Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
1.
Explor Target Antitumor Ther ; 5(5): 1027-1055, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39351440

RESUMO

The bone marrow microenvironment (BMM) has highly specialized anatomical characteristics that provide a sanctuary place for hematopoietic stem cells (HSCs) that allow appropriate proliferation, maintenance, and self-renewal capacity. Several cell types contribute to the constitution and function of the bone marrow niche. Interestingly, uncovering the secrets of BMM and its interaction with HSCs in health paved the road for research aiming at better understanding the concept of leukemic stem cells (LSCs) and their altered niche. In fact, they share many signals that are responsible for interactions between LSCs and the bone marrow niche, due to several biological similarities between LSCs and HSCs. On the other hand, LSCs differ from HSCs in their abnormal activation of important signaling pathways that regulate survival, proliferation, drug resistance, invasion, and spread. Targeting these altered niches can help in better treatment choices for hematological malignancies and bone marrow disorders in general and acute myeloid leukemia (AML) in particular. Moreover, targeting those niches may help in decreasing the emergence of drug resistance and lower the relapse rate. In this article, the authors reviewed the most recent literature on bone marrow niches and their relations with either normal HSCs and AML cells/LSC, by focusing on pathogenetic and therapeutic implications.

2.
Stem Cell Res Ther ; 15(1): 336, 2024 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-39343910

RESUMO

BACKGROUND: Obesity is accompanied by inflammation, which significantly affects the homeostasis of the immune microenvironment. Hematopoietic stem cells (HSCs), residing primarily in the bone marrow, play a vital role in maintaining and producing diverse mature blood cell lineages for the adult hematopoietic and immune systems. However, how HSCs development is affected by obese-promoting inflammation, and the mechanism by which HSC hematopoietic potency is affected by inflammatory signals originating from the obese-promoting changes on bone marrow niche remain unclear. This study elucidates the relationship between obesity-promoting inflammation and HSC fate determination. METHODS: The obesity mice model was established by feeding C57BL/6J mice a high-fat diet (HFD) containing 60% kcal fat. After 6 weeks, HSCs were analyzed using flow cytometry and identified key inflammation cytokine. Transcriptome sequencing techniques were used to discern the distinct pathways in HSCs. Ultimately, confirming the biological mechanism of obesity-induced HSC fate changes via Anakinra blocking specific inflammatory signals. RESULTS: Obesity caused by HFD changed the physical and biochemical properties of the bone marrow niche. In the HFD mice, the population of long-term HSCs in the bone marrow was decreased and facilitated HSCs differentiation towards the myeloid lineage. In addition, HFD increased expression of the inflammatory factor IL-1ß in the bone marrow, and a significantly increased expression of IL-1r1 and active p38/MAPK signaling pathway were detected in the HSCs. Inhibition of IL-1ß further normalized the expression of genes in p38/MAPK pathway and reversed HSC fate. CONCLUSIONS: These findings have been demonstrated that the p38/MAPK signaling pathway in HSCs is activated by elevated levels of IL-1ß within the HSC niche in obese models, thereby regulating HSC differentiation. It suggested a direct link between obesity-promoting inflammation and myeloid differentiation bias of HSCs in the HFD mice.


Assuntos
Dieta Hiperlipídica , Células-Tronco Hematopoéticas , Interleucina-1beta , Camundongos Endogâmicos C57BL , Obesidade , Proteínas Quinases p38 Ativadas por Mitógeno , Animais , Células-Tronco Hematopoéticas/metabolismo , Interleucina-1beta/metabolismo , Camundongos , Obesidade/metabolismo , Obesidade/patologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Dieta Hiperlipídica/efeitos adversos , Masculino , Sistema de Sinalização das MAP Quinases , Inflamação/metabolismo , Inflamação/patologia , Transdução de Sinais , Diferenciação Celular
3.
Phytomedicine ; 134: 155978, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39186857

RESUMO

BACKGROUND: Up to 80 % of chemotherapeutic drugs induce myelosuppression in patients. Chemotherapy not only impairs of hematopoietic stem cells (HSCs) but also damages bone marrow niches (vascular and endosteal). Current treatments for myelosuppression overlook these chemotherapy-induced damages to bone marrow niches and the critical role of niche restoration on hematopoietic regeneration. Ginsenoside protopanaxatriol (PPT) protects vascular endothelium from injury, while icariin (ICA) promotes osteogenic differentiation. The combination of PPT and ICA aims to restore damaged vascular and endosteal niches, thus rejuvenating HSCs for treating myelosuppression. PURPOSE: This study aims to develop effective, bone marrow niche-directed PPT/ICA therapies for treating chemotherapy-induced myelosuppression. METHODS: 3D cell spheroids were used to investigate the effects of PPT/ICA on cell-cell interactions in vascular niches, osteogenesis, and extracellular matrix (ECM) secretion in endosteal niches. In vitro mimic niche models were designed to access the drug combination's efficacy in rejuvenating and mobilizing in HSCs within bone marrow niches. The delivery capability of PPT/ICA to key niche cell types (mesenchymal stromal cells (MSCs), endothelial cells (ECs), and osteoblasts (OBs)) via nanocarriers has been determined. DSS6 peptide-modified nanoparticles (DSS6-NPs) were prepared for specific co-delivery of PPT/ICA into key niche cell populations in vivo. RESULTS: PPT can prevent vascular niche injury by restoring vascular EC cell-cell adhesion and the intercellular interactions between ECs and MSCs in 5-fluorouracil (5-FU)-damaged cell spheroids. ICA repaired 5-FU-damaged endosteal niches by promoting osteogenesis and ECM secretion. The combination of PPT and ICA restores key HSC niche factor gene expressions, normalizing HSC differentiation and mobilization. The in vitro cellular uptake efficiency of nanocarriers in a mimic niche is positively correlated with their in vivo delivery into bone marrow niche cells. DSS6-NPs greatly enhance the delivery of PPT/ICA into MSCs and OBs within bone marrow niches. Co-loading of PPT/ICA into DSS6-NPs effectively repairs damaged bone marrow niches and promotes HSC rejuvenation in vivo. CONCLUSION: The combination of PPT and ICA effectively prevents injury to the vascular and endosteal niches, thereby promoting hematopoietic regeneration in the bone marrow. This study provides novel niche-directed PPT/ICA therapies for managing chemotherapy-induced myelosuppression.


Assuntos
Células-Tronco Hematopoéticas , Sapogeninas , Nicho de Células-Tronco , Células-Tronco Hematopoéticas/efeitos dos fármacos , Nicho de Células-Tronco/efeitos dos fármacos , Sapogeninas/farmacologia , Osteogênese/efeitos dos fármacos , Humanos , Animais , Esferoides Celulares/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Medula Óssea/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Camundongos , Antineoplásicos/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Fluoruracila/farmacologia
4.
Int J Mol Sci ; 25(16)2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39201546

RESUMO

Philadelphia-Negative Myeloproliferative neoplasms (MPNs) are a diverse group of blood cancers leading to excessive production of mature blood cells. These chronic diseases, including polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF), can significantly impact patient quality of life and are still incurable in the vast majority of the cases. This review examines the mechanobiology within a bone marrow niche, emphasizing the role of mechanical cues and the primary cilium in the pathophysiology of MPNs. It discusses the influence of extracellular matrix components, cell-cell and cell-matrix interactions, and mechanosensitive structures on hematopoietic stem cell (HSC) behavior and disease progression. Additionally, the potential implications of the primary cilium as a chemo- and mechanosensory organelle in bone marrow cells are explored, highlighting its involvement in signaling pathways crucial for hematopoietic regulation. This review proposes future research directions to better understand the dysregulated bone marrow niche in MPNs and to identify novel therapeutic targets.


Assuntos
Cílios , Transtornos Mieloproliferativos , Humanos , Transtornos Mieloproliferativos/metabolismo , Transtornos Mieloproliferativos/patologia , Transtornos Mieloproliferativos/fisiopatologia , Cílios/metabolismo , Cílios/patologia , Animais , Medula Óssea/patologia , Medula Óssea/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Mecanotransdução Celular , Matriz Extracelular/metabolismo , Transdução de Sinais , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia
5.
Handb Clin Neurol ; 202: 23-39, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39111909

RESUMO

Hematopoiesis is a complex process that takes place inside the bone marrow, where a specialized structure, the bone marrow niche, participates in the maintenance of hematopoietic stem cell functionality. Inflammatory conditions, such as autoimmune diseases, could alter this equilibrium leading to pathologic consequences. Immune cells, which also reside in the bone marrow, directly participate in sustaining the inflammatory state in autoimmune diseases. In particular, memory lymphocytes are key players in the long-term maintenance of the immune response against self-antigens, causing tissue damage and bone marrow alterations.


Assuntos
Doenças Autoimunes , Humanos , Doenças Autoimunes/imunologia , Animais , Memória Imunológica/imunologia , Hematopoese/fisiologia , Hematopoese/imunologia , Células-Tronco Hematopoéticas/imunologia
6.
Ann Transl Med ; 12(4): 63, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39118939

RESUMO

Hematopoiesis requires a complex interplay between the hematopoietic stem and progenitor cells and the cells of the bone marrow microenvironment (BMM). The BMM is heterogeneous, with different regions having distinct cellular, molecular, and metabolic composition and function. Studies have shown that this niche is disrupted in patients with acute myeloid leukemia (AML), which plays a crucial role in disease progression. This review provides a comprehensive overview of the components of vascular and endosteal niches and the molecular mechanisms by which they regulate normal hematopoiesis. We also discuss how these niches are modified in the context of AML, into a disease-promoting niche and how the modified niches in turn regulate AML blast survival and proliferation. We focus on mechanisms of modifications in structural and cellular components of the bone marrow (BM) niche by the AML cells and its impact on leukemic progression and patient outcome. Finally, we also discuss mechanisms by which the altered BM niche protects AML blasts from treatment agents, thereby causing therapy resistance in AML patients. We also summarize ongoing clinical trials that target various BM niche components in the treatment of AML patients. Hence, the BM niche represents a promising target to treat AML and promote normal hematopoiesis.

7.
Cell Rep ; 43(7): 114475, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38996072

RESUMO

Endomucin (EMCN) currently represents the only hematopoietic stem cell (HSC) marker expressed by both murine and human HSCs. Here, we report that EMCN+ long-term repopulating HSCs (LT-HSCs; CD150+CD48-LSK) have a higher long-term multi-lineage repopulating capacity compared to EMCN- LT-HSCs. Cell cycle analyses and transcriptional profiling demonstrated that EMCN+ LT-HSCs were more quiescent compared to EMCN- LT-HSCs. Emcn-/- and Emcn+/+ mice displayed comparable steady-state hematopoiesis, as well as frequencies, transcriptional programs, and long-term multi-lineage repopulating capacity of their LT-HSCs. Complementary functional analyses further revealed increased cell cycle entry upon treatment with 5-fluorouracil and reduced granulocyte colony-stimulating factor (GCSF) mobilization of Emcn-/- LT-HSCs, demonstrating that EMCN expression by LT-HSCs associates with quiescence in response to hematopoietic stress and is indispensable for effective LT-HSC mobilization. Transplantation of wild-type bone marrow cells into Emcn-/- or Emcn+/+ recipients demonstrated that EMCN is essential for endothelial cell-dependent maintenance/self-renewal of the LT-HSC pool and sustained blood cell production post-transplant.


Assuntos
Linhagem da Célula , Hematopoese , Células-Tronco Hematopoéticas , Animais , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Camundongos , Camundongos Endogâmicos C57BL , Movimento Celular , Fluoruracila/farmacologia , Humanos , Fator Estimulador de Colônias de Granulócitos/metabolismo , Ciclo Celular , Células Endoteliais/metabolismo
8.
Am J Physiol Cell Physiol ; 327(2): C372-C378, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38912739

RESUMO

Heparan sulfate proteoglycans are a family of glycoproteins that modulate cell signaling by binding growth factors and changing their bioavailability. Syndecans are a specific family of transmembrane heparan sulfate proteoglycans that regulate cell adhesion, migration, and signaling. In this review, we will summarize emerging evidence for the functions of syndecans in the normal and malignant blood systems and their microenvironments. More specifically, we detail the known functions of syndecans within normal hematopoietic stem cells. Furthermore, we discuss the functions of syndecans in hematological malignancies, including myeloid malignancies, lymphomas, and bleeding disorders. As normal and malignant hematopoietic cells require cues from their microenvironments to function, we also summarize the roles of syndecans in cells of the stromal, endothelial, and osteolineage compartments. Syndecan biology is a rapidly evolving field; a comprehensive understanding of these molecules and their place in the hematopoietic system promises to improve our grasp on disease processes and better predict the efficacies of growth factor-targeting therapies.


Assuntos
Células-Tronco Hematopoéticas , Nicho de Células-Tronco , Sindecanas , Humanos , Células-Tronco Hematopoéticas/metabolismo , Animais , Sindecanas/metabolismo , Sindecanas/genética , Transdução de Sinais , Neoplasias Hematológicas/metabolismo , Neoplasias Hematológicas/patologia , Hematopoese/fisiologia
9.
Biomater Adv ; 162: 213924, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38875802

RESUMO

Chronic myeloid leukemia is a hematological cancer, where disease relapse and drug resistance are caused by bone-hosted-residual leukemia cells. An innovative resolution is bone-homing and selective-active targeting of anticancer loaded-nanovectors. Herein, ivermectin (IVM) and methyl dihydrojasmonate (MDJ)-loaded nanostructured lipid carriers (IVM-NLC) were formulated then dually decorated by lactoferrin (Lf) and alendronate (Aln) to optimize (Aln/Lf/IVM-NLC) for active-targeting and bone-homing potential, respectively. Aln/Lf/IVM-NLC (1 mg) revealed nano-size (73.67 ± 0.06 nm), low-PDI (0.43 ± 0.06), sustained-release of IVM (62.75 % at 140-h) and MDJ (78.7 % at 48-h). Aln/Lf/IVM-NLC afforded substantial antileukemic-cytotoxicity on K562-cells (4.29-fold lower IC50), higher cellular uptake and nuclear fragmentation than IVM-NLC with acceptable cytocompatibility on oral-epithelial-cells (as normal cells). Aln/Lf/IVM-NLC effectively upregulated caspase-3 and BAX (4.53 and 15.9-fold higher than IVM-NLC, respectively). Bone homing studies verified higher hydroxyapatite affinity of Aln/Lf/IVM-NLC (1 mg; 22.88 ± 0.01 % at 3-h) and higher metaphyseal-binding (1.5-fold increase) than untargeted-NLC. Moreover, Aln/Lf/IVM-NLC-1 mg secured 1.35-fold higher in vivo bone localization than untargeted-NLC, with lower off-target distribution. Ex-vivo hemocompatibility and in-vivo biocompatibility of Aln/Lf/IVM-NLC (1 mg/mL) were established, with pronounced amelioration of hepatic and renal toxicity compared to higher Aln doses. The innovative Aln/Lf/IVM-NLC could serve as a promising nanovector for bone-homing, active-targeted leukemia therapy.


Assuntos
Alendronato , Portadores de Fármacos , Ivermectina , Lactoferrina , Humanos , Animais , Portadores de Fármacos/química , Lactoferrina/química , Lactoferrina/farmacologia , Lactoferrina/administração & dosagem , Alendronato/química , Alendronato/farmacologia , Alendronato/administração & dosagem , Ivermectina/química , Ivermectina/análogos & derivados , Ivermectina/farmacologia , Ivermectina/administração & dosagem , Ivermectina/farmacocinética , Células K562 , Nanopartículas/química , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/administração & dosagem , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Lipídeos/química , Apoptose/efeitos dos fármacos
10.
Gut Microbes ; 16(1): 2350784, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38727219

RESUMO

The gut microbiota constitutes a vast ecological system within the human body, forming a mutually interdependent entity with the host. In recent years, advancements in molecular biology technologies have provided a clearer understanding of the role of the gut microbiota. They not only influence the local immune status and metabolic functions of the host's intestinal tract but also impact the functional transformation of hematopoietic stem cells (HSCs) through the gut-blood axis. In this review, we will discuss the role of the gut microbiota in influencing hematopoiesis. We analyze the interactions between HSCs and other cellular components, with a particular emphasis on the direct functional regulation of HSCs by the gut microbiota and their indirect influence through cellular components in the bone marrow microenvironment. Additionally, we propose potential control targets for signaling pathways triggered by the gut microbiota to regulate hematopoietic function, filling crucial knowledge gaps in the development of this research field.


Assuntos
Microbioma Gastrointestinal , Hematopoese , Células-Tronco Hematopoéticas , Hematopoese/fisiologia , Microbioma Gastrointestinal/fisiologia , Humanos , Células-Tronco Hematopoéticas/microbiologia , Animais , Transdução de Sinais , Bactérias/metabolismo , Bactérias/classificação , Bactérias/genética , Trato Gastrointestinal/microbiologia , Medula Óssea/microbiologia , Medula Óssea/fisiologia
11.
Stem Cell Res Ther ; 15(1): 145, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38764093

RESUMO

BACKGROUND: Mesenchymal stem cells (MSCs) play important roles in tissue homeostasis by providing a supportive microenvironmental niche for the hematopoietic system. Cigarette smoking induces systemic abnormalities, including an impeded recovery process after hematopoietic stem cell transplantation. However, the role of cigarette smoking-mediated alterations in MSC niche function have not been investigated. METHODS: In the present study, we investigated whether exposure to cigarette smoking extract (CSE) disrupts the hematopoietic niche function of MSCs, and pathways impacted. To investigate the effects on bone marrow (BM)-derived MSCs and support of hematopoietic stem and progenitor cells (HSPCs), mice were repeatedly infused with the CSE named 3R4F, and hematopoietic stem and progenitor cells (HSPCs) supporting function was determined. The impact of 3R4F on MSCs at cellular level were screened by bulk-RNA sequencing and subsequently validated through qRT-PCR. Specific inhibitors were treated to verify the ROS or NLRP3-specific effects, and the cells were then transplanted into the animal model or subjected to coculture with HSPCs. RESULTS: Both direct ex vivo and systemic in vivo MSC exposure to 3R4F resulted in impaired engraftment in a humanized mouse model. Furthermore, transcriptomic profile analysis showed significantly upregulated signaling pathways related to reactive oxygen species (ROS), inflammation, and aging in 3R4F-treated MSCs. Notably, ingenuity pathway analysis revealed the activation of NLRP3 inflammasome signaling pathway in 3R4F-treated MSCs, and pretreatment with the NLRP3 inhibitor MCC950 rescued the HSPC-supporting ability of 3R4F-treated MSCs. CONCLUSION: In conclusion, these findings indicate that exposure to CSE reduces HSPCs supportive function of MSCs by inducing robust ROS production and subsequent NLRP3 activation.


Assuntos
Células-Tronco Hematopoéticas , Indenos , Células-Tronco Mesenquimais , Proteína 3 que Contém Domínio de Pirina da Família NLR , Espécies Reativas de Oxigênio , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Animais , Espécies Reativas de Oxigênio/metabolismo , Camundongos , Indenos/farmacologia , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/citologia , Furanos/farmacologia , Sulfonas/farmacologia , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Camundongos Endogâmicos C57BL , Sulfonamidas/farmacologia , Fumar Cigarros/efeitos adversos , Humanos , Inflamassomos/metabolismo
12.
Br J Haematol ; 205(1): 175-188, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38736325

RESUMO

B-cell precursor acute lymphoblastic leukaemia (BCP-ALL) blasts strictly depend on the transport of extra-cellular asparagine (Asn), yielding a rationale for L-asparaginase (ASNase) therapy. However, the carriers used by ALL blasts for Asn transport have not been identified yet. Exploiting RS4;11 cells as BCP-ALL model, we have found that cell Asn is lowered by either silencing or inhibition of the transporters ASCT2 or SNAT5. The inhibitors V-9302 (for ASCT2) and GluγHA (for SNAT5) markedly lower cell proliferation and, when used together, suppress mTOR activity, induce autophagy and cause a severe nutritional stress, leading to a proliferative arrest and a massive cell death in both the ASNase-sensitive RS4;11 cells and the relatively ASNase-insensitive NALM-6 cells. The cytotoxic effect is not prevented by coculturing leukaemic cells with primary mesenchymal stromal cells. Leukaemic blasts of paediatric ALL patients express ASCT2 and SNAT5 at diagnosis and undergo marked cytotoxicity when exposed to the inhibitors. ASCT2 expression is positively correlated with the minimal residual disease at the end of the induction therapy. In conclusion, ASCT2 and SNAT5 are the carriers exploited by ALL cells to transport Asn, and ASCT2 expression is associated with a lower therapeutic response. ASCT2 may thus represent a novel therapeutic target in BCP-ALL.


Assuntos
Sistema ASC de Transporte de Aminoácidos , Asparagina , Sobrevivência Celular , Antígenos de Histocompatibilidade Menor , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Humanos , Sistema ASC de Transporte de Aminoácidos/metabolismo , Sistema ASC de Transporte de Aminoácidos/genética , Asparagina/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Antígenos de Histocompatibilidade Menor/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Sobrevivência Celular/efeitos dos fármacos , Sistema A de Transporte de Aminoácidos/metabolismo , Sistema A de Transporte de Aminoácidos/genética , Linhagem Celular Tumoral , Asparaginase/farmacologia , Asparaginase/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Criança
13.
World J Stem Cells ; 16(4): 389-409, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38690514

RESUMO

BACKGROUND: Osteoporosis (OP) has become a major public health problem worldwide. Most OP treatments are based on the inhibition of bone resorption, and it is necessary to identify additional treatments aimed at enhancing osteogenesis. In the bone marrow (BM) niche, bone mesenchymal stem cells (BMSCs) are exposed to a hypoxic environment. Recently, a few studies have demonstrated that hypoxia-inducible factor 2alpha (HIF-2α) is involved in BMSC osteogenic differentiation, but the molecular mechanism involved has not been determined. AIM: To investigate the effect of HIF-2α on the osteogenic and adipogenic differentiation of BMSCs and the hematopoietic function of hematopoietic stem cells (HSCs) in the BM niche on the progression of OP. METHODS: Mice with BMSC-specific HIF-2α knockout (Prx1-Cre;Hif-2αfl/fl mice) were used for in vivo experiments. Bone quantification was performed on mice of two genotypes with three interventions: Bilateral ovariectomy, semilethal irradiation, and dexamethasone treatment. Moreover, the hematopoietic function of HSCs in the BM niche was compared between the two mouse genotypes. In vitro, the HIF-2α agonist roxadustat and the HIF-2α inhibitor PT2399 were used to investigate the function of HIF-2α in BMSC osteogenic and adipogenic differentiation. Finally, we investigated the effect of HIF-2α on BMSCs via treatment with the mechanistic target of rapamycin (mTOR) agonist MHY1485 and the mTOR inhibitor rapamycin. RESULTS: The quantitative index determined by microcomputed tomography indicated that the femoral bone density of Prx1-Cre;Hif-2αfl/fl mice was lower than that of Hif-2αfl/fl mice under the three intervention conditions. In vitro, Hif-2αfl/fl mouse BMSCs were cultured and treated with the HIF-2α agonist roxadustat, and after 7 d of BMSC adipogenic differentiation, the oil red O staining intensity and mRNA expression levels of adipogenesis-related genes in BMSCs treated with roxadustat were decreased; in addition, after 14 d of osteogenic differentiation, BMSCs treated with roxadustat exhibited increased expression of osteogenesis-related genes. The opposite effects were shown for mouse BMSCs treated with the HIF-2α inhibitor PT2399. The mTOR inhibitor rapamycin was used to confirm that HIF-2α regulated BMSC osteogenic and adipogenic differentiation by inhibiting the mTOR pathway. Consequently, there was no significant difference in the hematopoietic function of HSCs between Prx1-Cre;Hif-2αfl/fl and Hif-2αfl/fl mice. CONCLUSION: Our study showed that inhibition of HIF-2α decreases bone mass by inhibiting the osteogenic differentiation and increasing the adipogenic differentiation of BMSCs through inhibition of mTOR signaling in the BM niche.

14.
Ann Hematol ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38684510

RESUMO

Hematopoietic stem cells (HSCs) are an ideal source for the treatment of many hematological diseases and malignancies, as well as diseases of other systems, because of their two important features, self-renewal and multipotential differentiation, which have the ability to rebuild the blood system and immune system of the body. However, so far, the insufficient number of available HSCs, whether from bone marrow (BM), mobilized peripheral blood or umbilical cord blood, is still the main restricting factor for the clinical application. Therefore, strategies to expand HSCs numbers and maintain HSCs functions through ex vivo culture are urgently required. In this review, we outline the basic biology characteristics of HSCs, and focus on the regulatory factors in BM niche affecting the functions of HSCs. Then, we introduce several representative strategies used for HSCs from these three sources ex vivo expansion associated with BM niche. These findings have deepened our understanding of the mechanisms by which HSCs balance self-renewal and differentiation and provided a theoretical basis for the efficient clinical HSCs expansion.

15.
Int Immunol ; 36(7): 339-352, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38430523

RESUMO

Bone marrow is a dynamic organ composed of stem cells that constantly receive signals from stromal cells and other hematopoietic cells in the niches of the bone marrow to maintain hematopoiesis and generate immune cells. Perturbation of the bone marrow microenvironment by infection and inflammation affects hematopoiesis and may affect immune cell development. Little is known about the effect of malaria on the bone marrow stromal cells that govern the hematopoietic stem cell (HSC) niche. In this study, we demonstrate that the mesenchymal stromal CXCL12-abundant reticular (CAR) cell population is reduced during acute malaria infection. The reduction of CXCL12 and interleukin-7 signals in the bone marrow impairs the lymphopoietic niche, leading to the depletion of common lymphoid progenitors, B cell progenitors, and mature B cells, including plasma cells in the bone marrow. We found that interferon-γ (IFNγ) is responsible for the upregulation of Sca1 on CAR cells, yet the decline in CAR cell and B cell populations in the bone marrow is IFNγ-independent. In contrast to the decline in B cell populations, HSCs and multipotent progenitors increased with the expansion of myelopoiesis and erythropoiesis, indicating a bias in the differentiation of multipotent progenitors during malaria infection. These findings suggest that malaria may affect host immunity by modulating the bone marrow niche.


Assuntos
Linfócitos B , Medula Óssea , Quimiocina CXCL12 , Malária , Camundongos Endogâmicos C57BL , Animais , Quimiocina CXCL12/metabolismo , Quimiocina CXCL12/imunologia , Camundongos , Malária/imunologia , Malária/parasitologia , Linfócitos B/imunologia , Medula Óssea/imunologia , Medula Óssea/parasitologia , Nicho de Células-Tronco/imunologia , Interferon gama/metabolismo , Interferon gama/imunologia , Células-Tronco Hematopoéticas/imunologia , Células-Tronco Hematopoéticas/metabolismo
16.
Stem Cell Rev Rep ; 20(4): 1135-1149, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38438768

RESUMO

In the adult bone marrow (BM), endothelial cells (ECs) are an integral component of the hematopoietic stem cell (HSC)-supportive niche, which modulates HSC activity by producing secreted and membrane-bound paracrine signals. Within the BM, distinct vascular arteriole, transitional, and sinusoidal EC subtypes display unique paracrine expression profiles and create anatomically-discrete microenvironments. However, the relative contributions of vascular endothelial subtypes in supporting hematopoiesis is unclear. Moreover, constitutive expression and off-target activity of currently available endothelial-specific and endothelial-subtype-specific murine cre lines potentially confound data analysis and interpretation. To address this, we describe two tamoxifen-inducible cre-expressing lines, Vegfr3-creERT2 and Cx40-creERT2, that efficiently label sinusoidal/transitional and arteriole endothelium respectively in adult marrow, without off-target activity in hematopoietic or perivascular cells. Utilizing an established mouse model in which cre-dependent recombination constitutively-activates MAPK signaling within adult endothelium, we identify arteriole ECs as the driver of MAPK-mediated hematopoietic dysfunction. These results define complementary tamoxifen-inducible creERT2-expressing mouse lines that label functionally-discrete and non-overlapping sinusoidal/transitional and arteriole EC populations in the adult BM, providing a robust toolset to investigate the differential contributions of vascular subtypes in maintaining hematopoietic homeostasis.


Assuntos
Células Endoteliais , Integrases , Tamoxifeno , Animais , Camundongos , Células Endoteliais/metabolismo , Integrases/metabolismo , Integrases/genética , Tamoxifeno/farmacologia , Medula Óssea/metabolismo , Camundongos Transgênicos , Células da Medula Óssea/metabolismo , Células da Medula Óssea/citologia , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Hematopoese
17.
Asian J Pharm Sci ; 18(6): 100868, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38089836

RESUMO

Several crucial stromal cell populations regulate hematopoiesis and malignant diseases in bone marrow niches. Precise regulation of these cell types can remodel niches and develop new therapeutics. Multiple nanocarriers have been developed to transport drugs into the bone marrow selectively. However, the delivery efficiency of these nanotherapeutics into crucial niche cells is still unknown, and there is no method available for predicting delivery efficiency in these cell types. Here, we constructed a three-dimensional bone marrow niche composed of three crucial cell populations: endothelial cells (ECs), mesenchymal stromal cells (MSCs), and osteoblasts (OBs). Mimetic niches were used to detect the cellular uptake of three typical drug nanocarriers into ECs/MSCs/OBs in vitro. Less than 5% of nanocarriers were taken up by three stromal cell types, and most of them were located in the extracellular matrix. Delivery efficiency in sinusoidal ECs, arteriole ECs, MSCs, and OBs in vivo was analyzed. The correlation analysis showed that the cellular uptake of three nanocarriers in crucial cell types in vitro is positively linear correlated with its delivery efficiency in vivo. The delivery efficiency into MSCs was remarkably higher than that into ECs and OBs, no matter what kind of nanocarrier. The overall efficiency into sinusoidal ECs was greatly lower than that into arteriole ECs. All nanocarriers were hard to be delivered into OBs (<1%). Our findings revealed that cell tropisms of nanocarriers with different compositions and ligand attachments in vivo could be predicted via detecting their cellular uptake in bone marrow niches in vitro. This study provided the methodology for niche-directed nanotherapeutics development.

18.
Biomater Res ; 27(1): 111, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932837

RESUMO

BACKGROUND: Acute myeloid leukemia (AML) is a hematological malignancy that remains a therapeutic challenge due to the high incidence of disease relapse. To better understand resistance mechanisms and identify novel therapies, robust preclinical models mimicking the bone marrow (BM) microenvironment are needed. This study aimed to achieve an automated fabrication process of a three-dimensional (3D) AML disease model that recapitulates the 3D spatial structure of the BM microenvironment and applies to drug screening and investigational studies. METHODS: To build this model, we investigated a unique class of tetramer peptides with an innate ability to self-assemble into stable hydrogel. An automated robotic bioprinting process was established to fabricate a 3D BM (niche-like) multicellular AML disease model comprised of leukemia cells and the BM's stromal and endothelial cellular fractions. In addition, monoculture and dual-culture models were also fabricated. Leukemia cell compatibility, functionalities (in vitro and in vivo), and drug assessment studies using our model were performed. In addition, RNAseq and gene expression analysis using TaqMan arrays were also performed on 3D cultured stromal cells and primary leukemia cells. RESULTS: The selected peptide hydrogel formed a highly porous network of nanofibers with mechanical properties similar to the BM extracellular matrix. The robotic bioprinter and the novel quadruple coaxial nozzle enabled the automated fabrication of a 3D BM niche-like AML disease model with controlled deposition of multiple cell types into the model. This model supported the viability and growth of primary leukemic, endothelial, and stromal cells and recapitulated cell-cell and cell-ECM interactions. In addition, AML cells in our model possessed quiescent characteristics with improved chemoresistance attributes, resembling more the native conditions as indicated by our in vivo results. Moreover, the whole transcriptome data demonstrated the effect of 3D culture on enhancing BM niche cell characteristics. We identified molecular pathways upregulated in AML cells in our 3D model that might contribute to AML drug resistance and disease relapse. CONCLUSIONS: Our results demonstrate the importance of developing 3D biomimicry models that closely recapitulate the in vivo conditions to gain deeper insights into drug resistance mechanisms and novel therapy development. These models can also improve personalized medicine by testing patient-specific treatments.

19.
Cell Commun Signal ; 21(1): 277, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37817179

RESUMO

BACKGROUND: Acute myeloid leukemia (AML) is an aggressive hematological malignancy, associated with unfavorable patient outcome, primarily due to disease relapse. Mesenchymal stem cells (MSCs) residing in the bone marrow (BM) niche are the source of mesenchyma-derived subpopulations, including adipocytes, and osteocytes, that are critical for normal hematopoiesis. This study aimed to characterize BM-derived adipocyte/osteocyte fractions and their crosstalk with AML cells as a potential mechanism underlying leukemogenesis. METHODS: BM cell subpopulations derived from primary AML patients were evaluated using humanized ex-vivo and in-vivo models, established for this study. The models comprised AML blasts, normal hematopoietic stem and progenitor cells and mesenchymal stromal subpopulations. ELISA, FACS analysis, colony forming unit assay, whole exome sequencing and real-time qPCR were employed to assess the differentiation capacity, genetic status, gene expression and function of these cell fractions. To explore communication pathways between AML cells and BM subpopulations, levels of signaling mediators, including cytokines and chemokines, were measured using the ProcartaPlex multiplex immunoassay. RESULTS: The study revealed deficiencies in adipogenic/osteogenic differentiation of BM-MSCs derived from AML patients, with adipocytes directly promoting survival and clonogenicity of AML cells in-vitro. In whole exome sequencing of BM-MSC/stromal cells, the AHNAK2 gene, associated with the stimulation of adipocyte differentiation, was found to be mutated and significantly under-expressed, implying its abnormal function in AML. The evaluation of communication pathways between AML cells and BM subpopulations demonstrated pronounced alterations in the crosstalk between these cell fractions. This was reflected by significantly elevated levels of signaling mediators cytokines/chemokines, in AML-induced adipocytes/osteocytes compared to non-induced MSCs, indicating abnormal hematopoiesis. Furthermore, in-vivo experiments using a fully humanized 3D scaffold model, showed that AML-induced adipocytes were the dominant component of the tumor microenvironment, providing preferential support to leukemia cell survival and proliferation. CONCLUSIONS: This study has disclosed direct contribution of impaired functional, genetic and molecular properties of AML patient-derived adipocytes to effective protection of AML blasts from apoptosis and to stimulation of their growth in vitro and in vivo, which overall leads to disease propagation and relapse. The detected AHNAK2 gene mutations in AML-MSCs point to their involvement in the mechanism underlying abnormal adipogenesis. Video Abstract.


Assuntos
Leucemia Mieloide Aguda , Células-Tronco Mesenquimais , Humanos , Adipogenia , Osteogênese , Leucemia Mieloide Aguda/metabolismo , Células da Medula Óssea/patologia , Citocinas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Quimiocinas/metabolismo , Recidiva , Proliferação de Células , Microambiente Tumoral
20.
Rinsho Ketsueki ; 64(9): 861-868, 2023.
Artigo em Japonês | MEDLINE | ID: mdl-37793859

RESUMO

Hematopoietic stem and progenitor cells in mammals primarily reside in the bone marrow after birth. There, the cellular dynamics and subsequent fate of those cells are regulated by the adjacent microenvironment, known as the niche, to sustain lifelong blood cell production. To analyze and study physiological hematopoiesis and various hematopoietic disorders, it is essential to deeply understand how the niche regulates hematopoiesis and how niche dysregulation occurs. However, the dynamics of hematopoietic stem and progenitor cells and their interactions with the niche are dynamic and complex, and our knowledge of the spatial organization of bone marrow cells and niche factors is still limited. In this review, I provide an overview of classical techniques for spatiotemporal understanding of the cellular communities in bone marrow, as well as recent advances in bone marrow imaging techniques and valuable animal models, and discuss future prospects in this field.


Assuntos
Medula Óssea , Células-Tronco Hematopoéticas , Animais , Medula Óssea/diagnóstico por imagem , Nicho de Células-Tronco/fisiologia , Células da Medula Óssea , Hematopoese/fisiologia , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA