections. Fight against pneumococcus is currently hampered by insufficient vaccine coverage and rising antimicrobial resistance, making the research necessary on novel drug targets. High-throughput mutagenesis has shown that acetyl-CoA carboxylase (ACC) is an essential enzyme in S. pneumoniae which converts acetyl-CoA to malonyl-CoA, a key step in fatty acid biosynthesis. ACC has four subunits; Biotin carboxyl carrier protein (BCCP), Biotin carboxylase (BC), Carboxyl transferase subunit α and ß. Biotinylation of S. pneumoniae BCCP (SpBCCP) is required for the activation of ACC complex. In this study, we have biophysically characterized the apo- and holo- biotinylating domain SpBCCP80. We have performed 2D and 3D NMR experiments to analyze the changes in amino acid residues upon biotinylation of SpBCCP80. Further, we used NMR backbone chemical shift assignment data for bioinformatical analyses to determine the secondary and tertiary structure of proteins. We observed major changes in AMKVM motif and thumb region of SpBCCP80 upon biotinylation. Overall, this work provides structural insight into the apo- to holo- conversion of SpBCCP80 which can be further used as a drug target against S. pneumoniae.

4.
Future Sci OA ; 10(1): 2355038, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38963009

RESUMO

Aim: The aim of the present study is to develop a liquid chromatography-mass spectrometry method to measure two important biomarkers of biotin deficiency from dried blood spot samples for effective management of the disorder. Materials & methods: The method was developed on a liquid chromatography-mass spectrometry system using pentafluorophenyl column employing a mobile phase composition of methanol and water in the isocratic mode. A full validation of the method was performed as per relevant guidelines. Results & conclusion: Correlation between the results of dried blood spot and plasma method was evaluated to determine the interconvertibility of the method. The developed method was successfully applied for establishing the reference ranges for these biomarkers in the population of Udupi, a coastal district of South India.


Biotin deficiency can lead to many complications such as impaired growth, compromised immune function, depression, myalgia and may even lead to death. The disorder can be managed by supplementation of biotin. Early detection is crucial in managing biotin deficiency. In this paper we describe a comprehensive method for the early detection of biotin deficiency. The method employs the use of minimally invasive blood sampling such as dried blood spot that is suitable for vulnerable neonatal population.

5.
Sheng Wu Gong Cheng Xue Bao ; 40(7): 1981-1996, 2024 Jul 25.
Artigo em Chinês | MEDLINE | ID: mdl-39044570

RESUMO

Proteins serve as the primary executors of cellular activities in organisms, and thus investigating the subcellular localization and interactions of proteins is crucial for understanding protein functions and elucidating the molecular mechanisms in organisms. Proximity labeling is a recently developed effective method for detecting protein-protein interactions in live cells. Compared with the conventional methods for studying protein-protein interactions, proximity labeling demonstrates high sensitivity, strong specificity, and low background and is widely employed in the research of protein-protein interactions between pathogens and hosts. This article reviews the recent progress in the development and applications of the biotin ligase BirA and its mutants and elucidates the functioning principles of several classical biotin ligases. This review aims to clarify the role of proximity labeling based on BirA and its mutants in identifying protein-protein interactions between pathogens and hosts.


Assuntos
Carbono-Nitrogênio Ligases , Interações Hospedeiro-Patógeno , Mutação , Carbono-Nitrogênio Ligases/metabolismo , Carbono-Nitrogênio Ligases/genética , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Biotina/metabolismo , Humanos , Mapeamento de Interação de Proteínas , Escherichia coli/genética , Escherichia coli/metabolismo
6.
Heliyon ; 10(13): e32299, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39035497

RESUMO

Vitamin B (Vit B) plays a regulatory role in cognitive memory and learning. We examined the biochemical and behavioral effects of biotin supplementation (BS) and swimming training (ST) on Alzheimer's disease (AD), the most common type of dementia, in male rats. Sixty rats were randomly assigned to six groups: control, sham (receiving phosphate-buffered saline), AD (receiving a single injection of Aß into the lateral ventricle), ST (for 28 days and before Aß injection), and BS (receiving BS through oral gavage for 28 days before Aß injection). The treatments were continued until the end of the behavioral tests. Learning and memory functions were investigated through the Morris water maze (MWM) and depression and anxiety-like behaviors were tested by elevated plus-maze (EPM) and forced swimming tests. In addition, oxidative stress biomarkers, such as total thiol groups (TTG) and malondialdehyde (MDA) in serum were assessed and histological studies were performed using brain tissues. In the AD group, Aß increased the distance traveled and escape latency in the MWM, but co-administration of BS and ST attenuated the results of the MWM, EPM, and FST tests. Furthermore, BS decreased the litigious biochemical effects of Aß by enhancing the levels of TTG, in addition to reducing serum MDA levels. The use of BS as a potent antioxidant improved Aß-induced memory impairment. It attenuated oxidative stress biomarkers in the brain (number of Aß plaques) and serum of AD rats. We provide evidence for the use of BS in neurodegenerative disorders, such as AD, to elucidate the possible mechanisms.

7.
Hum Cell ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980565

RESUMO

The neurometabolic disorder known as biotin-thiamine-responsive basal ganglia disease (BTBGD) is a rare autosomal recessive condition linked to bi-allelic pathogenic mutations in the SLC19A3 gene. BTBGD is characterized by progressive encephalopathy, confusion, seizures, dysarthria, dystonia, and severe disabilities. Diagnosis is difficult due to the disease's rare nature and diverse clinical characteristics. The primary treatment for BTBGD at this time is thiamine and biotin supplementation, while its long-term effectiveness is still being investigated. In this study, we have generated two clones of induced pluripotent stem cells (iPSCs) from a 10-year-old female BTBGD patient carrying a homozygous mutation for the pathogenic variant in exon 5 of the SLC19A3 gene, c.1264A > G (p.Thr422Ala). We have confirmed the pluripotency of the generated iPS lines and successfully differentiated them to neural progenitors. Because our understanding of genotype-phenotype correlations in BTBGD is limited, the establishment of BTBGD-iPSC lines with a homozygous SLC19A3 mutation provides a valuable cellular model to explore the molecular mechanisms underlying SLC19A3-associated cellular dysfunction. This model holds potential for advancing the development of novel therapeutic strategies.

8.
J Biol Chem ; : 107588, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39032654

RESUMO

Protein phosphorylation by kinases regulates mammalian cell functions, such as growth, division, and signal transduction. Among human kinases, NME1 and NME2 are associated with metastatic tumor suppression, but remain understudied due to the lack of tools to monitor their cellular substrates. In particular, NME1 and NME2 are multi-specificity kinases phosphorylating serine, threonine, histidine, and aspartic acid residues of substrate proteins, and the heat and acid sensitivity of phosphohistidine and phosphoaspartate complicates substrate discovery and validation. To provide new substrate monitoring tools, we established the γ-phosphate modified ATP analog, ATP-biotin, as a cosubstrate for phosphorylbiotinylation of NME1 and NME2 cellular substrates. Building upon this ATP-biotin compatibility, the Kinase-catalyzed Biotinylation with Inactivated Lysates for Discovery of Substrates (K-BILDS) method enabled validation of a known substrate and the discovery of seven NME1 and three NME2 substrates. Given the paucity of methods to study kinase substrates, ATP-biotin and the K-BILDS method are valuable tools to characterize the roles of NME1 and NME2 in human cell biology.

9.
Bioresour Bioprocess ; 11(1): 59, 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38879848

RESUMO

Esterases are crucial biocatalysts in chiral compound synthesis. Herein, a novel esterase EstSIT01 belonging to family V was identified from Microbacterium chocolatum SIT101 through genome mining and phylogenetic analysis. EstSIT01 demonstrated remarkable efficiency in asymmetrically hydrolyzing meso-dimethyl ester [Dimethyl cis-1,3-Dibenzyl-2-imidazolidine-4,5-dicarboxyate], producing over 99% yield and 99% enantiomeric excess (e.e.) for (4S, 5R)-monomethyl ester, a crucial chiral intermediate during the synthesis of d-biotin. Notably, the recombinant E. coli expressing EstSIT01 exhibited over 40-fold higher activity than that of the wild strain. EstSIT01 displays a preference for short-chain p-NP esters. The optimal temperature and pH were 45 °C and 10.0, with Km and kcat values of 0.147 mmol/L and 5.808 s- 1, respectively. Molecular docking and MD simulations suggest that the high stereoselectivity for meso-diester may attribute to the narrow entrance tunnel and unique binding pocket structure. Collectively, EstSIT01 holds great potential for preparing chiral carboxylic acids and esters.

10.
Chemistry ; : e202400858, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38887133

RESUMO

A range of novel BODIPY derivatives with a tripodal aromatic core was synthesized and characterized spectroscopically. These new fluorophores showed promising features as probes for in vitro assays in live cells and offer strategic routes for further functionalization towards hybrid nanomaterials. Incorporation of biotin tags facilitated proof-of-concept access to targeted bioconjugates as molecular probes. Computational explorations using DFT and TD-DFT calculations identified the most stable tripodal linker conformations and predicted their absorption and emission behavior. The uptake and speciation of these molecules in living prostate cancer cells was imaged by single- and two-photon excitation techniques coupled with two-photon fluorescence lifetime imaging (2P FLIM).

11.
Pharmaceuticals (Basel) ; 17(6)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38931357

RESUMO

(1) Background: Oxidative stress plays a pivotal role in the pathogenesis of various diseases, including neurodegenerative disorders, cardiovascular diseases, cancer, and diabetes, highlighting the pressing need for effective antioxidant interventions. (2) Methods: In this study, we aimed to develop and characterise two novel antioxidant formulations, F3 and F4, as therapeutic interventions for oxidative stress-related conditions. (3) Results: The physicochemical characterisation, preformulation analysis, formulation, preparation of filling powders for capsules, capsule content evaluation, and antioxidant activity assessment of the two novel antioxidant formulations were assessed. These formulations comprise a combination of well-established antioxidants like quercetin, biotin, coenzyme Q10, and resveratrol. Through comprehensive testing, the formulations' antioxidant efficacy, stability, and potential synergistic interactions were evaluated. (4) Conclusions: The findings underscore the promising potential of these formulations as therapeutic interventions for oxidative stress-related disorders and highlight the significance of antioxidant interventions in mitigating their progression.

12.
Colloids Surf B Biointerfaces ; 241: 114028, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38905811

RESUMO

Biotin receptors are overexpressed in various cancer cell types, essential in tumor development, metabolism, and metastasis. Chemotherapeutic agents may be more effective and have fewer adverse effects if they specifically target the biotin receptors on cancer cells. Polymeric micelles (PMs) with nanoscale size via the EPR effect to accumulate near tumor tissue. We utilized the solvent exchange technique to crate polymeric Biotin-PEG-SeSe-PBLA micelles. This underwent self-assembly to create uniformly dispersed PMs with a hydrodynamic diameter of 81.54 ± 0.23 nm. The resulting PMs characterized by 1HNMR, 13CNMR, FTIR, and Raman spectroscopy. PMs exhibited a high efficacy of Doxorubicin encapsulation (EE) and loading content (DLC), with values of 5.93 wt% and 74.32 %, respectively. DOX@Biotin-PEG-SeSe-PBLA micelles showed optimal DOX release, around 89 % and 74 % in 10 mM glutathione and 0.1 % H2O2, respectively, within 72 hours, in the simulated cancer redox pool. Fascinatingly, the blank Biotin-PEG-SeSe-PBLA micelles did not affect the HaCaT or HeLa cell lines; approximately 85 % of the cells were metabolically active. Contrarily, at a 5 µg/ml concentration, DOX@Biotin-PEG-SeSe-PBLA specifically inhibited the proliferation of roughly 76 % of HeLa cells and 11 % of HaCaT cells. The fluorescence microscopy results demonstrated that biotin-decorated micelles were more successfully internalized by HeLa cells, which overexpress the biotin receptor, than by non-targeted micelles in vitro. In summary, the diselenide-linked Biotin-PEGSeSe-PBLA formed smart PMs that could offer DOX specific to cancer cells with precision and are physiologically durable.

13.
Methods Mol Biol ; 2817: 115-132, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38907151

RESUMO

Single-cell-type proteomics is an emerging field of research that combines cell-type specificity with the comprehensive proteome coverage offered by bulk proteomics. However, the extraction of single-cell-type proteomes remains a challenge, particularly for hard-to-isolate cells like neurons. In this chapter, we present an innovative technique for profiling single-cell-type proteomes using adeno-associated virus (AAV)-mediated proximity labeling (PL) and tandem-mass-tag (TMT) mass spectrometry. This technique eliminates the need for cell isolation and offers a streamlined workflow, including AAV delivery to express TurboID (an engineered biotin ligase) controlled by cell-type-specific promoters, biotinylated protein purification, on-bead digestion, TMT labeling, and liquid chromatography-mass spectrometry (LC-MS). We examined this method by analyzing distinct brain cell types in mice. Initially, recombinant AAVs were used to concurrently express TurboID and mCherry proteins driven by neuron- or astrocyte-specific promoters, which was validated through co-immunostaining with cellular markers. With biotin purification and TMT analysis, we successfully identified around 10,000 unique proteins from a few micrograms of protein samples with high reproducibility. Our statistical analyses revealed that these proteomes encompass cell-type-specific cellular pathways. By utilizing this technique, researchers can explore the proteomic landscape of specific cell types, paving the way for new insights into cellular processes, deciphering disease mechanisms, and identifying therapeutic targets in neuroscience and beyond.


Assuntos
Encéfalo , Dependovirus , Proteoma , Proteômica , Espectrometria de Massas em Tandem , Dependovirus/genética , Dependovirus/metabolismo , Animais , Camundongos , Proteômica/métodos , Proteoma/análise , Encéfalo/metabolismo , Espectrometria de Massas em Tandem/métodos , Análise de Célula Única/métodos , Neurônios/metabolismo , Cromatografia Líquida/métodos , Vetores Genéticos/genética , Biotinilação , Espectrometria de Massas/métodos , Astrócitos/metabolismo
14.
Biol Pharm Bull ; 47(6): 1136-1143, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38866522

RESUMO

Ceramide (Cer) is synthesized de novo in the bilayer of the endoplasmic reticulum and transported to the cytosolic leaflet of the trans-Golgi apparatus for sphingomyelin (SM) synthesis. As the active site of SM synthase (SMS) is located on the luminal side of the Golgi membrane, Cer translocates to the lumen via transbilayer movement for SM synthesis. However, the mechanism of transbilayer movement is not fully understood. As the Cer-related translocases seem to localize near the SMS, the protein was identified using proximity-dependent biotin identification proteomics. Phospholipid scramblase 1 (PLSCR1), which is thought to act as a scramblase for phosphatidylserine and phosphatidylethanolamine, was identified as a protein proximal to the SMS isoforms SMS1 and SMS2. Although five isoforms of PLSCR have been reported in humans, only PLSCR1, PLSCR3, and PLSCR4 are expressed in HEK293T cells. Confocal microscopic analysis showed that PLSCR1 and PLSCR4 partially co-localized with p230, a trans-Golgi network marker, where SMS isoforms are localized. We established CRISPR/Cas9-mediated PLSCR1, PLSCR3, and PLSCR4 single-knockout cells and PLSCR1, 3, 4 triple knockout HEK293T cells. Liquid chromatography-tandem mass spectrometry revealed that the levels of species with distinct acyl chains in Cer and SM were not significantly different in single knockout cells or in the triple knockout cells compared to the wild-type cells. Our findings suggest that PLSCR1 is localized in the vicinity of SMS isoforms, however is not involved in the transbilayer movement of Cer for SM synthesis.


Assuntos
Proteínas de Transferência de Fosfolipídeos , Esfingomielinas , Transferases (Outros Grupos de Fosfato Substituídos) , Humanos , Proteínas de Transferência de Fosfolipídeos/metabolismo , Proteínas de Transferência de Fosfolipídeos/genética , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Células HEK293 , Esfingomielinas/metabolismo , Esfingomielinas/biossíntese , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Isoenzimas/metabolismo , Isoenzimas/genética , Complexo de Golgi/metabolismo , Complexo de Golgi/enzimologia
15.
Bioorg Chem ; 150: 107600, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38945086

RESUMO

In this study, we investigated how the replacement of the tetrahydrothiophene ring of biotin with either an oxolane or (methyl)pyrrolidine moiety may affect its molecular interactions, in an effort to identify alternative affinity ligands suitable for in vitro and in vivo applications in synthetic biology. Initial molecular dynamics (MD) simulations suggested the potential formation of a hydrogen bond between either the oxygen or nitrogen atom of the envisaged tetrahydroheteryl analogues and the Thr90 residue of streptavidin, mirroring the sulfur-centered hydrogen bond detected by the crystallographic analysis of the biotin-streptavidin interaction. Therefore, oxy-, aza-, and N-methylazabiotin were readily synthesized starting from chiral five- or six-carbon sugar precursors. Based on fluorescence-based titration experiments using the corresponding fluorescein conjugates, oxybiotin showed a binding behavior similar to biotin with streptavidin, while both amino analogues displayed lower binding capacities. Notably, azabiotin exhibited a pH-dependent interaction profile, demonstrating enhanced binding under acidic conditions but weaker binding under basic pH, which could be exploited for various purposes.


Assuntos
Biotina , Estreptavidina , Enxofre , Biotina/química , Estreptavidina/química , Estrutura Molecular , Enxofre/química , Sítios de Ligação , Simulação de Dinâmica Molecular , Ligação Proteica , Ligação de Hidrogênio
16.
Int J Mol Sci ; 25(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38928282

RESUMO

Biotin (vitamin B7, or vitamin H) is a water-soluble B-vitamin that functions as a cofactor for carboxylases, i.e., enzymes involved in the cellular metabolism of fatty acids and amino acids and in gluconeogenesis; moreover, as reported, biotin may be involved in gene regulation. Biotin is not synthesized by human cells, but it is found in food and is also produced by intestinal bacteria. Biotin status/homeostasis in human individuals depends on several factors, including efficiency/deficiency of the enzymes involved in biotin recycling within the human organism (biotinidase, holocarboxylase synthetase), and/or effectiveness of intestinal uptake, which is mainly accomplished through the sodium-dependent multivitamin transporter. In the last years, administration of biotin at high/"pharmacological" doses has been proposed to treat specific defects/deficiencies and human disorders, exhibiting mainly neurological and/or dermatological symptoms and including biotinidase deficiency, holocarboxylase synthetase deficiency, and biotin-thiamine-responsive basal ganglia disease. On the other hand, according to warnings of the Food and Drug Administration, USA, high biotin levels can affect clinical biotin-(strept)avidin assays and thus lead to false results during quantification of critical biomarkers. In this review article, recent findings/advancements that may offer new insight in the abovementioned research fields concerning biotin will be presented and briefly discussed.


Assuntos
Biotina , Deficiência de Biotinidase , Biotinidase , Homeostase , Humanos , Biotina/metabolismo , Deficiência de Biotinidase/metabolismo , Deficiência de Biotinidase/diagnóstico , Deficiência de Biotinidase/genética , Deficiência de Biotinidase/tratamento farmacológico , Biotinidase/metabolismo , Biotinidase/genética , Deficiência de Holocarboxilase Sintetase/metabolismo , Carbono-Nitrogênio Ligases/metabolismo , Carbono-Nitrogênio Ligases/genética , Animais , Ataxia/metabolismo , Ataxia/genética , Doenças dos Gânglios da Base
17.
J Biomol Struct Dyn ; : 1-16, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38895953

RESUMO

Mycobacterium tuberculosis (Mtb) is a notorious pathogen that causes one of the highest mortalities globally. Due to a pressing demand to identify novel therapeutic alternatives, the present study aims to focus on screening the putative drug targets and prioritizing their role in antibacterial drug development. The most vital proteins involved in the Biotin biosynthesis pathway and the Lipoarabinomannan (LAM) pathway such as biotin synthase (bioB) and alpha-(1->6)-mannopyranosyltransferase A (mptA) respectively, along with other essential virulence proteins of Mtb were selected as drug targets. Among these, the ones without native structures were modelled and validated using standard bioinformatics tools. Further, the interactions were performed with naturally available lead molecules present in selected mushroom species such as Agaricus bisporus, Pleurotus djamor, Hypsizygus ulmarius. Through Gas Chromatography-Mass Spectrometry (GC-MS), 15 bioactive compounds from the methanolic extract of mushrooms were identified. Further, 4 were selected based on drug-likeness and pharmacokinetic screening for molecular docking analysis against our prioritized targets wherein Benz[e]azulene from Pleurotus djamor illustrated a good binding affinity with a LF rank score of -9.036 kcal mol -1 against nuoM (NADH quinone oxidoreductase subunit M) and could be used as a prospective candidate in order to combat Tuberculosis (TB). Furthermore, the stability of the complex are validated using MD Simulations and subsequently, the binding free energy was calculated using MM-GBSA analysis. Thus, the current in silico analysis suggests a promising role of compounds extracted from mushrooms in tackling the TB burden.Communicated by Ramaswamy H. Sarma.

18.
Methods Mol Biol ; 2810: 301-316, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38926287

RESUMO

Cell-surface receptors can be difficult to express and purify for structural and biochemical studies due to low expression levels, misfolding, aggregation, and instability. Cell-surface receptor ectodomains are more amenable to large-scale production, but this requires designing and testing various truncation constructs. However, since each protein is unique, testing these constructs individually for many targets is a time-consuming process. In this context, we present a high-throughput ELISA fluorescence approach that allows the rapid assessment of numerous recombinant constructs simultaneously. Cell-surface ectodomains are expressed in small scale, enzymatically biotinylated, and detected using a C-terminal His-tag. As an example, we tested the expression of truncation constructs for the neurexin, neuroligin, and latrophilin families and show that the small-scale ELISA allowed us to prioritize well-expressing construct for large-scale production. By employing this method, one can efficiently detect clones with low expression levels, streamlining the process and saving valuable time in identifying optimal candidates for further study.


Assuntos
Ensaio de Imunoadsorção Enzimática , Ensaios de Triagem em Larga Escala , Humanos , Ensaio de Imunoadsorção Enzimática/métodos , Ensaios de Triagem em Larga Escala/métodos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Domínios Proteicos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/isolamento & purificação , Células HEK293 , Expressão Gênica
19.
Int J Neurosci ; : 1-5, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38709666

RESUMO

BACKGROUND: Biotin-thiamine-responsive basal ganglia disease (BTBGD) is a rare, autosomal recessive neurometabolic disorder caused by mutations in the SLC19A3 gene and characterized by recurrent sub-acute episodes of encephalopathy. Patients with BTBGD have classical neuroimaging findings and a dramatic response to high doses of thiamine. OBJECTIVE: To highlight the advantages of administering a higher dose of thiamine for patients with BTBGD who have not shown improvement with the standard recommended dosage. RESULTS: Herein, we report on two Saudi girls with classical clinical and radiological findings of BTBGD. Hallmark symptoms in these patients included an acute onset of ataxia, tremor, slurred speech, dystonia, and dysphagia. The initial routine laboratory workups were unremarkable. Brain magnetic resonance imaging revealed extensive hyperintense signals in the bilateral basal ganglia, which suggested the diagnosis of a BTBGD. Hence started empirically on biotin 10 mg/kg/day and thiamine 40 mg/kg/day, but there was no noticeable improvement. After increasing the thiamine to 75 mg/kg/day the patients started to improve significantly. Genetic testing was requested and came positive for the mutation of the SLC19A3 gene. After two months of initiating the management, thiamine was reduced to 30 mg/kg/day. Subsequent follow-ups showed complete improvement in their condition with no apparent long-term sequel or relapse. CONCLUSION: we conclude that administration of thiamine at a dosage of up to 40 mg/kg/day may not be sufficient in treating certain patients with BTBGD. Thus, considering a significantly higher dosage could potentially contribute to achieving remission.

20.
Sensors (Basel) ; 24(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38732912

RESUMO

The high affinity of the biotin-streptavidin interaction has made this non-covalent coupling an indispensable strategy for the immobilization and enrichment of biomolecular affinity reagents. However, the irreversible nature of the biotin-streptavidin bond renders surfaces functionalized using this strategy permanently modified and not amenable to regeneration strategies that could increase assay reusability and throughput. To increase the utility of biotinylated targets, we here introduce a method for reversibly immobilizing biotinylated thrombin-binding aptamers onto a Ni-nitrilotriacetic acid (Ni-NTA) sensor chip using 6xHis-tagged streptavidin as a regenerable capture ligand. This approach enabled the reproducible immobilization of aptamers and measurements of aptamer-protein interaction in a surface plasmon resonance assay. The immobilized aptamer surface was stable during five experiments over two days, despite the reversible attachment of 6xHis-streptavidin to the Ni-NTA surface. In addition, we demonstrate the reproducibility of this immobilization method and the affinity assays performed using it. Finally, we verify the specificity of the biotin tag-streptavidin interaction and assess the efficiency of a straightforward method to regenerate and reuse the surface. The method described here will allow researchers to leverage the versatility and stability of the biotin-streptavidin interaction while increasing throughput and improving assay efficiency.


Assuntos
Aptâmeros de Nucleotídeos , Biotina , Ácido Nitrilotriacético , Estreptavidina , Ressonância de Plasmônio de Superfície , Estreptavidina/química , Biotina/química , Aptâmeros de Nucleotídeos/química , Ácido Nitrilotriacético/química , Ácido Nitrilotriacético/análogos & derivados , Técnicas Biossensoriais/métodos , Trombina/química , Compostos Organometálicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA