Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Malar J ; 17(1): 143, 2018 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-29615050

RESUMO

BACKGROUND: In the context of malaria elimination/eradication, drugs that are effective against the different developmental stages of the parasite are highly desirable. The oldest synthetic anti-malarial drug, the thiazine dye methylene blue (MB), is known for its activity against Plasmodium blood stages, including gametocytes. The aim of the present study was to investigate a possible effect of MB against malaria parasite liver stages. METHODS: MB activity was investigated using both in vitro and in vivo models. In vitro assays consisted of testing MB activity on Plasmodium falciparum, Plasmodium cynomolgi and Plasmodium yoelii parasites in human, simian or murine primary hepatocytes, respectively. MB in vivo activity was evaluated using intravital imaging in BALB/c mice infected with a transgenic bioluminescent P. yoelii parasite line. The transmission-blocking activity of MB was also addressed using mosquitoes fed on MB-treated mice. RESULTS: MB shows no activity on Plasmodium liver stages, including hypnozoites, in vitro in primary hepatocytes. In BALB/c mice, MB has moderate effect on P. yoelii hepatic development but is highly effective against blood stage growth. MB is active against gametocytes and abrogates parasite transmission from mice to mosquitoes. CONCLUSION: While confirming activity of MB against both sexual and asexual blood stages, the results indicate that MB has only little activity on the development of the hepatic stages of malaria parasites.


Assuntos
Antimaláricos/farmacologia , Azul de Metileno/farmacologia , Plasmodium cynomolgi/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Plasmodium yoelii/efeitos dos fármacos , Animais , Anopheles/parasitologia , Eritrócitos/parasitologia , Feminino , Fígado/parasitologia , Camundongos/parasitologia , Camundongos Endogâmicos BALB C
2.
Malar J ; 16(1): 110, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28279180

RESUMO

BACKGROUND: Primaquine is an anti-malarial used to prevent Plasmodium vivax relapses and malaria transmission. However, PQ metabolites cause haemolysis in patients deficient in the enzyme glucose-6-phosphate dehydrogenase (G6PD). Fifteen PQ-thiazolidinone derivatives, synthesized through one-post reactions from primaquine, arenealdehydes and mercaptoacetic acid, were evaluated in parallel in several biological assays, including ability to block malaria transmission to mosquitoes. RESULTS: All primaquine derivatives (PQ-TZs) exhibited lower cell toxicity than primaquine; none caused haemolysis to normal or G6PD-deficient human erythrocytes in vitro. Sera from mice pretreated with the test compounds thus assumed to have drug metabolites, caused no in vitro haemolysis of human erythrocytes, whereas sera from mice pretreated with primaquine did cause haemolysis. The ability of the PQ-TZs to block malaria transmission was evaluated based on the oocyst production and percentage of mosquitoes infected after a blood meal in drug pre-treated animals with experimental malaria caused by either Plasmodium gallinaceum or Plasmodium berghei; four and five PQ-TZs significantly inhibited sporogony in avian and in rodent malaria, respectively. Selected PQ-TZs were tested for their inhibitory activity on P. berghei liver stage development, in mice and in vitro, one compound (4m) caused a 3-day delay in the malaria pre-patent period. CONCLUSIONS: The compound 4m was the most promising, blocking malaria transmissions and reducing the number of exoerythrocytic forms of P. berghei (EEFs) in hepatoma cells in vitro and in mice in vivo. The same compound also caused a 3-day delay in the malaria pre-patent period.


Assuntos
Eritrócitos/parasitologia , Glucosefosfato Desidrogenase/metabolismo , Malária/tratamento farmacológico , Plasmodium berghei/efeitos dos fármacos , Plasmodium gallinaceum/efeitos dos fármacos , Primaquina/análogos & derivados , Primaquina/farmacologia , Animais , Linhagem Celular Tumoral , Galinhas , Chlorocebus aethiops , Eritrócitos/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Células Hep G2 , Humanos , Malária/transmissão , Malária Aviária/tratamento farmacológico , Malária Aviária/transmissão , Camundongos , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium gallinaceum/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA