Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Microorganisms ; 12(6)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38930483

RESUMO

Microorganisms with multiple ecological functions can be a useful biotechnological resource in integrated pest- and disease-management programs. This work aimed to investigate the potential endophytic and virulent effects of a strain of Purpureocillium lilacinum on organic cultivation in Brazil. Specifically, the strain's ability to establish itself as an endophyte in common bean, soybean, and sunflower plants when inoculated via seed was evaluated. Furthermore, its antifungal activity against phytopathogens and its pathogenicity and virulence against insects of the order Lepidoptera, Coleoptera, and Hemiptera were evaluated. Furthermore, the strain was evaluated for its biochemical and physiological characteristics. For virulence bioassays, the experiments were conducted under a factorial scheme (2 × 3), with the following factors: (a) fungal inoculation and control without inoculum and (b) types of inocula (blastospores, aerial conidia, and metabolites). The treatments were sprayed on insect species at different stages of development. In summary, it was found that the SBF054 strain endophytically colonized the common bean, with partial recovery from the root tissues of soybean and sunflower plants, 30 days after inoculation; suppressed 86% of Rhizoctonia solani mycelial growth in an in vitro assay; and controlled eggs, nymphs, and Euschistus heros adults. These multifunctional abilities are mainly attributed to the strain's mechanisms of producing metabolites, such as organic acids, soluble nutrients, and hydrolytic enzymes.

2.
Pharmaceutics ; 16(5)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38794267

RESUMO

BACKGROUND: Relapse of Candida albicans urinary tract infection (UTI) is frequent despite appropriate treatment, as commonly used antifungals such fluconazole and flucytosine are only fungistatics. To improve treatment of Candida UTI and decrease relapses, understanding the long-term metabolic activity and survival of C. albicans in urine containing antifungals at minimal inhibitory concentration (MIC) is needed. METHODS: we monitored the survival, metabolic activity and consumption of glucose and proteins by C. albicans using conventional methods and isothermal microcalorimetry (IMC). We also investigated the influence of dead Candida cells on the growth of their living counterparts. RESULTS: For 33 days, weak activity was observed in samples containing antifungals in which C. albicans growth rate was reduced by 48%, 60% and 88%, and the lag increased to 172 h, 168 h and 6 h for amphotericin, flucytosine and fluconazole, respectively. The metabolic activity peaks corresponded to the plate counts but were delayed compared to the exhaustion of resources. The presence of dead cells promoted growth in artificial urine, increasing growth rate and reducing lag in similar proportions. CONCLUSIONS: Even with antifungal treatment, C. albicans relapses are possible. The low metabolic activity of surviving cells leading to regrowth and chlamydospore formation possibly supported by autophagy are likely important factors in relapses.

3.
AMB Express ; 13(1): 72, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37432529

RESUMO

Polyvinyl alcohol (PVA) is a biodegradable, water-soluble polymer with excellent film forming properties, commonly studied or used as tablet coating, food packaging or controlled release fertilizers. Attract-and-kill (AK) beads are sustainable, microbial alternatives to synthetic soil insecticides, whose onset of lethal effect largely depend on how fast the encapsulated entomopathogenic fungus forms virulent conidia. Therefore, the objective of this study was to develop a water-soluble coating accelerating the kill effect of AK beads by immediately releasing virulent Metarhizium brunneum CB15-III blastospores. We assessed three PVA types (PVA 4-88, 8-88, 10-98) which differed in their degree of hydrolysis or molecular weight for their ability to release viable blastospores from thin films after drying at 60-40 °C, and examined how polyethylene glycol and soy-lecithin impact the blastospore survival. Finally, we evaluated the effectiveness of coated AK beads in a bioassay against Tenebrio molitor larvae. The blastospore release rate quadrupled within the first 5 min with decreasing molecular weight and degree of hydrolysis, with PVA 4-88 releasing 79 ± 19% blastospores. Polyethylene glycol and soy-lecithin significantly increased the blastospore survival to 18-28% for all three PVA types. Coated beads exhibited a uniform, 22.4 ± 7.3 µm thin coating layer, with embedded blastospores, as confirmed by scanning electron microscopy. The blastospore coating increased the mortality rate of T. molitor larvae over uncoated AK beads, decreasing the median lethal time from 10 to 6 days. Consequently, the blastospore coating accelerated the kill effect of regular AK beads. These findings pave the way to enhanced pest control efficacy from coated systems such as beads or seeds.

4.
Microorganisms ; 11(6)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37375096

RESUMO

Infective conidia from entomopathogenic fungi are widely used to control insect pests. Many entomopathogenic fungi also produce yeast-like cells called blastospores under specific liquid culture conditions that can directly infect insects. However, little is known about the biological and genetic factors that allow blastospores to infect insects and make them potentially effective for biological control in the field. Here, we show that while the generalist Metarhizium anisopliae produces a higher number of and smaller blastospores, the Lepidoptera specialist M. rileyi produces fewer propagules with a higher cell volume under high-osmolarity conditions. We compared the virulence of blastospores and conidia of these two Metarhizium species towards the economically important caterpillar pest Spodoptera frugiperda. Conidia and blastospores from M. anisopliae were equally infectious, but acted slower, and killed fewer insects than M. rileyi conidia and blastospores did, where M. rielyi conidia had the highest virulence. Using comparative transcriptomics during propagule penetration of insect cuticles, we show that M. rileyi blastospores express more virulence-related genes towards S. frugiperda than do M. anisopliae blastospores. In contrast, conidia of both fungi express more virulence-related oxidative stress factors than blastospores. Our results highlight that blastospores use a different virulence mechanism than conidia use, which may be explored in new biological control strategies.

5.
J Fungi (Basel) ; 9(4)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37108905

RESUMO

The evolution of carnivorous fungi in deep time is still poorly understood as their fossil record is scarce. The approximately 100-million-year-old Cretaceous Palaeoanellus dimorphus is the earliest fossil of carnivorous fungi ever discovered. However, its accuracy and ancestral position has been widely questioned because no similar species have been found in modern ecosystems. During a survey of carnivorous fungi in Yunnan, China, two fungal isolates strongly morphologically resembling P. dimorphus were discovered and identified as a new species of Arthrobotrys (Orbiliaceae, Orbiliomycetes), a modern genus of carnivorous fungi. Phylogenetically, Arthrobotrys blastospora sp. nov. forms a sister lineage to A. oligospora. A. blastospora catches nematodes with adhesive networks and produces yeast-like blastospores. This character combination is absent in all other previously known modern carnivorous fungi but is strikingly similar to the Cretaceous P. dimorphus. In this paper, we describe A. blastospora in detail and discuss its relationship to P. dimorphus.

6.
Insects ; 14(4)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37103143

RESUMO

We assessed the effect of the entomopathogenic fungus Metarhizium anisopliae against Aedes aegypti. Conidia of M. anisopliae strains CG 489, CG 153, and IBCB 481 were grown in Adamek medium under different conditions to improve blastospore production. Mosquito larvae were exposed to blastospores or conidia of the three fungal strains at 1 × 107 propagules mL-1. M. anisopliae IBCB 481 and CG 153 reduced larval survival by 100%, whereas CG 489 decreased survival by about 50%. Blastospores of M. anisopliae IBCB 481 had better results in lowering larval survival. M. anisopliae CG 489 and CG 153 reduced larval survival similarly. For histopathology (HP) and scanning electron microscopy (SEM), larvae were exposed to M. anisopliae CG 153 for 24 h or 48 h. SEM confirmed the presence of fungi in the digestive tract, while HP confirmed that propagules reached the hemocoel via the midgut, damaged the peritrophic matrix, caused rupture and atrophy of the intestinal mucosa, caused cytoplasmic disorganization of the enterocytes, and degraded the brush border. Furthermore, we report for the first time the potential of M. anisopliae IBCB 481 to kill Ae. aegypti larvae and methods to improve the production of blastospores.

7.
Fungal Genet Biol ; 164: 103766, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36513262

RESUMO

Metarhizium rileyiis an entomopathogenic fungus with a narrow host range which distinguishes it from other Metarhiziumspecies with broad host ranges. This species is also unique because the initial yeast-like growth on solid media is only observed in liquid culture in other Metharizium species. A lack of knowledge about the metabolism and genetic signatures of M. rileyiduring this yeast-like phase on solid and in liquid media is a bottleneck for its large-scale production as a commercial biocontrol agent.In this study wefound that M. rileyiyeast-like cells produced on solid medium infected and killed the important insect pest Spodoptera frugiperda with comparable efficiency as yeast-like cells grown in liquid medium. Secondly, we used comparative transcriptomic analysis to investigate theactive genes and genomic signatures of the M. rileyi yeast-like morphotypes produced on solid and in liquid media. Yeast-like cells grown in liquid medium had upregulated genes relating specifically to signal transduction andparticular membrane transporters. Thirdly, we compared the transcriptomic profiles of yeast-like phases of M. rileyi with those of M. anisopliae. The yeast-like phase of M. rileyi grown on solid medium upregulated unique genes not found in otherMetarhiziumspecies including specific membrane proteins and several virulence factors. Orthologous genes associated with heat shock protein, iron permease, membrane proteins and key virulence traits (e.g. collagen-like protein Mcl1) were upregulated in both species. Comparative transcriptome analyses of gene expression showed more differences than similarities between M. anisopliae and M. rileyi yeast-like cells.


Assuntos
Hifas , Metarhizium , Animais , Perfilação da Expressão Gênica , Hifas/genética , Proteínas de Membrana/genética , Transcriptoma/genética , Virulência/genética
8.
Fungal Biol ; 126(8): 528-533, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35851145

RESUMO

The entomopathogenic fungus Beauveria bassiana is widely used for insect pest control and can produce three distinct infective unit types under different nutritional and environmental conditions: aerial conidia, blastospores, and submerged conidia. Here, we identified endophytic colonization ability and existing forms of the three types of B. bassiana infective units after inoculating Arabidopsis plants via soil drenching, and tested their effects on their presence mold disease caused by Botrytis cinerea. We found that all B. bassiana infective unit types colonized Arabidopsis leaves, with germinating and producing hyphae by hydrophilic blastopores and submerged conidia; further, we showed that blastospores were more effective in defending against B. cinerea, compared with aerial conidia. These findings suggest that in addition to aerial conidia, the colonization of other two types of entomopathogenic fungal infective units could also have important impacts on plant resistance. This study contributes to better understanding on the function of B. bassiana as fungal endophytes, which could lead to a new paradigm for how to successfully use these organisms in biological control against plant diseases.


Assuntos
Arabidopsis , Beauveria , Botrytis , Controle Biológico de Vetores , Doenças das Plantas , Esporos Fúngicos
9.
Arq. Inst. Biol. (Online) ; 89: e00182022, 2022. ilus, tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1416863

RESUMO

Coffee is the most appreciated beverage in worldwide; Brazil is the largest producer and exporter of this commodity. Organochlorine endosulfan was banned from the country in 2013 due to its teratogenic agent-related features. Since then, coffee plantations have experienced increased Hypothenemus hampei infestation rates. The aim of the current study is to assess variations in the rates of Coffea arabica fruits brocaded by H. hampei after the application of entomopathogenic fungal species Beauveria bassiana IBCB66. Experiments were carried out with 'Catuaí' and 'Mundo Novo' cultivars between 2018 and 2020, during the borer transit period. Three experiments were carried out based on the application of the aforementioned fungal species on the investigated coffee plant species, both by spraying and sprinkling, at 30-day intervals; 10 fruits were collected per face of each useful plant in each repetition. The experiment has followed a randomized blocks design with five treatments, including the control, and five repetitions, each. Beauveria bassiana Ecobass (IBCB66) wettable powder spray, at the concentration of 2 × 1013·ha­1, was used in experiments I and II. On the other hand, the mix used in experiment III was prepared with blastospores at concentration of 5 × 1012·ha­1 blastospores + 0.1% Silwet. The sprinkling process in all three experiments has used dry aerial conidia at concentration of 2 × 1013·ha­1. Collected data were subjected to analysis of variance (ANOVA), which was followed by Fisher's test at 5% probability level, in the SISVAR software. More than 35,000 fruits were assessed. In addition to variations between experiments, results have evidenced that the rate of brocaded fruits remained high.


Assuntos
Esporos Fúngicos , Controle Biológico de Vetores/métodos , Coffea/parasitologia , Gorgulhos , Beauveria , Rego por Aspersão
10.
Parasit Vectors ; 14(1): 555, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34711272

RESUMO

BACKGROUND: The use of entomopathogenic fungi (EPF) for the control of adult mosquitoes is a promising alternative to synthetic insecticides. Previous studies have only evaluated conidiospores against adult mosquitoes. However, blastospores, which are highly virulent against mosquito larvae and pupae, could also be effective against adults. METHODS: Metarhizium anisopliae (ESALQ 818 and LEF 2000) blastospores and conidia were first tested against adult Aedes aegypti by spraying insects with spore suspensions. Blastospores were then tested using an indirect contact bioassay, exposing mosquitoes to fungus-impregnated cloths. Virulence when using blastospores suspended in 20% sunflower oil was also investigated. RESULTS: Female mosquitoes sprayed with blastospores or conidia at a concentration of 108 propagules ml-1 were highly susceptible to both types of spores, resulting in 100% mortality within 7 days. However, significant differences in virulence of the isolates and propagules became apparent at 107 spores ml-1, with ESALQ 818 blastospores being more virulent than LEF 2000 blastospores. ESALQ 818 blastospores were highly virulent when mosquitoes were exposed to black cotton cloths impregnated with blastospores shortly after preparing the suspensions, but virulence declined rapidly 12 h post-application. The addition of vegetable oil to blastospores helped maintain virulence for up to 48 h. CONCLUSION: The results showed that blastospores were more virulent to adult female Ae. aegypti than conidia when sprayed onto the insects or applied to black cloths. Vegetable oil helped maintain blastospore virulence. The results show that blastospores have potential for use in integrated vector management, although new formulations and drying techniques need to be investigated.


Assuntos
Aedes/microbiologia , Aedes/virologia , Arbovírus/fisiologia , Metarhizium/patogenicidade , Mosquitos Vetores/microbiologia , Controle Biológico de Vetores/métodos , Esporos Fúngicos/patogenicidade , Animais , Feminino , Larva/microbiologia , Controle de Mosquitos/métodos , Mosquitos Vetores/virologia , Virulência
11.
Acta Trop ; 213: 105732, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33188750

RESUMO

Blastospores or conidia (formulated or not) of entomopathogenic fungi were assessed against Aedes aegypti larvae. Larvae (L2) were exposed to 105, 106, 107, and 108 propagules mL-1 water suspension. Mineral oil at 0.1%, 0.5%, or 1.0% (v/v) was employed to observe the effect on larval survival. The 0.1% mineral oil did not affect larval survival. Accordingly, 107 propagules mL-1 and 0.1% mineral oil were used to prepare all fungal emulsions. The fungal suspension or formulation was prepared as follows: 107 propagules mL-1 on 0.03% TweenⓇ 80 (v/v) aqueous solution or 107 propagules mL-1 on 0.03% TweenⓇ 80 plus 0.1% mineral oil; larval survival rates were evaluated for 7 days, and median survival time (S50) was also determined. The presence of fungi in larvae was examined both histologically and by scanning electron microscopy 24 h or 48 h after exposure. To evaluate the larval growth, larvae were exposed to 107 propagules mL-1 for 48 hours and their length measured using a digital caliper. Here, propagules had similar results in reducing the larvae survival rate and time. The treatment with Beauveria bassiana s.l. at 108 propagules mL-1 or with Metarhizium anisopliae s.l. at 108 blastopores mL-1 reduced the larval survival time to two days. M. anisopliae s.l. at 108 conidia mL-1 reduced the survival time to three days. The survival time of larvae submitted to the other treatments ranged from 6 days to over 7 days. M. anisopliae s.l. or B. bassiana s.l. oil-in-water emulsions at 107 propagules mL-1 yielded better results than the water suspensions, the larvae survival rate was 2 days for both propagules in oil-in-water emulsion. Larvae exposed to blastospores from both isolates or M. anisopliae conidia were longer than in the other treatments. Scanning electron microscopy and histology analyzes found fungi predominantly in the gut, mouthparts, and perispiracular lobes of larvae. Formulated fungus yielded better results than the aqueous suspensions for control of mosquito larvae. Thus, for the first time, the effect of mineral oil on the fungal interaction on A. aegypti larvae was observed as well as the effect of entomopathogenic fungi in the growth of larvae, supporting the search for strategies to control this arthropod.


Assuntos
Aedes/microbiologia , Beauveria , Metarhizium , Controle Biológico de Vetores , Aedes/crescimento & desenvolvimento , Aedes/ultraestrutura , Animais , Beauveria/fisiologia , Interações entre Hospedeiro e Microrganismos , Larva/crescimento & desenvolvimento , Larva/microbiologia , Larva/ultraestrutura , Metarhizium/fisiologia , Microscopia Eletrônica de Varredura , Óleo Mineral , Esporos Fúngicos/fisiologia
12.
J Fungi (Basel) ; 6(4)2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33322531

RESUMO

Entomopathogenic nematodes and fungi are globally distributed soil organisms that are frequently used as bioagents in biological control and integrated pest management. Many studies have demonstrated that the combination of biocontrol agents can increase their efficacy against target hosts. In our study, we focused on another potential benefit of the synergy of two species of nematodes, Steinernema feltiae and Heterorhabditis bacteriophora, and the fungus Isaria fumosorosea. According to our hypothesis, these nematodes may be able to disseminate this fungus into the environment. To test this hypothesis, we studied fungal dispersal by the nematodes in different arenas, including potato dextrose agar (PDA) plates, sand heaps, sand barriers, and glass tubes filled with soil. The results of our study showed, for the first time, that the spreading of both conidia and blastospores of I. fumosorosea is significantly enhanced by the presence of entomopathogenic nematodes, but the efficacy of dissemination is negatively influenced by the heterogeneity of the testing arena. We also found that H. bacteriophora spread fungi more effectively than S. feltiae. This phenomenon could be explained by the differences in the presence and persistence of second-stage cuticles or by different foraging behavior. Finally, we observed that blastospores are disseminated more effectively than conidia, which might be due to the different adherence of these spores (conidia are hydrophobic, while blastospores are hydrophilic). The obtained results showed that entomopathogenic nematodes (EPNs) can enhance the efficiency of fungal dispersal.

13.
G3 (Bethesda) ; 10(7): 2141-2157, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32354703

RESUMO

The fungus Metarhizium anisopliae is a facultative insect pathogen used as biological control agent of several agricultural pests worldwide. It is a dimorphic fungus that is able to display two growth morphologies, a filamentous phase with formation of hyphae and a yeast-like phase with formation of single-celled blastospores. Blastospores play an important role for M. anisopliae pathogenicity during disease development. They are formed solely in the hemolymph of infected insects as a fungal strategy to quickly multiply and colonize the insect's body. Here, we use comparative genome-wide transcriptome analyses to determine changes in gene expression between the filamentous and blastospore growth phases in vitro to characterize physiological changes and metabolic signatures associated with M. anisopliae dimorphism. Our results show a clear molecular distinction between the blastospore and mycelial phases. In total 6.4% (n = 696) out of 10,981 predicted genes in M. anisopliae were differentially expressed between the two phases with a fold-change > 4. The main physiological processes associated with up-regulated gene content in the single-celled yeast-like blastospores during liquid fermentation were oxidative stress, amino acid metabolism (catabolism and anabolism), respiration processes, transmembrane transport and production of secondary metabolites. In contrast, the up-regulated gene content in hyphae were associated with increased growth, metabolism and cell wall re-organization, which underlines the specific functions and altered growth morphology of M. anisopliae blastospores and hyphae, respectively. Our study revealed significant transcriptomic differences between the metabolism of blastospores and hyphae. These findings illustrate important aspects of fungal morphogenesis in M. anisopliae and highlight the main metabolic activities of each propagule under in vitro growth conditions.


Assuntos
Metarhizium , Animais , Insetos , Metarhizium/genética , Controle Biológico de Vetores , Saccharomyces cerevisiae , Transcriptoma
14.
Fungal Genet Biol ; 128: 14-19, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30876892

RESUMO

Zymoseptoria tritici, the causal agent of Septoria tritici blotch, is a notable pathogen of temperate-grown wheat. To better understand the mechanisms underpinning pathogenicity, leaf infection assays are commonly used to compare either the virulence of Z. tritici wildtype or mutant strains, or the susceptibility of wheat cultivars. These assays, which control for many biotic, abiotic and experimental variables, involve the application of known spore numbers to leaves. To achieve this, spore numbers are quantified during a period of aqueous suspension. Published methods rarely state the period in which spores are held in suspension, suggesting that this variable may be uncontrolled. Using simple, agar-based plating experiments, this work firstly demonstrates that blastospore culturability (the ability to form a colony when plated on appropriate agar) decreases rapidly over time during maintenance in aqueous suspension. It is subsequently shown that this reduction in culturability correlates to a reduction in the virulence of the blastospore population. This is shown in three wild type Z. tritici strains. From this, it is concluded that suspension time is a variable of major importance in experimental design and one which, if not controlled, may lead to erroneous conclusions from inter-strain comparisons. The conidia of the unrelated fungus Magnaporthe oryzae also rapidly lose culturability when stored in aqueous suspension, whereas the microspores of Fusarium oxysporum f. sp. cubense do not, suggesting that this phenomenon occurs in some but not all other fungi. Finally, a droplet method of inoculations is proposed to decrease the variability in the numbers of spores applied, within and between experiments.


Assuntos
Ascomicetos/patogenicidade , Técnicas Microbiológicas/métodos , Esporos Fúngicos/fisiologia , Contagem de Colônia Microbiana , Viabilidade Microbiana , Triticum/microbiologia , Virulência
15.
Virulence ; 9(1): 1449-1467, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30112970

RESUMO

Entomopathogenic fungi are potential biological control agents of mosquitoes. Our group observed that not all mosquitoes were equally susceptible to fungal infection and observed significant differences in virulence of different spore types. Conidiospores and blastospores were tested against Culex quinquefasciatus larvae. Blastospores are normally considered more virulent than conidia as they form germ tubes and penetrate the host integument more rapidly than conidia. However, when tested against Cx. quinquefasciatus, blastospores were less virulent than conidia. This host-fungus interaction was studied by optical, electron and atomic force microscopy (AFM). Furthermore, host immune responses and specific gene expression were investigated. Metarhizium brunneum (formerly M. anisopliae) ARSEF 4556 blastospores did not readily adhere to Culex larval integument and the main route of infection was through the gut. Adhesion forces between blastospores and Culex cuticle were significantly lower than for other insects. Larvae challenged with blastospores showed enhanced immune responses, with increased levels of phenoloxidase, glutathione-S-transferase, esterase, superoxide dismutase and lipid peroxidase activity. Interestingly, M. brunneum pathogenicity/stress-related genes were all down-regulated in blastospores exposed to Culex. Conversely, when conidia were exposed to Culex, the pathogenicity genes involved in adhesion or cuticle degradation were up-regulated. Delayed host mortality following blastospore infection of Culex was probably due to lower adhesion rates of blastospores to the cuticle and enhanced host immune responses deployed to counter infection. The results here show that subtle differences in host-pathogen interactions can be responsible for significant changes in virulence when comparing mosquito species, having important consequences for biological control strategies and the understanding of pathogenicity processes.


Assuntos
Culex/microbiologia , Interações Hospedeiro-Patógeno , Metarhizium/patogenicidade , Micoses/microbiologia , Animais , Culex/imunologia , Esterases/metabolismo , Tegumento Comum/microbiologia , Larva/imunologia , Larva/microbiologia , Metarhizium/genética , Monofenol Mono-Oxigenase/metabolismo , Micoses/imunologia , Controle Biológico de Vetores , Esporos/patogenicidade , Esporos Fúngicos/patogenicidade , Superóxido Dismutase/metabolismo , Virulência/genética
16.
Rev. argent. microbiol ; 50(1): 81-89, mar. 2018. graf, tab
Artigo em Espanhol | LILACS | ID: biblio-958033

RESUMO

El objetivo del presente estudio fue evaluar la producción de blastosporas y conidios de diferentes aislados nativos de México del hongo entomopatógeno Isaria fumosorosea y de una cepa de colección mediante diferentes técnicas de propagación. En la producción de blastosporas se utilizaron 2 medios de cultivo líquidos (sumergidos), uno a base de casaminoácidos y el otro a base de peptona de colágeno como fuentes de nitrógeno, con glucosa como fuente de carbono en ambos. Para la producción de conidios, los hongos se cultivaron en agar papa dextrosa, a partir de esos cultivos se prepararon suspensiones de 1 x 10(6) conidios/ml para inocular matraces con caldo dextrosa Sabouraud, para iniciar así la fase líquida del cultivo bifásico, denominado también precultivo. Posteriormente con el precultivo y las suspensiones de conidios se inocularon bolsas con granos de arroz, que se incubaron durante 14 días para el cultivo bifásico y para la fermentación sólida, respectivamente. El aislado HIB-23 fue el que logró la más elevada concentración de blastosporas obtenida en el cultivo sumergido: 4,90 x 10(8) blastosporas/ml en el medio casaminoácidos; y en el medio con peptona de colágeno se obtuvieron 2,15 x 10(8) blastosporas/ml. La máxima producción de conidios en fermentación sólida la logró la cepa Pfr-612 (1,58 x 10(9) conidios/g), mientras que la máxima en cultivo bifásico correspondió al aislado HIB-30 (9,00 x 10(6) conidios/g). La fermentación sólida resultó ser el método más efectivo, con un promedio de 1,09 x 10(9) conidios/g, mientras que el cultivo bifásico fue el menos efectivo, con un promedio de 2,76 x 10(6) conidios/g. Para la producción de blastosporas en los medios sumergidos no se obtuvo diferencia significativa alguna.


The aim of this study was to evaluate the production of blastospores and conidia of different native isolates and a strain of Isaria fumosorosea using different propagation techniques. Two liquid culture media of casamino acids and peptone as nitrogen sources and glucose as carbon source for both media cultures were respectively used in the production of blastospores, while for the production of conidia, the fungi were grown in potato dextrose agar; from these cultures, solutions of conidia to a concentration of 1 x 10(6) per milliliter were prepared to inoculate flasks with Sabouraud dextrose broth for the liquid phase of the biphasic culture, also known as preculture. Subsequently, rice grain bags were inoculated with the preculture and the conidia solutions, which were incubated for 14 days for solid fermentation and biphasic culture, respectively. The HIB-23 isolate recorded a concentration of 4.90 x 10(8) blastospores/ml in the casamino acid medium, while a concentration of 2.15 x 10(8) blastospores/ml was obtained in the peptone collagen medium. For the Pfr-612 strain, the conidia production in solid-state fermentation was 1.58 x 10(9) conidia/g, and for HIB-30 in the biphasic culture of 9.00 x 10(6) conidia/g. Solid-state fermentation proved to be the most effective method with an average of 1.09 x 10(9) conidia/g, whereas the biphasic culture was the least effective method with 2.76 x 10(6) conidia/g; no significant difference was reported for the submerged production media.


Assuntos
Esporos Fúngicos , Hypocreales , Meios de Cultura , Fermentação , México
17.
J Invertebr Pathol ; 153: 38-50, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29425967

RESUMO

Mosquitoes transmit several diseases, which are of global significance (malaria, dengue, yellow fever, Zika). The geographic range of mosquitoes is increasing due to climate change, tourism and trade. Both conidial and blastospore formulations of the entomopathogenic fungus, Metarhizium brunneum ARSEF 4556, are being investigated as mosquito larvicides. However, concerns have been raised over possible non-target impacts to arthropod mosquito predators such as larvae of Toxorhynchites brevipalpis which feed on larvae of mosquito vector species. Laboratory-based, small container bioassays showed, that T. bevipalpis larvae are susceptible to relatively high concentrations (i.e. ≥107 spores ml-1) of inoculum with blastospores being significantly more virulent than conidia. At lower concentrations (e.g. <107 spores ml-1), it appears that M. brunneum complements T. brevipalpis resulting in higher control than if either agent was used alone. At a concentration of 105 spores ml-1, the LT50 of for conidia and blastospores alone was 5.64 days (95% CI: 4.79-6.49 days) and 3.89 days (95% CI: 3.53-4.25 days), respectively. In combination with T. brevipalpis, this was reduced to 3.15 days (95% CI: 2.82-3.48 days) and 2.82 days (95% CI: 2.55-3.08 days). Here, combined treatment with the fungus and predator was beneficial but weaker than additive. At 107 and 108 blastospores ml-1, mosquito larval mortality was mostly due to the fungal pathogen when the predator was combined with blastospores. However, with conidia, the effects of combined treatment were additive/synergistic at these high concentrations. Optimisation of fungal concentration and formulation will reduce: (1) risk to the predator and (2) application rates and costs of M. brunneum for control of mosquito larvae.


Assuntos
Aedes/parasitologia , Culicidae , Metarhizium/patogenicidade , Controle de Mosquitos/métodos , Controle Biológico de Vetores/métodos , Animais , Larva , Esporos Fúngicos/patogenicidade , Virulência
18.
Rev Argent Microbiol ; 50(1): 81-89, 2018.
Artigo em Espanhol | MEDLINE | ID: mdl-28967446

RESUMO

The aim of this study was to evaluate the production of blastospores and conidia of different native isolates and a strain of Isaria fumosorosea using different propagation techniques. Two liquid culture media of casamino acids and peptone as nitrogen sources and glucose as carbon source for both media cultures were respectively used in the production of blastospores, while for the production of conidia, the fungi were grown in potato dextrose agar; from these cultures, solutions of conidia to a concentration of 1×106 per milliliter were prepared to inoculate flasks with Sabouraud dextrose broth for the liquid phase of the biphasic culture, also known as preculture. Subsequently, rice grain bags were inoculated with the preculture and the conidia solutions, which were incubated for 14 days for solid fermentation and biphasic culture, respectively. The HIB-23 isolate recorded a concentration of 4.90×108 blastospores/ml in the casamino acid medium, while a concentration of 2.15×108 blastospores/ml was obtained in the peptone collagen medium. For the Pfr-612 strain, the conidia production in solid-state fermentation was 1.58×109 conidia/g, and for HIB-30 in the biphasic culture of 9.00×106 conidia/g. Solid-state fermentation proved to be the most effective method with an average of 1.09×109 conidia/g, whereas the biphasic culture was the least effective method with 2.76×106 conidia/g; no significant difference was reported for the submerged production media.


Assuntos
Hypocreales , Esporos Fúngicos , Meios de Cultura , Fermentação , México
19.
Fungal Genet Biol ; 99: 13-25, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28040530

RESUMO

The insect fungal pathogen Beauveria bassiana produces a number of distinct cell types that include aerial conidia, blastospores and haemolymph-derived cells, termed hyphal bodies, to adapt varied environment niches and within the host insect. These cells display distinct biochemical properties and surface structures, and a highly ordered outermost brush-like structure uniquely present on hyphal bodies, but not on any in vitro cells. Here, we found that the outermost structure on the hyphal bodies mainly consisted of proteins associated to structural wall components in that most of it could be removed by dithiothreitol (DTT) or proteinase K. DTT-treatment also caused delayed germination, decreased tolerance to ultraviolet irradiation and virulence of conidia or blastospores, with decreased adherence and alternated carbohydrate epitopes, suggesting involvement in fungal development, stress responses and virulence. To characterize these cell surface molecules, proteins were released from the living cells using DTT, and identified and quantitated using label-free quantitative mass spectrometry. Thereafter, a series of bioinformatics programs were used to predict cell surface-associated proteins (CSAPs), and 96, 166 and 54 CSAPs were predicted from the identified protein pools of conidia, blastospores and hyphal bodies, respectively, which were involved in utilization of carbohydrate, nitrogen, and lipid, detoxification, pathogen-host interaction, and likely other cellular processes. Thirteen, sixty-nine and six CSAPs were exclusive in conidia, blastospores and hyphal bodies, respectively, which were verified by eGFP-tagged proteins at their N-terminus. Our data provide a crucial cue to understand mechanism of B. bassiana to adapt to varied environment and interaction with insect host.


Assuntos
Beauveria/genética , Interações Hospedeiro-Patógeno/genética , Hifas/genética , Proteínas de Membrana/genética , Animais , Beauveria/patogenicidade , Linhagem da Célula/genética , Membrana Celular/genética , Interação Gene-Ambiente , Hifas/crescimento & desenvolvimento , Insetos/microbiologia , Proteínas de Membrana/biossíntese , Estresse Fisiológico/genética
20.
Insects ; 7(4)2016 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-27879644

RESUMO

The efficacy of topical, leaf residue, and soil drench applications with Isaria fumosorosea blastospores (Ifr strain 3581) was assessed for the management of the citrus root weevil, Diaprepes abbreviatus (L.). Blastospores of Ifr were applied topically at a rate of 107 blastospores mL-1 on both the larvae and adults, and each insect stage was incubated in rearing cups with artificial diet at 25 °C, either in the dark or in a growth chamber under a 16 h photophase for 2 weeks, respectively. Percent larval and adult mortality due to the infection of Ifr was assessed after 14 days as compared to untreated controls. Leaf residue assays were assessed by feeding the adults detached citrus leaves previously sprayed with Ifr (107 blastospores mL-1) in Petri dish chambers and then incubating them at 25 °C for 2-3 weeks. Efficacy of the soil drench applications was assessed on five larvae feeding on the roots of a Carrizo hybrid citrus seedling ~8.5-10.5 cm below the sterile sand surface in a single 16 cm × 15.5 cm pot inside a second pot lined with plastic mesh to prevent escapees. Drench treatments per pot consisted of 100 mL of Ifr suspension (107 blastospores mL-1), flushed with 400, 900, or 1400 mL of water compared to 500, 1000, and 1500 mL of water only for controls. The mean concentration of Ifr propagules as colony forming units per gram (CFUs g-1) that leached to different depths in the sand profile per treatment drench rate was also determined. Two weeks post-drenching of Ifr treatments, larvae were assessed for percent mortality, size differences, and effect of treatments in reducing feeding damage to the plant root biomass compared to the controls. Topical spray applications caused 13 and 19% mortality in larvae and adults after 7 days compared to none in the control after 14 days, respectively. Adults feeding on a single Ifr treated leaf for 24 h consumed less than the control, and resulted in 100% mortality 35 days post-treatment compared to 33% in the untreated control. Although offered fresh, untreated leaves after 24 h, only adults in the control group consumed them. Ifr CFUs g-1 were isolated 8.5-10.5 cm below the sand surface for the 1000 and 1500 mL drench rates only, resulting in 2%-4% larval mortality. For all the Ifr drench treatments, no differences were observed in percent larval mortality and size or the effect of treatments in reducing feeding damage to the plant root biomass compared to the controls. These results suggest that the foliar application of Ifr may be an efficient biocontrol strategy for managing adult populations of D. abbreviatus; potential alternative larval management strategies are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA