Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 370: 122513, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39303601

RESUMO

To convert Na2SO4 into other high-value products (NaOH, H2SO4, and (NH4)2SO4), three types of cell configurations of electrodialysis (ED) were applied (three-compartment bipolar membrane ED (BMED), four-compartment ED metathesis (EDM) and five-compartment bipolar membrane ED multifunction (BMEDM)) and parameters such as average voltage variation, removal ratio of salt, product concentration, conversion rate, ion flux, and energy consumption were calculated and compared. The experimental results and calculations indicated that the overall performance of BMEDM was inferior to that of BMED and EDM. An industrial model was established, which indicated that the net profit from converting Na2SO4 using BMEDM was always higher than that from BMED and EDM. Based on the advantages of low investment (132 $) and energy cost (152 $/t Na2SO4), EDM was applicable to factories with a low output of Na2SO4 (production capacity <45%), whereas BMED (157.3 $/t Na2SO4) and BMED-5 (227.6 $/t Na2SO4) were applicable to factories with a high output of Na2SO4 (production capacity >45%) based on high net profits.

2.
Water Res ; 263: 122175, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39088878

RESUMO

The depletion of nutrient sources in fertilizers demands a paradigm shift in the treatment of nutrient-rich wastewater, such as urine, to enable efficient resource recovery and high-value conversion. This study presented an integrated bipolar membrane electrodialysis (BMED) and hollow fiber membrane (HFM) system for near-complete resource recovery and zero-discharge from urine treatment. Computational simulations and experimental validations demonstrated that a higher voltage (20 V) significantly enhanced energy utilization, while an optimal flow rate of 0.4 L/min effectively mitigated the negative effects of concentration polarization and electro-osmosis on system performance. Within 40 min, the process separated 90.13% of the salts in urine, with an energy consumption of only 8.45 kWh/kgbase. Utilizing a multi-chamber structure for selective separation, the system achieved recovery efficiencies of 89% for nitrogen, 96% for phosphorus, and 95% for potassium from fresh urine, converting them into high-value products such as 85 mM acid, 69.5 mM base, and liquid fertilizer. According to techno-economic analysis, the cost of treating urine using this system at the lab-scale was $6.29/kg of products (including acid, base, and (NH4)2SO4), which was significantly lower than the $20.44/kg cost for the precipitation method to produce struvite. Excluding fixed costs, a net profit of $18.24/m3 was achieved through the recovery of valuable products from urine using this system. The pilot-scale assessment showed that the net benefit amounts to $19.90/m3 of urine, demonstrating significant economic feasibility. This study presents an effective approach for the near-complete resource recovery and zero-discharge treatment of urine, offering a practical solution for sustainable nutrient recycling and wastewater management.


Assuntos
Membranas Artificiais , Urina , Urina/química , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Fósforo , Técnicas Eletroquímicas/métodos , Nitrogênio , Purificação da Água/métodos , Fertilizantes , Potássio/urina
3.
Water Res ; 265: 122296, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39178594

RESUMO

While air stripping combined with acid scrubbing remains a competitive technology for the removal and recovery of ammonia from wastewater streams, its use of strong acids is concerning. Organic acids offer promising alternatives to strong acids like sulphuric acid, but their application remains limited due to high cost. This study proposes an integration of air stripping and organic acid scrubbing with bipolar membrane electrodialysis (BPMED) to regenerate the organic acids. We compared the energy consumption and current efficiency of BPMED in recovering dissolved ammonia and regenerating sulphuric, citric, and maleic acids from synthetic scrubber effluents. Current efficiency was lower when regenerating sulphuric acid (22 %) compared to citric (47 %) and maleic acid (37 %), attributable to the competitive proton transport over ammonium across the cation exchange membrane. Organic salts functioned as buffers, reducing the concentration of free protons, resulting in higher ammonium removal efficiencies with citrate (75 %) and malate (68 %), compared to sulphate (29 %). Consequently, the energy consumption of the BPMED decreased by 54 % and 35 % while regenerating citric and maleic acids, respectively, compared to sulfuric acid. Membrane characterisation experiments showed that the electrical conductivity ranking, ammonium citrate > ammonium malate > ammonium sulphate, was mirrored by the energy consumption (kWh/kg-N recovered) ranking, ammonium sulphate (15.6) < ammonium malate (10.2) < ammonium citrate (7.2), while the permselectivity ranking, ammonium sulphate > ammonium citrate > ammonium malate, aligned with calculated charge densities. This work demonstrates the potential of combining organic acid scrubbers with BPMED for ammonium recovery from wastewater effluents with minimum chemical input.


Assuntos
Amônia , Diálise , Águas Residuárias , Amônia/química , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos , Membranas Artificiais , Purificação da Água/métodos
4.
Environ Technol ; : 1-13, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023010

RESUMO

Ammonia monohydrate (NH3·H2O) is an important chemical widely used in industrial, agricultural, and pharmaceutical fields. Reject water is used as the raw material in self-built bipolar membrane electrodialysis (BMED) to produce NH3·H2O. The effects of electrode materials, membrane stack structure, and operating conditions (current density, initial concentrations of the reject water, and initial volume ratio) on the BMED process were investigated, and the economic costs were analyzed. The results showed that compared with graphite electrodes, ruthenium-iridium-titanium electrodes as electrode plates for BMED could increase current efficiency (25%) and reduce energy consumption (26%). Compared with two-compartment BMED, three-compartment BMED had a higher ammonia nitrogen conversion rate (86.6%) and lower energy consumption (3.5 kW· h/kg). Higher current density (15 mA/cm2) could achieve better current efficiency (79%). The BMED performances were improved when the initial NH4+ concentrations of the reject water increased from 500 mg NH4+/L to 1000 mg NH4+/L, but the performance decreased as the concentration increased from 1000 mg NH4+/L to 1500 mg NH4+/L. High initial volume ratio of the salt compartment and product compartment was beneficial for reducing energy consumption. Under the optimal operating conditions, only 0.13 $/kg reject water was needed to eliminate the environmental impact of reject water accumulation. This work indicates that BMED can not only achieve desalination of reject water, but also generate products that alleviate the operational pressure of factories.

5.
J Environ Sci (China) ; 142: 21-32, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38527886

RESUMO

In the context of carbon capture, utilization, and storage, the high-value utilization of carbon storage presents a significant challenge. To address this challenge, this study employed the bipolar membrane electrodialysis integrated with carbon utilization technology to prepare Na2CO3 products using simulated seawater concentrate, achieving simultaneous saline wastewater utilization, carbon storage and high-value production of Na2CO3. The effects of various factors, including concentration of simulated seawater concentrate, current density, CO2 aeration rate, and circulating flow rate of alkali chamber, on the quality of Na2CO3 product, carbon sequestration rate, and energy consumption were investigated. Under the optimal condition, the CO32- concentration in the alkaline chamber reached a maximum of 0.817 mol/L with 98 mol% purity. The resulting carbon fixation rate was 70.50%, with energy consumption for carbon sequestration and product production of 5.7 kWhr/m3 CO2 and 1237.8 kWhr/ton Na2CO3, respectively. This coupling design provides a triple-win outcome promoting waste reduction and efficient utilization of resources.


Assuntos
Dióxido de Carbono , Carbono , Carbonatos , Água do Mar , Sódio
6.
Int J Mol Sci ; 24(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37685982

RESUMO

In this study, bipolar membrane electrodialysis was proposed to directly convert L-ornithine monohydrochloride to L-ornithine. The stack configuration was optimized in the BP-A (BP, bipolar membrane; A, anion exchange membrane) configuration with the Cl- ion migration through the anion exchange membrane rather than the BP-A-C (C, cation exchange membrane) and the BP-C configurations with the L-ornithine+ ion migration through the cation exchange membrane. Both the conversion ratio and current efficiency follow BP-A > BP-A-C > BP-C, and the energy consumption follows BP-A < BP-A-C < BP-C. Additionally, the voltage drop across the membrane stack (two repeating units) and the feed concentration were optimized as 7.5 V and 0.50 mol/L, respectively, due to the low value of the sum of H+ ions leakage (from the acid compartment to the base compartment) and OH- ions migration (from the base compartment to the acid compartment) through the anion exchange membrane. As a result, high conversion ratio (96.1%), high current efficiency (95.5%) and low energy consumption (0.31 kWh/kg L-ornithine) can be achieved. Therefore, bipolar membrane electrodialysis is an efficient, low energy consumption and environmentally friendly method to directly convert L-ornithine monohydrochloride to L-ornithine.


Assuntos
Retículo Endoplasmático , Ornitina , Membranas
7.
Membranes (Basel) ; 13(2)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36837690

RESUMO

Electromembrane processes for LiOH production from lithium brines obtained from solar evaporation ponds in production processes of the Salar de Atacama are considered. In order to analyze high concentrations' effect on ion exchange membranes, the use of concentrated LiCl aqueous solutions in a bipolar membrane electrodialysis process to produce LiOH solutions higher than 3.0% by mass is initially investigated. For this purpose, a mathematical model based on the Nernst-Planck equation is developed and validated, and a parametric study is simulated considering as input variables electrolyte concentrations, applied current density, stack design, process design and membrane characteristics. As a novelty, this mathematical model allows estimating LiOH production in a wide concentration range of LiCl, HCl and LiOH solutions and its effect on the process, providing data on final LiOH solution purity, current efficiency, specific electricity consumption and membrane performance. Among the main results, a concentration of 4.0% to 4.5% by LiOH mass is achieved, with a solution purity higher than 95% by mass and specific electrical energy consumption close to 4.0 kWh/kg. The work performed provides key information on process sensitivity to operating conditions and process design characteristics. These results serve as a guide in the application of this technology to lithium hydroxide production.

8.
Membranes (Basel) ; 13(2)2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36837700

RESUMO

Bipolar membrane electrodialysis (BMED) is a promising process for the cleaner production of organic acid. In this study, the separation mechanism of BMED with different cell configurations, i.e., BP-A, BP-A-C, and BP-C (BP, bipolar membrane; A, anion exchange membrane; C, cation exchange membrane), to produce diprotic malic acid from sodium malate was compared in consideration of the conversion ratio, current efficiency and energy consumption. Additionally, the current density and feed concentration were investigated to optimize the BMED performance. Results indicate that the conversion ratio follows BP-C > BP-A-C > BP-A, the current efficiency follows BP-A-C > BP-C > BP-A, and the energy consumption follows BP-C < BP-A-C < BP-A. For the optimized BP-C configuration, the current density was optimized as 40 mA/cm2 in consideration of low total process cost; high feed concentration (0.5-1.0 mol/L) is more feasible to produce diprotic malic acid due to the high conversion ratio (73.4-76.2%), high current efficiency (88.6-90.7%), low energy consumption (0.66-0.71 kWh/kg) and low process cost (0.58-0.59 USD/kg). Moreover, a high concentration of by-product NaOH (1.3497 mol/L) can be directly recycled to the upstream process. Therefore, BMED is a cleaner, high-efficient, low energy consumption and environmentally friendly process to produce diprotic malic acid.

9.
Membranes (Basel) ; 13(1)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36676899

RESUMO

In kraft pulping, large quantities of biomass degradation products dissolved in the black liquor are incinerated for power generation and chemical recovery. The black liquor is, however, a promising feedstock for carboxylic acids and lignin. Efficient fractionation of black liquor can be used to isolate these compounds and recycle the pulping chemicals. The present work discusses the fractionation of industrial black liquor by a sequence of nanofiltration and bipolar membrane electrodialysis units. Nanofiltration led to retention of the majority of lignin in the retentate and to a significant concentration increase in low-molecular-weight carboxylic acids, such as formic, acetic, glycolic and lactic acids, in the permeate. Subsequent treatment with bipolar membrane electrodialysis showed the potential for simultaneous recovery of acids in the acid compartment and the pulping chemical NaOH in the base compartment. The residual lignin was completely retained by the used membranes. Diffusion of acids to the base compartment and the low current density, however, limited the yield of acids and the current efficiency. In experiments with a black liquor model solution under optimized conditions, NaOH and acid recoveries of 68-72% were achieved.

10.
Water Res ; 229: 119451, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36493701

RESUMO

Papermaking industry discharges large quantities of wastewater and waste gas, whose treatment is limited by extra chemicals requirements, insufficient resource recovery and high energy consumption. Herein, a chemical self-sufficiency zero liquid discharge (ZLD) system, which integrates nanofiltration, bipolar membrane electrodialysis and membrane contactor (NF-BMED-MC), is designed for the resource recovery from wastewater and waste gas. The key features of this system include: 1) recovery of NaCl from pretreated papermaking wastewater by NF, 2) HCl/NaOH generation and fresh water recovery by BMED, and 3) CO2 capture and NaOH/Na2CO3 generation by MC. This integrated system shows great synergy. By precipitating hardness ions in papermaking wastewater and NF concentrate with NaOH/Na2CO3, the inorganic scaling on NF membrane is mitigated. Moreover, the NF-BMED-MC system with high stability can simultaneously achieve efficient CO2 removal and sustainable recovery of fresh water and high-purity resources (NaCl, Na2SO4, NaOH and HCl) from wastewater and waste gas without introducing any extra chemicals. The environmental evaluation indicates the carbon-neutral papermaking wastewater reclamation can be achieved through the application of NF-BMED-MC system. This study establishes the promising of NF-BMED-MC as a sustainable alternative to current membrane methods for ZLD of papermaking industry discharges treatment.


Assuntos
Águas Residuárias , Purificação da Água , Carbono , Cloreto de Sódio , Dióxido de Carbono , Hidróxido de Sódio , Purificação da Água/métodos , Eliminação de Resíduos Líquidos/métodos , Membranas Artificiais
11.
Water Res ; 226: 119274, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36332296

RESUMO

With the development of comprehensive utilization of high-salinity wastewater, salt resources regeneration has been considered as the fundamental requirement for process sustainability and economic benefits. As one of the potential candidates, bipolar membrane electrodialysis (BMED) was rapidly developed in recent years for the treatment of saline wastewater. Different from other methods directly obtaining salts or condensed wastewater, BMED could utilize and convert the dissolved waste salt into higher-value acid and alkali simultaneously, which has various advantages including outstanding environmental effects and economic benefits. In this review, the recent applications of BMED for waste salt recovery and high-value acid/alkali generation from saline wastewater were systematically outlined. Based on the summary above, the economy analysis of BMED was further reviewed from the roles of desalination and resources recovery. In addition, the BMED-based processes integrated with in-situ utilization of the generated acid/alkali resources were discussed. Furthermore, the influence of operating factors on BMED performance were outlined. Finally, the strategies for improving BMED performance were concluded. Furthermore, the future application and prospects of BMED was presented. This work would provide guidance for the applications of bipolar membrane electrodialysis in saline wastewater treatment and the high-value conversion of salt resources into acids and alkalis.


Assuntos
Águas Residuárias , Purificação da Água , Álcalis , Membranas Artificiais , Purificação da Água/métodos , Membranas , Cloreto de Sódio
12.
Environ Sci Technol ; 56(22): 16221-16229, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36287592

RESUMO

Traditional technologies such as precipitation and coagulation have been adopted for fluoride-rich and silica-rich wastewater treatment, respectively, but waste solid generation and low wastewater processing efficiency are still the looming concern. Efficient resource recovery technologies for different wastewater treatments are scarce for environment and industry sustainability. Herein, a resource capture ultrafiltration-bipolar membrane electrodialysis (RCUF-BMED) system was designed into a closed-loop process for simultaneous capture and recovery of fluoride and silica as sodium silicofluoride (Na2SiF6) from mixed fluoride-rich and silica-rich wastewaters, as well as achieving zero liquid discharge. This RCUF-BMED system comprised two key parts: (1) capture of fluoride and silica from two wastewaters using acid, and recovery of the Na2SiF6 using base by UF and (2) UF permeate conversion for acid/base and freshwater generation by BMED. With the optimized RCUF-BMED system, fluoride and silica can be selectively captured from wastewater with removal efficiencies higher than 99%. The Na2SiF6 recovery was around 72% with a high purity of 99.1%. The aging and cyclic experiments demonstrated the high stability and recyclability of the RCUF-BMED system. This RCUF-BMED system has successfully achieved the conversion of toxic fluoride and silica into valuable Na2SiF6 from mixed wastewaters, which shows great application potential in the industry-resource-environment nexus.


Assuntos
Ultrafiltração , Águas Residuárias , Fluoretos , Dióxido de Silício , Membranas Artificiais
13.
Membranes (Basel) ; 12(9)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36135848

RESUMO

Bipolar membrane electrodialysis (BMED) is a new membrane separation technology composed of electrodialysis (ED) through a bipolar membrane (BPM). Under the action of an electric field, H2O can be dissociated to H+ and OH-, and the anions and cations in the solution can be recovered as acids and bases, respectively, without adding chemical reagents, which reduces the application cost and carbon footprint, and leads to simple operation and high efficiency. Its application is becoming more widespread and promising, and it has become a research hotspot. This review mainly introduces the application of BMED to recovering salts in the form of acids and bases, CO2 capture, ammonia nitrogen recovery, and ion removal and recovery from wastewater. Finally, BMED is summarized, and future prospects are discussed.

14.
Water Res ; 218: 118504, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35525033

RESUMO

Ammonia recovery from centrate of an anaerobic digester was investigated using an onsite bipolar-electrodialysis (BP-ED) pilot scale plant coupled to two liquid/liquid membrane contactor (LLMC) modules. To investigate the process performance and robustness, the pilot plant was operated at varying current densities, load ratio (current to nitrogen loading), and in continuous and intermittent current (Donnan) mode. A higher load ratio led to higher total ammonium nitrogen (TAN, sum of ammonia and ammonium) removal efficiency, whereas the increase in the applied current did not have a significant impact the TAN removal efficiency. Continuous current application resulted in the higher TAN removal compared with the Donnan dialysis mode. The lowest specific energy consumption of 6.3 kWh kgN-1 was recorded in the Donnan mode, with the load ratio of 1.4, at 200 L h-1 flowrate and current density of 75 A m-2. Lower energy demand observed in the Donnan mode was likely due to the lower scaling and fouling of the ion exchange membranes. Nevertheless, scaling and fouling limited the operation of the BP-ED stack in all operational modes, which had to be interrupted by the daily cleaning procedures. The LLMC module enabled a highly selective recovery of ammonia as ammonium sulfate ((NH4)2SO4), with the concentration of ammonia ranging from 19 to 33 gN L-1. However, the analysis of per- and polyfluoroalkyl substances (PFASs) in the obtained (NH4)2SO4 product revealed the presence of 212-253 ng L-1 of 6:2 fluorotelomer sulfonate (FTS), a common substitute of legacy PFAS. Given the very low concentrations of 6:2 FTS (i.e., < 2 ng L-1) encountered in the concentrated stream, 6:2 FTS was likely released from the Teflon-based components in the sulfuric acid dosage line. Thus, careful selection of the pilot plant tubing, pumps and other components is required to avoid any risks associated with the PFAS presence and ensure safe use of the final product as fertilizer.


Assuntos
Compostos de Amônio , Fluorocarbonos , Amônia/análise , Anaerobiose , Nitrogênio/análise , Diálise Renal , Águas Residuárias
15.
Membranes (Basel) ; 12(3)2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35323745

RESUMO

Electrodialysis with a bipolar membrane coupled to an ultrafiltration module (EDBM-UF) is a hybrid technology recently developed as an ecofriendly alternative to chemical acidification to produce casein and caseinate from skim milk. In this study, the composition and functional properties of casein and caseinate obtained by chemical acidification/basification and by the EDBM-UF method from winter and summer milks were analyzed and compared. Results show that the emulsifying properties, solubility, water holding, and gelling capacities are equivalent between casein and caseinate from both methods. However, the foaming properties of EDBM-UF ingredients were improved, and casein was less hygroscopic. Additionally, the season of milk influenced certain functional properties, such as water-holding capacity and hygroscopicity. Therefore, these results allow concluding that EDBM-UF ingredients have equivalent or higher functionality than chemically produced ingredients, and that the EDBM-UF process would be a more eco-efficient alternative to the chemical one.

16.
Sci Total Environ ; 820: 153272, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35074375

RESUMO

Carbon dioxide (CO2) capture coupled with further mineralization in high value-added form is a great challenge for carbon capture utilization and storage (CCUS) processes. In this work, a bipolar membrane electrodialysis (BMED) technique integrated with crystallization chamber was proposed to utilize CO2-derived carbonates and the residual magnesium resource from seawater to produce functional nesquehonite. To ensure the stable CO2 storage and magnesium extraction by BMED process, the metastable zone during nesquehonite crystallizing was first measured to modulate crystallization rate, obtain high-quality crystal products and inhibit membrane fouling states. Subsequently, the effects of current density, temperature, and CO2 flow rate during the whole BMED-crystallization process were further investigated. The increase in current density and temperature was conducive for the extraction of magnesium while the enlarged gas flow rate induced higher absorption of CO2. Under the current density at 22 A/m2, CO2 flow rate at 50 mL/min and temperature at 30 °C, the optimal carbon absorption ratio and the magnesium extraction ratio reached 50.85% and 56.71%, respectively. Under this condition, the explosion nucleation of the nesquehonite was effectively avoided to inhibit membrane fouling and the generation of magnesium hydroxide was depressed to obtain the target product nesquehonite. This study on simultaneous carbon capture and magnesium utilization provides theoretical guidance for the industrial green storage of CO2 and development of valuable magnesium products.


Assuntos
Dióxido de Carbono , Magnésio , Dióxido de Carbono/química , Carbonatos , Magnésio/química , Água do Mar/química , Temperatura
17.
Membranes (Basel) ; 11(11)2021 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-34832129

RESUMO

The Bipolar Membrane Electrodialysis process (BPMED) can produce valuable chemicals such as acid (HCl, H2SO4, etc.) and base (NaOH) from saline and brackish waters under the influence of an electrical field. In this study, BPMED was used to recover wastewater and salt in biologically treated textile wastewater (BTTWW). BPMED process, with and without pre-treatment (softening and ozonation), was evaluated under different operational conditions. Water quality parameters (color, remaining total organic carbon, hardness, etc.) in the acid, base and filtrated effluents of the BPMED process were evaluated for acid, base, and wastewater reuse purposes. Ozone oxidation decreased 90% of color and 37% of chemical oxygen demand (COD) in BTTWW. As a result, dye fouling on the anion exchange membrane of the BPMED process was reduced. Subsequently, over 90% desalination efficiency was achieved in a shorter period. Generated acid, base, and effluent wastewater of the BPMED process were found to be reusable in wet textile processes. Results indicated that pre-ozonation and subsequent BPMED membrane systems might be a promising solution in converging to a zero discharge approach in the textile industry.

18.
Environ Sci Technol ; 55(21): 14886-14896, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34637289

RESUMO

Recovering nitrogen from source-separated urine is an important part of the sustainable nitrogen management. A novel bipolar membrane electrodialysis with membrane contactor (BMED-MC) process is demonstrated here for efficient recovery of ammonia from synthetic source-separated urine (∼3772 mg N L-1). In a BMED-MC process, electrically driven water dissociation in a bipolar membrane simultaneously increases the pH of the urine stream and produces an acid stream for ammonia stripping. With the increased pH of urine, ammonia transports across the gas-permeable membrane in the membrane contactor and is recovered by the acid stream as ammonium sulfate that can be directly used as fertilizer. Our results obtained using batch experiments demonstrate that the BMED-MC process can achieve 90% recovery. The average ammonia flux and the specific energy consumption can be regulated by varying the current density. At a current density of 20 mA cm-2, the energy required to achieve a 67.5% ammonia recovery in a 7 h batch mode is 92.8 MJ kg-1 N for a bench-scale system with one membrane stack and can approach 25.8 MJ kg-1 N for large-scale systems with multiple membrane stacks, with an average ammonia flux of 2.2 mol m-2 h-1. Modeling results show that a continuous BMED-MC process can achieve a 90% ammonia recovery with a lower energy consumption (i.e., 12.5 MJ kg-1 N). BMED-MC shows significant potential for ammonia recovery from source-separated urine as it is relatively energy-efficient and requires no external acid solution.


Assuntos
Amônia , Nitrogênio , Fertilizantes , Urina
19.
Membranes (Basel) ; 11(8)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34436338

RESUMO

The objective of this work was to evaluate obtaining LiOH directly from brines with high LiCl concentrations using bipolar membrane electrodialysis by the analysis of Li+ ion transport phenomena. For this purpose, Neosepta BP and Fumasep FBM bipolar membranes were characterized by linear sweep voltammetry, and the Li+ transport number in cation-exchange membranes was determined. In addition, a laboratory-scale reactor was designed, constructed, and tested to develop experimental LiOH production tests. The selected LiCl concentration range, based on productive process concentrations for Salar de Atacama (Chile), was between 14 and 34 wt%. Concentration and current density effects on LiOH production, current efficiency, and specific electricity consumption were evaluated. The highest current efficiency obtained was 0.77 at initial concentrations of LiOH 0.5 wt% and LiCl 14 wt%. On the other hand, a concentrated LiOH solution (between 3.34 wt% and 4.35 wt%, with a solution purity between 96.0% and 95.4%, respectively) was obtained. The results of this work show the feasibility of LiOH production from concentrated brines by means of bipolar membrane electrodialysis, bringing the implementation of this technology closer to LiOH production on a larger scale. Moreover, being an electrochemical process, this could be driven by Solar PV, taking advantage of the high solar radiation conditions in the Atacama Desert in Chile.

20.
Water Res ; 201: 117335, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34175727

RESUMO

Sustainable seawater brine treatment demands an essential paradigm shift for effective recovery of resources and high value utilization of mixed-salts. Here, a novel hybrid electrodialysis (ED) system was proposed that integrated an innovative hybrid selective ED (HSED) and a developed selective bipolar membrane ED (SBMED). The HSED process allowed simultaneous recovery of major divalent cations and anions from seawater brine when NaCl was selectively enriched. Then, the impure NaCl-rich stream was fed directly into the SBMED process for acid/base preparation without any purification pretreatment. Detailed analysis of the HSED process showed that increasing unit voltage from 2.33 V to 2.67 V would improve the removal ratio of Ca2+, Mg2+ and SO42- from 54.7%, 41.4% and 13.3% to 78.9%, 76.6% and 32.1%, respectively. In addition, the increment of initial concentration of product streams promoted the transport of various ions from the feed and middle compartments. The fine utilization performance, in terms of ionic removal ratio and fractionation ratio of divalent ions in the HSED process, was more limited by the initial concentration of product streams. Furthermore, the SBMED stack was found to have nearly identical performance over five cycles, indicating that the presence of a trace amount of hardness cations did not induce scaling. The current study thus provided a novel suitable strategy with a perspective of fine utilization for practical applications in sustainable disposal of seawater brine.


Assuntos
Sais , Purificação da Água , Cátions , Água do Mar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA