Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
1.
Electrophoresis ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39119735

RESUMO

The identification of tissue-specific differentially methylated regions has significantly contributed to the field of forensic genetics, particularly in body fluid identification crucial for linking evidence to crimes. Among the various approaches to analyzing DNA methylation, the SNaPshot assay has been popularly studied in numerous researches. However, there is a growing interest in exploring alternative methods such as the use of massively parallel sequencing (MPS), which can process a large number of samples simultaneously. This study compares SNaPshot and MPS multiplex assays using nine cytosine-phosphate-guanine markers for body fluid identification. As a result of analyzing 112 samples, including blood, saliva, vaginal fluid, menstrual blood, and semen, both methods demonstrated high sensitivity and specificity, indicating their reliability in forensic investigations. A total of 92.0% samples were correctly identified by both methods. Although both methods accurately identified all blood, saliva, and semen samples, some vaginal fluid samples showed unexpected methylation signals at nontarget loci in addition to the target loci. In the case of menstrual blood samples, due to their complexity, independent typing criteria were applied, and successful menstrual blood typing was possible, whereas a few samples showed profiles similar to vaginal fluid. The MPS method worked better in vaginal fluid samples, and the SNaPshot method performed better in menstrual blood samples. This study offers valuable insights into body fluid identification based on the characteristics of the SNaPshot and MPS methods, which may help in more efficient forensic applications.

2.
Electrophoresis ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39076047

RESUMO

In forensic investigations, identifying the type of body fluid allows for the interpretation of biological evidence at the activity level. Over the past two decades, significant research efforts have focused on developing molecular methods for this purpose. MicroRNAs (miRNAs) hold great promise due to their tissue-specific expression, abundance, lack of splice variants, and relative stability. Although initial findings are promising, achieving consistent results across studies is still challenging, underscoring the necessity for both original and replication studies. To address this, we selected 18 miRNA candidates and tested them on 6 body fluids commonly encountered in forensic cases: peripheral blood, menstrual blood, saliva, semen, vaginal secretion, and skin. Using reverse transcription quantitative PCR analysis, we confirmed eight miRNA candidates (miR-144-3p, miR-451a, miR-205-5p, miR-214-3p, miR-888-5p, miR-891a-5p, miR-193b-3p, miR-1260b) with high tissue specificity and four (miR-203a-3p, miR-141-3p, miR-200b-3p, miR-4286) with lesser discrimination ability but still contributing to body fluid differentiation. Through principal component analysis and hierarchical clustering, the set of 12 miRNAs successfully distinguished all body fluids, including the challenging discrimination of blood from menstrual blood and saliva from vaginal secretion. In conclusion, our results provide additional data supporting the use of a small set of miRNAs for predicting common body fluids in forensic contexts. Large population data need to be gathered to develop a body fluid prediction model and assess its accuracy.

3.
Forensic Sci Int ; 362: 112147, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39067179

RESUMO

The identification of biological fluids at crime scenes contributes to crime scene reconstruction and provides investigative leads. Traditional methods for body fluid identification are limited in terms of sensitivity and are mostly presumptive. Emerging methods based on mRNA and DNA methylation require high quality template source. An exploitable characteristic of body fluids is their distinct microbial profiles allowing for the discrimination of body fluids based on microbiome content. Microbial DNA is highly abundant within the body, robust and stable and can persist in the environment long after human DNA has degraded. 16S rRNA sequencing is the gold standard for microbial analysis; however, NGS is costly, and requires intricate workflows and interpretation. Also, species level resolution is not always achievable. Based on the current challenges, the first objective of this study was to develop a multiplex conventional PCR assay to identify vaginal fluid and saliva by targeting species-specific 16S rRNA microbial markers. The second objective was to employ droplet digital PCR (ddPCR) as a novel approach to quantify bacterial species alone and in a mixture of body fluids. Lactobacillus crispatus and Streptococcus salivarius were selected because of high abundance within vaginal fluid and saliva respectively. While Fusobacterium nucleatum and Gardnerella vaginalis, though present in healthy humans, are also frequently found in oral and vaginal infections, respectively. The multiplex PCR assay detected L. crispatus and G. vaginalis in vaginal fluid while F. nucleatum and S. salivarius was detected in saliva. Multiplex PCR detected F. nucleatum, S. salivarius and L. crispatus in mixed body fluid samples while, G. vaginalis was undetected in mixtures containing vaginal fluid. For samples exposed at room temperature for 65 days, L. crispatus and G. vaginalis were detected in vaginal swabs while only S. salivarius was detected in saliva swabs. The limit of detection was 0.06 copies/µl for F. nucleatum (2.5 ×10-9 ng/µl) and S. salivarius (2.5 ×10-6 ng/µl). L. crispatus and G. vaginalis had detection limits of 0.16 copies/µl (2.5 ×10-4 ng/µl) and 0.48 copies/µl (2.5 ×10-7 ng/µl). All 4 bacterial species were detected in mixtures and aged samples by ddPCR. No significant differences were observed in quantity of bacterial markers in saliva and vaginal fluid. The present research reports for the first time the combination of the above four bacterial markers for the detection of saliva and vaginal fluid and highlights the sensitivity of ddPCR for bacterial quantification in pure and mixed body fluids.


Assuntos
DNA Bacteriano , Reação em Cadeia da Polimerase Multiplex , RNA Ribossômico 16S , Saliva , Vagina , Humanos , Saliva/microbiologia , Saliva/química , Feminino , DNA Bacteriano/análise , Vagina/microbiologia , Streptococcus salivarius/genética , Lactobacillus/isolamento & purificação , Lactobacillus/genética , Gardnerella vaginalis/isolamento & purificação , Gardnerella vaginalis/genética , Muco do Colo Uterino/microbiologia , Fusobacterium nucleatum/isolamento & purificação , Fusobacterium nucleatum/genética
4.
Forensic Sci Int ; 362: 112152, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39067177

RESUMO

Given that microbiological analysis can be an alternative method that overcomes the shortcomings of traditional forensic technology, and skin samples may be the most common source of cases, the analysis of skin microbiome was investigated in this study. High-throughput sequencing targeting the V3-V4 region of 16S rRNA gene was performed to reveal the skin microbiome of healthy individuals in Guangdong Han. The bacterial diversity of the palm, navel, groin and plantar of the same individual was analyzed. The overall classification based on 16S rRNA gene amplicons revealed that the microbial composition of skin samples from different anatomical parts was different, and the dominant bacterial genus of the navel, plantar, groin and palm skin were dominated by Cutibacterium, Staphylococcus, Corynebacterium and Staphylococcus, respectively. PCoA analysis showed that the skin at these four anatomical locations could only be grouped into three clusters. A predictive model based on random forest algorithm showed the potential to accurately distinguish these four anatomical locations, which indicated that specific bacteria with low abundance were the key taxa. In addition, the skin microbiome in this study is significantly different from the dominant microbiome in saliva and vaginal secretions identified in our previous study, and can be distinguished from these two tissue fluids. In conclusion, the present findings on the community and microbial structure details of the human skin may reveal its potential application value in assessing the location of skin samples and the type of body fluids in forensic medicine.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Microbiota , RNA Ribossômico 16S , Pele , Humanos , Pele/microbiologia , Feminino , Masculino , Adulto , DNA Bacteriano , Bactérias/isolamento & purificação , Bactérias/genética , Bactérias/classificação , Saliva/microbiologia , Análise de Sequência de DNA , Ciências Forenses/métodos , Reação em Cadeia da Polimerase
5.
Microbiol Spectr ; 12(8): e0012524, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38980015

RESUMO

Semen is one of the common body fluids in sexual crime cases. The current methods of semen identification have certain limitations, so it is necessary to search for other methods. In addition, there are few reports of microbiome changes in body fluids under simulated crime scenes. It is essential to further reveal the changes in semen microbiomes after exposure to various simulated crime scenes. Semen samples from eight volunteers were exposed in closed plastic bags, soil, indoor, cotton, polyester, and wool fabrics. A total of 68 samples (before and after exposure) were collected, detected by 16S rDNA sequencing, and analyzed for the microbiome signature. Finally, a random forest model was constructed for body fluid identification. After exposure, the relative abundance of Pseudomonas and Rhodococcus changed dramatically in almost all groups. In addition, the treatment with the closed plastic bags or soil groups had a greater impact on the semen microbiome. According to the Shannon indices, the alpha diversity of the closed plastic bags and soil groups was much lower than that of the other groups. Attention should be given to the above two scenes in practical work of forensic medicine. In this study, the accuracy of semen recognition was 100%. The exposed semen can still be correctly identified as semen based on its microbiota characteristics. In summary, semen microbiomes exposed to simulated crime scenes still have good application potential for body fluid identification. IMPORTANCE: In this study, the microbiome changes of semen exposed to different environments were observed, and the exposed semen microbiome still has a good application potential in body fluid identification.


Assuntos
Bactérias , Microbiota , RNA Ribossômico 16S , Sêmen , Sêmen/microbiologia , Humanos , Masculino , RNA Ribossômico 16S/genética , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Adulto , Medicina Legal/métodos
6.
Forensic Sci Int Genet ; 72: 103089, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38905753

RESUMO

Biological trace samples consisting of very few cells pose a challenge to conventional forensic genetic DNA analysis. RNA may be an alternative to DNA when handling low template samples. Whereas each cell only contains two copies of an autosomal DNA segment, the transcriptome retains much of the genomic variation replicated in abundant RNA fragments. In this study, we describe the development of a prototype RNA-based SNP selection set for forensic human identification from low template samples (50 pg gDNA). Whole blood from a subset of the Danish population (41 individuals) and blood stains subjected to degradation at room temperature for up to two weeks were analysed by whole transcriptome shotgun sequencing. Concordance was determined by DNA genotyping with the Infinium Omni5-4 SNP chip. In the 100 protein-coding genes with the most reads, 5214 bi-allelic SNPs with gnomAD minor allele frequencies > 0.1 in the African/African American, East Asian, and (non-Finnish) European populations were identified. Of these, 24 SNPs in 21 genes passed screening in whole blood and degraded blood stains, with a resulting mean match probability of 4.5 ∙ 10-9. Additionally, ancestry informative SNPs and SNPs in genes useful for body fluid identification were identified in the transcriptome. Consequently, shotgun sequencing of RNA from low template samples may be used for a vast host of forensic genetics purposes, including simultaneous human and body fluid identification, leading to direct donor identification in the identified body fluid.


Assuntos
Polimorfismo de Nucleotídeo Único , Humanos , Transcriptoma , Frequência do Gene , Genética Forense/métodos , Impressões Digitais de DNA , Dinamarca , Degradação Necrótica do DNA , Manchas de Sangue , Grupos Raciais/genética
7.
Artigo em Inglês | MEDLINE | ID: mdl-38856935

RESUMO

Identifying body fluids can be a critical clue that aids in reconstructing the crime scene. Semen and vaginal fluid identification is crucial, especially in cases of sexual assault. The majority of forensic studies focused on identifying normal body fluids and neglected the expression variation of semen in pathology. To differentiate between vaginal fluids, fertile and infertile semen samples (oligospermia and azoospermia) using miR 20b and miR197. A total of 48 body fluid samples, divided as 16 vaginal fluids, 16 fertile semen, and 16 infertile semen samples (8 with oligospermia and 8 with azoospermia), were collected, and the expression levels of miR-20b and miR-197 were detected by the SYBR Green real-time quantitative PCR technique. Our results showed significant different expression of these miRNAs in normal semen compared to vaginal and infertile semen. Moreover, we designed a model based on Fisher's discriminant function to forecast the group affiliations of unidentified samples. With three novel equations, we were able to accurately distinguish between semen and vaginal fluid, fertile and infertile semen, and oligospermia and azoospermia semen samples with validation accuracy of 81.3%, 100%, and 100%, respectively. MiR-20b and miR-197 expression levels are efficient and appropriate markers to distinguish semen from vaginal fluid and to differentiate between fertile and infertile semen samples. However, the present study is a preliminary study based on clinical samples, and the potential role of these markers in differentiating real crime scene samples is still unknown, so we recommend further research to investigate these markers expression while using forensic samples.

8.
Forensic Sci Int Genet ; 71: 103045, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38615496

RESUMO

Identifying the sources of biosamples found at crime scenes is crucial for forensic investigations. Among the markers used for body fluid identification (BFI), mRNA has emerged as a well-studied marker because of its high specificity and remarkable stability. Despite this potential, commercially available mRNA kits specifically designed for BFI are lacking. Therefore, we developed an mRNA kit that includes 21 specific mRNA markers of body fluids, along with three housekeeping genes for BFI, to identify four forensic-relevant fluids (blood, semen, saliva, and vaginal fluids). In this study, we tested 451 single-body-fluid samples, validated the universality of the mRNA kit, and obtained a gene expression profile. We performed the validation studies in triplicates and determined the sensitivity, specificity, stability, precision, and repeatability of the mRNA kit. The sensitivity of the kit was found to be 0.1 ng. Our validation process involved the examination of 59 RNA mixtures, 60 body fluids mixtures, and 20 casework samples, which further established the reliability of the kit. Furthermore, we constructed five classifiers that can handle single-body fluids and mixtures using this kit. The classifiers output possibility values and identify the specific body fluids of interest. Our results showed the reliability and suitability of the BFI kit, and the Random Forest classifier performed the best, with 94% precision. In conclusion, we developed an mRNA kit for BFI which can be a promising tool for forensic practice.


Assuntos
Muco do Colo Uterino , RNA Mensageiro , Saliva , Sêmen , Humanos , RNA Mensageiro/genética , Saliva/química , Feminino , Sêmen/química , Muco do Colo Uterino/química , Reprodutibilidade dos Testes , Masculino , Genética Forense/métodos , Sensibilidade e Especificidade , Reação em Cadeia da Polimerase em Tempo Real , Marcadores Genéticos , Análise Química do Sangue , Corantes Fluorescentes , Reação em Cadeia da Polimerase Multiplex
9.
Int J Legal Med ; 138(4): 1223-1232, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38467753

RESUMO

Body fluids are one of the most encountered types of evidence in any crime and are commonly used for identifying a person's identity. In addition to these, they are also useful in ascertaining the nature of crime by determining the ty pe of fluid such as blood, semen, saliva, urine etc. Body fluids collected from crime scenes are mostly found in degraded, trace amounts and/or mixed with other fluids. However, the existing immunological and enzyme-based methods used for differentiating these fluids show limited specificity and sensitivity in such cases. To overcome these challenges, a new method utilizing microRNA expression of the body fluids has been proposed. This method is believed to be non-destructive as well as sensitive in nature and researches have shown promising results for highly degraded samples as well. This systematic review focuses on and explores the use and reliability of miRNAs in body fluid identification. It also summarizes the researches conducted on various aspects of miRNA in terms of body fluid examination in forensic investigations.


Assuntos
Líquidos Corporais , MicroRNAs , Humanos , Biomarcadores/análise , Líquidos Corporais/química , Genética Forense/métodos , Marcadores Genéticos , MicroRNAs/análise , Saliva/química , Sêmen/química
10.
Microbiol Spectr ; 12(4): e0248023, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38470485

RESUMO

Identification and the time since deposition (TsD) estimation of body fluid stains from a crime scene could provide valuable information for solving the cases and are always difficult for forensics. Microbial characteristics were considered as a promising biomarker to address the issues. However, changes in the microbiota may damage the specific characteristics of body fluids. Correspondingly, incorrect body fluid identification may result in inaccurate TsD estimation. The mutual influence is not well understood and limited the codetection. In the current study, saliva, semen, vaginal secretion, and menstrual blood samples were exposed to indoor conditions and collected at eight time points (from fresh to 30 days). High-throughput sequencing based on the 16S rRNA gene was performed to characterize the microbial communities. The results showed that a longer TsD could decrease the discrimination of different body fluid stains. However, the accuracies of identification still reached a quite high value even without knowing the TsD. Correspondingly, the mean absolute error (MAE) of TsD estimation significantly increased without distinguishing the types of body fluids. The predictive TsD of menstrual blood reached a quite low MAE (1.54 ± 0.39 d). In comparison, those of saliva (6.57 ± 1.17 d), semen (6.48 ± 1.33 d), and vaginal secretion (5.35 ± 1.11 d) needed to be further improved. The great effect of individual differences on these stains limited the TsD estimation accuracy. Overall, microbial characteristics allow for codetection of body fluid identification and TsD estimation, and body fluids should be identified before estimating TsD in microbiome-based stain analyses.IMPORTANCEEmerged evidences suggest microbial characteristics could be considered a promising tool for identification and time since deposition (TsD) estimation of body fluid stains. However, the two issues should be studied together due to a potential mutual influence. The current study provides the first evidence to understand the mutual influence and determines an optimal process for codetection of identification and TsD estimation for unknown stains for forensics. In addition, we involved aged stains into our study for identification of body fluid stains, rather than only using fresh stains like previous studies. This increased the predictive accuracy. We have preliminary verified that individual differences in microbiotas limited the predictive accuracy of TsD estimation for saliva, semen, and vaginal secretion. Microbial characteristics could provide an accurate TsD estimation for menstrual blood. Our study benefits the comprehensive understanding of microbiome-based stain analyses as an essential addition to previous studies.


Assuntos
Líquidos Corporais , Microbiota , Feminino , Humanos , Idoso , Corantes , RNA Ribossômico 16S/genética , Saliva
11.
Micromachines (Basel) ; 15(2)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38398999

RESUMO

Isothermal amplification methods have become popular in research due to the simplicity of the technology needed to run the reactions. Specifically, loop-mediated isothermal amplification (LAMP) has been widely used for various applications since first reported in 2000. LAMP reactions are commonly monitored with the use of colorimetry. Although color changes associated with positive amplification are apparent to the naked eye, this detection method is subjective due to inherent differences in visual perception from person to person. The objectivity of the colorimetric detection method may be improved by programmed image capture over time with simultaneous heating. As such, the development of a novel, one-step, automated, and integrated analysis system capable of performing these tasks in parallel is detailed herein. The device is adaptable to multiple colorimetric dyes, cost-effective, 3D-printed for single-temperature convective heating, and features an easy-to-use LabVIEW software program developed for automated image analysis. The device was optimized and subsequently validated using four messenger-RNA targets and mock forensic samples. The performance of our device was determined to be comparable to that of a conventional thermal cycler and smartphone image analysis, respectively. Moreover, the outlined system is capable of objective colorimetric analysis, with exceptional throughput of up to 96 samples at once.

12.
Forensic Sci Int Genet ; 70: 103020, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38286081

RESUMO

The microbiome of saliva stains deposited at crime scenes and in everyday settings is valuable for forensic investigations and environmental ecology. However, the dynamics and applications of microbial communities in these saliva stains have not been fully explored. In this study, we analyzed saliva samples that were exposed to indoor conditions for up to 1 year and to different carriers (cotton, sterile absorbent cotton swab, woolen, dacron) in both indoor and outdoor environments for 1 month using high-throughput sequencing. The analysis of microbial composition and Mfuzz clustering showed that the salivary flora, specifically Streptococcus (cluster7), which was associated with microbial contamination, remained stable over short periods of time. However, prolonged exposure led to significant differences due to the invasion of environmental bacteria such as Pseudomonas and Achromobacter. The growth and colonization of environmental flora were promoted by humidity. The neutral model predictions indicated that the assembly of salivary microbial communities in outdoor environments was significantly influenced by stochastic processes, with environmental characteristics having a greater impact on community change compared to surface characteristics. By incorporating data from previous studies on fecal and vaginal secretion microbiology, we developed RF and XGBoost classification models that achieved high accuracy (>98 %) and AUC (>0.8). Additionally, a RF regression model was created to determine the time since deposition (TsD) of the stains. Time inference models yielded a mean absolute error (MAE) of 7.1 days for stains exposed for 1 year and 14.2 h for stains exposed for 14 days. These findings enhance our understanding of the changes in the microbiome of saliva stains over time, in different environments, and on different surfaces. They also have potential applications in assessing potential microbial contamination, identifying body fluids, and inferring the time of deposition.


Assuntos
Líquidos Corporais , Microbiota , Humanos , Feminino , Saliva/microbiologia , Umidade , Bactérias/genética
13.
Int J Legal Med ; 138(2): 375-393, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37875742

RESUMO

Methylation-sensitive/-dependent restriction enzyme (MSRE/MDRE) PCR can be performed to detect hypomethylated or hypermethylated CpG sites. With the combined use of different tissue-specific CpG markers, MSRE/MDRE-PCR leads to tissue-specific methylation patterns (TSMPs), enabling the correlation of DNA samples to their source tissue. MSRE/MDRE assays can use the same platform as forensic STR typing and offer many advantages in the field of forensic body fluid detection. In the present study, we aimed to establish MSRE assays for the detection of blood, saliva, vaginal secretion, and semen, using markers from literature and from our own database search. We designed two different MSRE test-sets, which include two novel Y-chromosomal non-semen markers, and enable differentiation between female and male non-semen samples. Furthermore, we established an MSRE/MDRE semen approach, which includes only Y-chromosomal non-semen and semen markers. This Y-semen multiplex PCR utilizes the novel combination of the methylation-sensitive enzyme SmaI and the methylation-dependent enzyme GlaI, which enables more sensitive detection of male body fluids within male/female DNA mixtures. Our validation tests confirmed that MSRE/MDRE assays exhibit high sensitivity, similar to that of STR typing.


Assuntos
Líquidos Corporais , Metilação de DNA , Humanos , Masculino , Feminino , Saliva , Reação em Cadeia da Polimerase Multiplex , Sêmen , DNA , Enzimas de Restrição do DNA/metabolismo , Marcadores Genéticos , Cromossomos Humanos Y , Genética Forense
14.
J Forensic Sci ; 69(1): 282-290, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37818748

RESUMO

Body fluid identification is an essential step in the forensic biology workflow that can assist DNA analysts in determining where to collect DNA evidence. Current presumptive tests lack the specificity that molecular techniques can achieve; therefore, molecular methods, including microRNA (miRNA) and microbial signature characterization, have been extensively researched in the forensic community. Limitations of each method suggest combining molecular markers to increase the discrimination efficiency of multiple body fluids from a single assay. While microbial signatures have been successful in identifying fluids with high bacterial abundances, microRNAs have shown promise in fluids with low microbial abundance (blood and semen). This project synergized the benefits of microRNAs and microbial DNA to identify multiple body fluids using DNA extracts. A reverse transcription (RT)-qPCR duplex targeting miR-891a and let-7g was validated, and miR-891a differential expression was significantly different between blood and semen. The miRNA duplex was incorporated into a previously reported qPCR multiplex targeting 16S rRNA genes of Lactobacillus crispatus, Bacteroides uniformis, and Streptococcus salivarius to presumptively identify vaginal/menstrual secretions, feces, and saliva, respectively. The combined classification regression tree model resulted in the presumptive classification of five body fluids with 94.6% overall accuracy, now including blood and semen identification. These results provide proof of concept that microRNAs and microbial DNA can classify multiple body fluids simultaneously at the quantification step of the current forensic DNA workflow.


Assuntos
Líquidos Corporais , MicroRNAs , Feminino , Humanos , MicroRNAs/análise , RNA Ribossômico 16S/genética , Genética Forense/métodos , Líquidos Corporais/química , Saliva/química , Sêmen/química , DNA
15.
Forensic Sci Int Genet ; 69: 102979, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38043150

RESUMO

Biological traces discovered at crime scenes hold significant significance in forensic investigations. In cases involving mixed body fluid stains, the evidentiary value of DNA profiles depends on the type of body fluid from which the DNA was obtained. Recently, coding region polymorphism analysis has proved to be a promising method for directly linking specific body fluids to their respective DNA contributors in mixtures, which may help to avoid "association fallacy" between separate DNA and RNA evidence. In this study, we present an update on previously reported coding region Single Nucleotide Polymorphisms (cSNPs) by exploring the potential application of coding region Insertion/Deletion polymorphisms (cInDels). Nine promising cInDels, selected from 70 mRNA markers based on stringent screening criteria, were integrated into an existing mRNA profiling assay. Subsequently, the body fluid specificity of our cInDel assay and the genotyping consistency between complementary DNA (cDNA) and genomic DNA (gDNA) were examined. Our study demonstrates that cInDels can function as important multifunctional genetic markers, as they provide not only the ability to confirm the presence of forensically relevant body fluids, but also the ability to associate/dissociate specific body fluids with particular donors.


Assuntos
Líquidos Corporais , Humanos , RNA Mensageiro/genética , RNA , Marcadores Genéticos , DNA/genética , Genética Forense/métodos , Sêmen , Saliva
16.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1039100

RESUMO

ObjectiveBody fluid stains left at crime scenes are frequently trace amounts, while the identification of body fluids through real time fluorogenic quantitative technique often necessitates the repeated detection within the limited sample, as multiple miRNA markers are the basis for the identification. Based on the goal of both the throughput and efficiency improvement of miRNA analysis in trace samples, a duplex real time fluorogenic quantitative PCR assay system was designed to accurately quantify two miRNAs simultaneously, and the system should be further verified by actual sample for the body fluid identification. MethodsThe duplex real time fluorogenic quantitative PCR system of miR-451a to miR-21-5p was established with specially designed primers and probes, and the concentrations of the primers and probes were both optimized. The specificity, sensitivity and reproducibility of the system were validated, while its capability for body fluid identification was assessed using the miR-451a to miR-21-5p ratio. ResultsThe optimized assay system exhibited excellent specificity and repeatability, with coefficients of variation consistently below 8% for both intra- and inter-batch variability. The amplification efficiency of miR-451a and miR-21-5p reached 71.77% and 74.81%, respectively, with high and relatively consistent results. By utilizing this duplex real time fluorogenic quantitative PCR assay system, a total of 58 body fluid samples were analyzed, exhibiting a discrimination rate of 100% between blood and non-blood samples, as well as between peripheral blood and menstrual blood samples. Moreover, the results, obtained from single real time fluorogenic quantitative PCR assay system and duplex real time fluorogenic quantitative PCR assay system, showed no statistically significant difference with randomly selected blood samples (n=20). Compared to previous single real time fluorogenic quantitative PCR assay system, the sensitivity of duplex real time fluorogenic quantitative PCR assay system exhibited remarkable improvement. A minimum input of only 0.1 ng total RNA was sufficient for accurate detection of peripheral blood and menstrual blood samples, while saliva, semen, and vaginal secretion required only 1 ng total RNA for precise identification purposes. Additionally, the duplex real time fluorogenic quantitative PCR assay system successfully differentiated between different types of body fluids in simulated samples under natural outdoor conditions. ConclusionThe duplex real time fluorogenic quantitative PCR assay system effectively reduced both the time and material costs by half compared to the single system, especially suitable for the examination of body fluid stains left at crime scenes, solving the contradiction between the trace amount and the multiple sample volumes demand of repeated real time fluorogenic quantitative PCR. The duplex real time fluorogenic quantitative PCR assay successfully distinguished blood and other body fluid, as well as peripheral blood and menstrual blood samples, which maintains an equivalent capability for body fluid identification with half sample, time and reagent consumption. This system provides an efficient tool for identifying suspicious body fluids, as well as a foundation for more multiplexed real time fluorogenic quantitative PCR assay system research.

17.
J Forensic Sci ; 69(2): 631-639, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38146797

RESUMO

Despite current advances in body fluid identification, there are few studies evaluating the effect of environmental conditions. The present work assessed the detection of body fluids, blood, semen, and saliva, through lateral flow immunochromatographic (LFI) tests, exposed to tropical weather conditions over time, also evaluating the possibility of obtaining STR (short tandem repeat) profiles and identifying mitochondrial DNA (mtDNA) polymorphisms. Blood, semen, saliva samples, and mixtures of these fluids were deposited on polyester clothes and exposed to open-air tropical weather conditions for 1 month. The test versions from LFI (SERATEC®, Germany) Lab and crime scene (CS) used for the detection - one per each body fluid type - demonstrated that it is possible to identify body fluids and their mixtures up to 14 days after deposition. At 30 days, blood and semen were detected but not saliva. Full STR profiles were obtained from 14-day-old blood samples, and partial profiles were obtained from the remaining samples. It was possible to sequence mtDNA in the samples previously analyzed for STR profiling, and haplogroups could be assigned. In conclusion, this study demonstrated for the first time the possibility of body fluid identification and DNA profiling after exposure to tropical weather conditions for 1 month and also demonstrated the value of mtDNA analysis for compromised biological evidence.


Assuntos
Líquidos Corporais , Impressões Digitais de DNA , Impressões Digitais de DNA/métodos , Saliva/química , DNA Mitocondrial/genética , DNA Mitocondrial/análise , Sêmen/química , Tempo (Meteorologia) , Genética Forense
18.
Sci Justice ; 63(6): 724-735, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-38030341

RESUMO

Confirmatory body fluid identification using messenger RNA (mRNA) is a well-established technique to address issues encountered with conventional testing - such as poor sensitivity, specificity, and a lack of available tests for all body fluids of interest. For over a decade, endpoint reverse-transcription polymerase chain reaction (RT-PCR) assays have been used in forensic casework for such purposes. However, in comparison with real-time quantitative RT-PCR (RT-qPCR), endpoint RT-PCR has lower sensitivity, precision, and linear dynamic range. This research details the multiplexing and partial validation of confirmatory RT-qPCR assays. We have previously described novel assays for a range of body fluid targets and identified an optimal commercial kit for their amplification. Here, multiplexing was undertaken to form three assays: circulatory blood (SLC4A1) and menstrual fluid (STC1), saliva (HTN3) and vaginal material (CYP2B7P), and spermatozoa (PRM1) and seminal fluid (KLK2), all including a synthetic internal control RNA. Partial validation of the multiplexed assays incorporated the MIQE guidelines, ISO requirements, and SWGDAM guidelines. Using receiver operating characteristic (ROC) curves, each marker was significantly different from an uninformative assay and optimal cut-offs were all above 35 cycles. All assays showed a wide LDR (ranging from 3 to 5 logs with most R2 > 0.99), and high precision (most mean CV < 1 %). STC1 showed some instances of sporadic expression in blood, semen, and vaginal material at high CT values. CYP2B7P showed off-target expression in semen and blood. The sensitivities were approximated as; saliva: 1 in 1,000 dilution of a whole buccal swab, circulatory blood: 0.01-0.1 µL blood, menstrual fluid: 1 in 10,000 dilution of a whole menstrual swab, spermatozoa: 0.001 µL semen, seminal fluid: 0.01 µL semen, and vaginal material: 1 in 1,000 dilution of a whole vaginal swab. A total of 16 mock body fluid extract mixtures and 18 swab mixtures were tested and had 100% and 99% detection of target markers below each specific cut-off, respectively. Some mixtures containing high volumes of blood and semen showed off-target CYP2B7P expression. The successful application of a probabilistic model to the RT-qPCR data was also demonstrated. Further work will involve full developmental validation.


Assuntos
Líquidos Corporais , Masculino , Feminino , Humanos , Sêmen/metabolismo , Espermatozoides , Saliva , Reação em Cadeia da Polimerase , Genética Forense/métodos
19.
Electrophoresis ; 44(21-22): 1714-1724, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37847880

RESUMO

Correctly inferring the tissue origin types of forensic-relevant body fluids left at a crime scene is beneficial for reconstructing a crime scene. However, it is still a challenge to accurately identify different kinds of body fluids at a crime scene. Shorter sequence length and anti-degradation microRNA (miRNA) can be used to infer the tissue sources of biological fluid traces, but a limited number of miRNAs are tissue specific. The application of messenger RNA (mRNA) has been confirmed by different studies based on its high tissue specificity. According to the differential expression features of mRNA or miRNA in forensically relevant body fluids, this study developed a simultaneously reversed mRNA and miRNA system and then used these two types of RNAs for the determinations of five common kinds of body fluids. Compared with previously reported single kind of mRNA or miRNA assay, the combined mRNA and miRNA system showed good advantages for human body fluid identifications, especially it could be applied in mixed samples. In conclusion, the obtained results indicated that this combined mRNA and miRNA system might provide a scientific and accurate reference for body fluid identifications.


Assuntos
Líquidos Corporais , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/análise , Saliva/química , RNA Mensageiro/genética , Sêmen/química , Sêmen/metabolismo , Genética Forense/métodos , Menstruação , Líquidos Corporais/química
20.
Curr Med Sci ; 43(5): 908-918, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37700190

RESUMO

OBJECTIVE: Body fluid mixtures are complex biological samples that frequently occur in crime scenes, and can provide important clues for criminal case analysis. DNA methylation assay has been applied in the identification of human body fluids, and has exhibited excellent performance in predicting single-source body fluids. The present study aims to develop a methylation SNaPshot multiplex system for body fluid identification, and accurately predict the mixture samples. In addition, the value of DNA methylation in the prediction of body fluid mixtures was further explored. METHODS: In the present study, 420 samples of body fluid mixtures and 250 samples of single body fluids were tested using an optimized multiplex methylation system. Each kind of body fluid sample presented the specific methylation profiles of the 10 markers. RESULTS: Significant differences in methylation levels were observed between the mixtures and single body fluids. For all kinds of mixtures, the Spearman's correlation analysis revealed a significantly strong correlation between the methylation levels and component proportions (1:20, 1:10, 1:5, 1:1, 5:1, 10:1 and 20:1). Two random forest classification models were trained for the prediction of mixture types and the prediction of the mixture proportion of 2 components, based on the methylation levels of 10 markers. For the mixture prediction, Model-1 presented outstanding prediction accuracy, which reached up to 99.3% in 427 training samples, and had a remarkable accuracy of 100% in 243 independent test samples. For the mixture proportion prediction, Model-2 demonstrated an excellent accuracy of 98.8% in 252 training samples, and 98.2% in 168 independent test samples. The total prediction accuracy reached 99.3% for body fluid mixtures and 98.6% for the mixture proportions. CONCLUSION: These results indicate the excellent capability and powerful value of the multiplex methylation system in the identification of forensic body fluid mixtures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA