Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 656
Filtrar
1.
J Neuroendocrinol ; : e13437, 2024 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-39099230

RESUMO

Optimal glucose control is crucial for maintaining brain health and preventing metabolic and cognitive disorders in the general population. Glycosylated hemoglobin (HbA1c) serves as a key marker for assessing glucose intolerance and its impact on brain structure and function in healthy individuals. However, existing literature presents conflicting findings, necessitating a systematic review to consolidate current knowledge in this domain. This systematic review examines 26 English-language studies involving participants aged 15 years and above, investigating the relationship between HbA1c levels and brain health. Studies focusing on normal/general populations and utilizing magnetic resonance imaging (MRI) as the imaging modality were included. Exclusion criteria encompassed review articles, abstracts, letters, animal studies, and research involving neuropsychiatric or metabolic diseases. Data were gathered from PubMed, Scopus, and Web of Science databases up to November 2023. Analysis reveals significant associations between HbA1c levels and various brain metrics, including volume, cortical thickness, fractional anisotropy, mean diffusivity, activity, and connectivity. However, findings exhibit inconsistency, likely attributed to disparities in sample characteristics and study sizes. Notably, hippocampal volume, white matter hyperintensity, and ventral attention network connectivity emerge as frequently affected structures and functions, mirroring trends observed in diabetic populations. Despite inconclusive evidence, glucose intolerance appears to exert considerable influence on select brain structures and functions in individuals without diagnosed metabolic disorders. Understanding these associations is critical for mitigating the risk of cognitive decline and dementia in healthy populations. Future investigations should aim to elucidate the intricate relationship between HbA1c concentrations and brain health parameters in normoglycemic individuals.

2.
Sleep Med ; 122: 14-19, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39106615

RESUMO

OBJECTIVE: Previous studies have reported contradictory findings regarding the relationship between obstructive sleep apnea (OSA) and abnormal brain morphology. Furthermore, the causal relationship between OSA and brain morphology has not been clearly established. The aim of this study was to utilize Mendelian randomization (MR) analysis to investigate the impact of obstructive sleep apnea (OSA) on brain morphology and determine its potential causal relationship. METHODS: Firstly, the inverse-variance weighted (IVW) method was employed to assess the causal effects of OSA on cortical surface area and brain structure volume. Additionally, two additional MR methods, namely weighted median and MR-Egger, were used to supplement the results from IVW. Subsequently, a reverse MR analysis was conducted to determine the direction of causality. Furthermore, sensitivity analyses were performed including Cochrane's Q test, MR-Egger intercept test, MR-PRESSO global test, and leave-one-out analysis. RESULTS: The results of the study showed that OSA patients had a tendency towards decreased cortical surface area and hippocampal volume in the precuneus region compared to individuals without OSA, while the superior temporal cortical surface area showed an increase. The results from the weighted median and MR-Egger analyses were consistent with those from the IVW analysis. Sensitivity tests confirmed the reliability of the causal estimates. CONCLUSIONS: This study provides preliminary evidence of an association between OSA and brain structure using large-scale genome-wide association data. The results demonstrate that OSA is associated with changes in brain structure. Therefore, individuals with OSA should be vigilant about the risks of related diseases due to alterations in brain tissue.

3.
Age Ageing ; 53(8)2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39108220

RESUMO

BACKGROUND: We aimed to investigate the association between OA and treatment with dementia risk and structural brain abnormalities. METHODS: We recruited a total of 466,460 individuals from the UK Biobank to investigate the impact of OA on the incidence of dementia. Among the total population, there were 63,081 participants diagnosed with OA. We subsequently categorised the OA patients into medication and surgery groups based on treatment routes. Cox regression models explored the associations between OA/OA treatment and dementia risk, with the results represented as hazard ratios (HRs) and 95% confidence intervals (95% CI). Linear regression models assessed the associations of OA/OA therapy with alterations in cortical structure. RESULTS: During an average of 11.90 (± 1.01) years of follow-up, 5,627 individuals were diagnosed with all-cause dementia (ACD), including 2,438 AD (Alzheimer's disease), and 1,312 VaD (vascular dementia) cases. Results revealed that OA was associated with the elevated risk of ACD (HR: 1.116; 95% CI: 1.039-1.199) and AD (HR: 1.127; 95% CI: 1.013-1.254). OA therapy lowered the risk of dementia in both medication group (HR: 0.746; 95% CI: 0.652-0.854) and surgery group (HR: 0.841; 95% CI: 0.736-0.960). OA was negatively associated with cortical area, especially precentral, postcentral and temporal regions. CONCLUSIONS: Osteoarthritis increased the likelihood of developing dementia, and had an association with regional brain atrophy. OA treatment lowered the dementia risk. OA is a promising modifiable risk factor for dementia.


Assuntos
Demência , Osteoartrite , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Alzheimer/epidemiologia , Demência/epidemiologia , Demência Vascular/epidemiologia , Demência Vascular/diagnóstico , Incidência , Modelos Lineares , Imageamento por Ressonância Magnética , Osteoartrite/epidemiologia , Osteoartrite/terapia , Modelos de Riscos Proporcionais , Estudos Prospectivos , Fatores de Proteção , Medição de Risco , Fatores de Risco , Fatores de Tempo , Biobanco do Reino Unido , Reino Unido/epidemiologia
4.
Front Physiol ; 15: 1360353, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948081

RESUMO

Long-duration spaceflight poses a variety of health risks to astronauts, largely resulting from extended exposure to microgravity and radiation. Here, we assessed the prevalence and incidence of cerebral microbleeds in sixteen astronauts before and after a typical 6-month mission on board the International Space Station Cerebral microbleeds are microhemorrhages in the brain, which are typically interpreted as early evidence of small vessel disease and have been associated with cognitive impairment. We identified evidence of higher-than-expected microbleed prevalence in astronauts with prior spaceflight experience. However, we did not identify a statistically significant increase in microbleed burden up to 7 months after spaceflight. Altogether, these preliminary findings suggest that spaceflight exposure may increase microbleed burden, but this influence may be indirect or occur over time courses that exceed 1 year. For health monitoring purposes, it may be valuable to acquire neuroimaging data that are able to detect the occurrence of microbleeds in astronauts following their spaceflight missions.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38960280

RESUMO

BACKGROUND: Adolescents raised in families with different maternal and paternal parenting combinations exhibit variations in neurocognition and psychopathology; however, whether neural differences exist remains unexplored. This study used a longitudinal twin sample to delineate how different parenting combinations influence adolescent brain structure and to elucidate the genetic contribution. METHODS: A cohort of 216 twins participated in parenting assessments during early adolescence and underwent MRI scanning during middle adolescence. We utilized latent profile analysis to distinguish between various maternal and paternal parenting profiles and subsequently investigated their influences on brain anatomy. Biometric analysis was applied to assess the genetic influences on brain structure, and associations with internalizing symptoms were explored. RESULTS: In early adolescence, four parenting profiles emerged characterized by levels of harshness and hostility in one or both parents. Compared to adolescents in "catparent" families (low harshness/hostility in both parents), those raised in "tigermom" families (harsh/hostile mother only) exhibited smaller nucleus accumbens volume and larger temporal cortex surface area; those in "tigerdad" families demonstrated larger thalamus volumes; those in "tigerparent" families displayed smaller volumes in the mid-anterior corpus callosum. Genetic risk factors contributed significantly to the observed brain structural heterogeneity and internalizing symptoms. However, the influences of parenting profiles and brain structure on internalizing symptoms were not significant. CONCLUSIONS: The findings underscore distinct brain structural features linked to maternal and paternal parenting combinations, particularly in terms of subcortical volume and cortical surface area. This study suggests an interdependent role of maternal and paternal parenting in shaping adolescent neurodevelopment.

6.
Front Hum Neurosci ; 18: 1383630, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39015824

RESUMO

Introduction: Individual differences in social learning impact many important decisions, from voting behavior to polarization. Prior research has found that there are consistent and stable individual differences in social information use. However, the underlying mechanisms of these individual differences are still poorly understood. Methods: We used two complementary exploratory machine learning approaches to identify brain volumes related to individual differences in social information use. Results and discussion: Using lasso regression and random forest regression we were able to capture linear and non-linear brain-behavior relationships. Consistent with previous studies, our results suggest there is a robust positive relationship between the volume of the left pars triangularis and social information use. Moreover, our results largely overlap with common social brain network regions, such as the medial prefrontal cortex, superior temporal sulcus, temporal parietal junction, and anterior cingulate cortex. Besides, our analyses also revealed several novel regions related to individual differences in social information use, such as the postcentral gyrus, the left caudal middle frontal gyrus, the left pallidum, and the entorhinal cortex. Together, these results provide novel insights into the neural mechanisms that underly individual differences in social learning and provide important new leads for future research.

7.
Hum Brain Mapp ; 45(11): e26785, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39031470

RESUMO

Cyclic fluctuations in hypothalamic-pituitary-gonadal axis (HPG-axis) hormones exert powerful behavioral, structural, and functional effects through actions on the mammalian central nervous system. Yet, very little is known about how these fluctuations alter the structural nodes and information highways of the human brain. In a study of 30 naturally cycling women, we employed multidimensional diffusion and T1-weighted imaging during three estimated menstrual cycle phases (menses, ovulation, and mid-luteal) to investigate whether HPG-axis hormone concentrations co-fluctuate with alterations in white matter (WM) microstructure, cortical thickness (CT), and brain volume. Across the whole brain, 17ß-estradiol and luteinizing hormone (LH) concentrations were directly proportional to diffusion anisotropy (µFA; 17ß-estradiol: ß1 = 0.145, highest density interval (HDI) = [0.211, 0.4]; LH: ß1 = 0.111, HDI = [0.157, 0.364]), while follicle-stimulating hormone (FSH) was directly proportional to CT (ß1 = 0 .162, HDI = [0.115, 0.678]). Within several individual regions, FSH and progesterone demonstrated opposing relationships with mean diffusivity (Diso) and CT. These regions mainly reside within the temporal and occipital lobes, with functional implications for the limbic and visual systems. Finally, progesterone was associated with increased tissue (ß1 = 0.66, HDI = [0.607, 15.845]) and decreased cerebrospinal fluid (CSF; ß1 = -0.749, HDI = [-11.604, -0.903]) volumes, with total brain volume remaining unchanged. These results are the first to report simultaneous brain-wide changes in human WM microstructure and CT coinciding with menstrual cycle-driven hormone rhythms. Effects were observed in both classically known HPG-axis receptor-dense regions (medial temporal lobe, prefrontal cortex) and in other regions located across frontal, occipital, temporal, and parietal lobes. Our results suggest that HPG-axis hormone fluctuations may have significant structural impacts across the entire brain.


Assuntos
Encéfalo , Estradiol , Substância Cinzenta , Hormônio Luteinizante , Ciclo Menstrual , Substância Branca , Humanos , Feminino , Substância Branca/diagnóstico por imagem , Substância Branca/metabolismo , Adulto , Ciclo Menstrual/fisiologia , Estradiol/sangue , Adulto Jovem , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/metabolismo , Hormônio Luteinizante/sangue , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Hormônio Foliculoestimulante/sangue , Progesterona/sangue , Imageamento por Ressonância Magnética , Imagem de Difusão por Ressonância Magnética
8.
J Alzheimers Dis ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39058442

RESUMO

Background: The prevalence of Alzheimer's disease (AD) is increasing, therefore, identifying biomarkers to predict those vulnerable to AD is imperative. Type 2 diabetes (T2D) serves as an independent risk factor for AD. Early prediction of T2D patients who may be more susceptible to AD, so as to achieve early intervention, is of great significance to reduce the prevalence of AD. Objective: To establish periphery biomarkers that could predict conversion of T2D into pre-AD-like cognitive decline. Methods: A follow-up study was carried out from 159 T2D patients at baseline. The correlations of cognitive states (by MMSE score) with multi-periphery biomarkers, including APOE genotype, plasma amyloid-ß level, platelet GSK-3ß activity, and olfactory score were analyzed by logistic regression. ROC curve was used for establishing the prediction model. Additionally, MRI acquired from 38 T2D patients for analyzing the correlation among cognitive function, biomarkers and brain structure. Results: Compared with the patients who maintained normal cognitive functions during the follow-up period, the patients who developed MCI showed worse olfactory function, higher platelet GSK-3ß activity, and higher plasma Aß42/Aß40 ratio. We conducted a predictive model which T2D patients had more chance of suffering from pre-AD-like cognitive decline. The MRI data revealed MMSE scores were positively correlated with brain structures. However, platelet GSK-3ß activity was negatively correlated with brain structures. Conclusions: Elevated platelet GSK-3ß activity and plasma Aß42/Aß40 ratio with reduced olfactory function are correlated with pre-AD-like cognitive decline in T2D patients, which used for predicting which T2D patients will convert into pre-AD-like cognitive decline in very early stage.

9.
Artigo em Inglês | MEDLINE | ID: mdl-39060518

RESUMO

Twin births are related with maternal and fetal adverse outcomes. Little was known about the comparability of the cognitive, behavioral development and brain structure between twins and singletons in early adolescence. This retrospective cohort study was based on data from the United States population-based, prospective, longitudinal observational Adolescent Brain Cognitive Development study. Children with complete twin status information were enrolled, and the exposure variable was twin status. Primary outcomes were cognitive, behavioral development and brain structure in early adolescence. Cognitive and behavioral outcomes were assessed by using the NIH Toolbox and Child Behavioral Checklist, respectively. Brain structure was evaluated by the cortical thickness, area, and volume extracted from the magnetic resonance imaging (MRI) data. Subgroup analyses were conducted by prematurity, birth weight, with sibling, genetic profiles, and twin types (zygosity). From 1st September 2016 to 15th November 2018, 11545 children (9477 singletons and 2068 twins) aged 9-10 years were enrolled. Twins showed mildly lower cognitive performance (|t|> 5.104, P-values < 0.001, False Discovery Rate [FDR] < 0.001), better behavioral outcome (|t|> 2.441, P-values < 0.015, FDR < 0.042), such as lower scores for multiple psychiatric disorders and behavioral issues, and smaller cortical volume (t = - 3.854, P-values < 0.001, FDR < 0.001) and cortical area (t = - 3.872, P-values < 0.001, FDR < 0.001). The observed differences still held when stratified for prematurity, birth weight, presence of siblings, genetic profiles, and twin types (zygosity). Furthermore, analyses on the two-year follow-up data showed consistent results with baseline data. Twin status is associated with lower cognitive and better behavioral development in early adolescence accompanied by altered brain structure. Clinicians should be aware of the possible difference when generalizing results from adolescent twin samples to singletons.

10.
bioRxiv ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39026787

RESUMO

Large changes to brain structure (e.g., from damage or disease) can explain alterations in behavior. It is therefore plausible that smaller structural differences in healthy samples can be used to better understand and predict individual differences in behavior. Despite the brain's multivariate and distributed structure-to-function mapping, most studies have used univariate analyses of individual structural brain measures. Here we used a multivariate approach in a multimodal data set composed of volumetric, surface-based, diffusion-based, and functional resting-state MRI measures to predict reliable individual differences in risk and intertemporal preferences. We show that combining twelve brain structure measures led to better predictions across tasks than using any individual measure, and by examining model coefficients, we visualize the relative contribution of different brain measures from different brain regions. Using a multivariate approach to brain structure-to-function mapping that combines across many brain structure properties, along with reliably measured behavior phenotypes, may increase out-of-sample prediction accuracies and insight into neural underpinnings. Furthermore, this methodological approach may be useful to improve predictions and neural insight across basic, translational, and clinical research fields.

11.
Nutrients ; 16(14)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39064755

RESUMO

Low-grade inflammation (LGI) mainly acted as the mediator of the association of obesity and inflammatory diet with numerous chronic diseases, including neuropsychiatric diseases. However, the evidence about the effect of LGI on brain structure is limited but important, especially in the context of accelerating aging. This study was then designed to close the gap, and we leveraged a total of 37,699 participants from the UK Biobank and utilized inflammation score (INFLA-score) to measure LGI. We built the longitudinal relationships of INFLA-score with brain imaging phenotypes using multiple linear regression models. We further analyzed the interactive effects of specific covariates. The results showed high level inflammation reduced the volumes of the subcortex and cortex, especially the globus pallidus (ß [95% confidence interval] = -0.062 [-0.083, -0.041]), thalamus (-0.053 [-0.073, -0.033]), insula (-0.052 [-0.072, -0.032]), superior temporal gyrus (-0.049 [-0.069, -0.028]), lateral orbitofrontal cortex (-0.047 [-0.068, -0.027]), and others. Most significant effects were observed among urban residents. Furthermore, males and individuals with physical frailty were susceptive to the associations. The study provided potential insights into pathological changes during disease progression and might aid in the development of preventive and control targets in an age-friendly city to promote great health and well-being for sustainable development goals.


Assuntos
Encéfalo , Inflamação , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Encéfalo/patologia , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Envelhecimento/fisiologia , Doença Crônica
12.
Open Forum Infect Dis ; 11(7): ofae317, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39022390

RESUMO

Background: Children who are HIV-exposed and uninfected (HEU) are at risk for early neurodevelopmental impairment. Smaller basal ganglia nuclei have been reported in neonates who are HEU compared to HIV-unexposed (HU); however, neuroimaging studies outside infancy are scarce. We examined subcortical brain structures and associations with neurocognition in children who are HEU. Methods: This neuroimaging study was nested within the Drakenstein Child Health Study birth cohort in South Africa. We compared (T1-weighted) magnetic resonance imaging-derived subcortical brain volumes between children who were HEU (n = 70) and HU (n = 92) at age 2-3 years using linear regression. Brain volumes were correlated with neurodevelopmental outcomes measured with the Bayley Scales of Infant and Toddler Development III. Results: Compared to HU children, on average children who were HEU had 3% lower subcortical grey matter volumes. Analyses of individual structures found smaller volume of the putamen nucleus in the basal ganglia (-5% difference, P = .016) and the hippocampus (-3% difference, P = .044), which held on adjustment for potential confounders (P < .05). Maternal viremia and lower CD4 count in pregnancy were associated with smaller child putamen volumes. Children who were HEU had lower language scores than HU; putamen and hippocampus volumes were positively correlated with language outcomes. Conclusions: Overall, children who are HEU had a pattern of smaller subcortical volumes in the basal ganglia and hippocampal regions compared to HU children, which correlated with language function. Findings suggest that optimizing maternal perinatal HIV care is important for child brain development. Further studies are needed to investigate underlying mechanisms and long-term outcomes.

13.
Sci Rep ; 14(1): 16097, 2024 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997334

RESUMO

The relationship between the triglyceride glucose-body mass index (TyG-BMI) index and Alzheimer's disease (AD) pathology, cognition, and brain structure remains unclear. This study aimed to investigate these associations, focusing on cerebrospinal fluid (CSF) biomarkers, cognitive measures, and brain imaging data. Eight hundred and fifty-five non-demented participants were included. Linear regression was used to explore associations between the TyG-BMI index and AD pathology, cognition, and brain structure. The association between the TyG-BMI index and AD risk was assessed using Kaplan-Meier and Cox proportional hazards models. Longitudinal relationships were assessed using linear mixed-effects models. Mediation analyses were conducted to examine AD pathology's potential mediating role between the TyG-BMI index and cognition as well as brain structure. In the linear regression analyses, higher TyG-BMI levels were associated with increased Aß42 and decreased Tau, pTau, Tau/Aß42, pTau/Aß42, and pTau/Tau. Positive correlations were observed with mini-mental state examination (MMSE), memory (MEM), executive function (EF), and the volumes of the hippocampus, entorhinal cortex, and middle temporal regions, while negative correlations were found with Alzheimer's Disease Assessment Scale (ADAS). Longitudinally, the TyG-BMI index was inversely associated with ADAS, and positively with MMSE, MEM, EF, hippocampus, entorhinal, and middle temporal. High TyG-BMI levels were correlated with lower AD risk (HR 0.996 [0.994, 0.999]). Mediation analyses revealed AD pathology mediated the association between TyG-BMI index and cognition as well as brain structure. Additionally, the TyG-BMI index could mediate cognitive changes by influencing brain structure. The TyG-BMI index is associated with AD pathology, cognition, and brain structure.


Assuntos
Doença de Alzheimer , Índice de Massa Corporal , Encéfalo , Cognição , Triglicerídeos , Humanos , Doença de Alzheimer/patologia , Doença de Alzheimer/sangue , Doença de Alzheimer/líquido cefalorraquidiano , Masculino , Feminino , Idoso , Encéfalo/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Triglicerídeos/sangue , Biomarcadores/sangue , Pessoa de Meia-Idade , Glucose/metabolismo , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Peptídeos beta-Amiloides/metabolismo , Proteínas tau/líquido cefalorraquidiano , Proteínas tau/metabolismo
14.
Neurol Sci ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39078586

RESUMO

Clinical cognitive decline, leading to Alzheimer's Disease Dementia (ADD), has long been interpreted as a disconnection syndrome, hindering the information flow capacity of the brain, hence leading to the well-known symptoms of ADD. The structural and functional brain connectome analyses play a central role in studies of brain from this perspective. However, most current research implicitly assumes that the changes accompanying the progression of cognitive decline are monotonous in time, whether measured across the entire brain or in fixed cortical regions. We investigate the structural and functional connectivity-wise reorganization of the brain without such assumptions across the entire spectrum. We utilize nodal assortativity as a local topological measure of connectivity and follow a data-centric approach to identify and verify relevant local regions, as well as to understand the nature of underlying reorganization. The analysis of our preliminary experimental data points to statistically significant, hyper and hypo-assortativity regions that depend on the disease's stage, and differ for structural and functional connectomes. Our results suggest a new perspective into the dynamic, potentially a mix of degenerative and compensatory, topological alterations that occur in the brain as cognitive decline progresses.

15.
Neuroimage ; 297: 120721, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38968977

RESUMO

Individuals with congenital heart disease (CHD) have an increased risk of neurodevelopmental impairments. Given the hypothesized complexity linking genomics, atypical brain structure, cardiac diagnoses and their management, and neurodevelopmental outcomes, unsupervised methods may provide unique insight into neurodevelopmental variability in CHD. Using data from the Pediatric Cardiac Genomics Consortium Brain and Genes study, we identified data-driven subgroups of individuals with CHD from measures of brain structure. Using structural magnetic resonance imaging (MRI; N = 93; cortical thickness, cortical volume, and subcortical volume), we identified subgroups that differed primarily on cardiac anatomic lesion and language ability. In contrast, using diffusion MRI (N = 88; white matter connectivity strength), we identified subgroups that were characterized by differences in associations with rare genetic variants and visual-motor function. This work provides insight into the differential impacts of cardiac lesions and genomic variation on brain growth and architecture in patients with CHD, with potentially distinct effects on neurodevelopmental outcomes.


Assuntos
Encéfalo , Cardiopatias Congênitas , Imageamento por Ressonância Magnética , Humanos , Cardiopatias Congênitas/patologia , Cardiopatias Congênitas/diagnóstico por imagem , Cardiopatias Congênitas/genética , Feminino , Masculino , Criança , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Adolescente , Adulto Jovem , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Adulto , Pré-Escolar , Imagem de Difusão por Ressonância Magnética , Transtornos do Neurodesenvolvimento/diagnóstico por imagem , Transtornos do Neurodesenvolvimento/patologia , Transtornos do Neurodesenvolvimento/genética
16.
Front Psychiatry ; 15: 1364713, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38895035

RESUMO

Background: Chronic insomnia disorder (CID) is usually associated with Generalized Anxiety Disorder (GAD), which may change brain structure and function. However, the possible brain markers, imaging characteristics, and pathophysiology are unknown. Objective: To look at the probable brain markers, imaging characteristics, and pathogenesis of CID in combination with GAD. Methods: A total of 57 patients with CID concomitant GAD and 57 healthy controls (HC) were enrolled. Voxel-based morphometry (VBM) and functional connectivity (FC) were utilized to measure gray matter volume (GMV) and functional changes. Correlation analysis was utilized to identify relationships between brain changes and clinical characteristics. Results: Patients had decreased GMV in the left cerebellum, right cerebellar peduncle, and left insula; increased FC between the left cerebellum and right angular gyrus, as well as between the left insula and anterior left cingulate gyrus; and decreased FC in several areas, including the left cerebellum with the middle left cingulate gyrus and the left insula with the left superior postcentral gyrus. These brain changes related to CID and GAD. These data could be used to identify relevant brain markers, imaging features, and to better understand the etiology. Conclusion: The intensity of insomnia in patients was strongly related to the severity of anxiety. The lower GMV in the cerebellum could be interpreted as an imaging characteristic of CID. Reduced GMV in the insula, as well as aberrant function in the cingulate gyrus and prefrontal lobe, may contribute to the pathophysiology of CID and GAD. Abnormal function in the postcentral gyrus and angular gyrus may be associated with patients' clinical complaints.

17.
Front Hum Neurosci ; 18: 1316117, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38841123

RESUMO

Introduction: Cognitive Orientation to daily Occupational Performance (CO-OP) is a cognitive-based, task-specific intervention recommended for children with developmental coordination disorder (DCD). We recently showed structural and functional brain changes after CO-OP, including increased cerebellar grey matter. This study aimed to determine whether CO-OP intervention induced changes in cortical grey matter volume in children with DCD, and if these changes were associated with improvements in motor performance and movement quality. Methods: This study is part of a randomized waitlist-control trial (ClinicalTrials.gov ID: NCT02597751). Children with DCD (N = 78) were randomized to either a treatment or waitlist group and underwent three MRIs over 6 months. The treatment group received intervention (once weekly for 10 weeks) between the first and second scan; the waitlist group received intervention between the second and third scan. Cortical grey matter volume was measured using voxel-based morphometry (VBM). Behavioral outcome measures included the Performance Quality Rating Scale (PQRS) and Bruininks-Oseretsky Test of Motor Proficiency-2 (BOT-2). Of the 78 children, 58 were excluded (mostly due to insufficient data quality), leaving a final N = 20 for analyses. Due to the small sample size, we combined both groups to examine treatment effects. Cortical grey matter volume differences were assessed using a repeated measures ANOVA, controlling for total intracranial volume. Regression analyses examined the relationship of grey matter volume changes to BOT-2 (motor performance) and PQRS (movement quality). Results: After CO-OP, children had significantly decreased grey matter in the right superior frontal gyrus and middle/posterior cingulate gyri. We found no significant associations of grey matter volume changes with PQRS or BOT-2 scores. Conclusion: Decreased cortical grey matter volume generally reflects greater brain maturity. Decreases in grey matter volume after CO-OP intervention were in regions associated with self-regulation and motor control, consistent with our other studies. Decreased grey matter volume may be due to focal increases in synaptic pruning, perhaps as a result of strengthening networks in the brain via the repeated learning and actions in therapy. Findings from this study add to the growing body of literature demonstrating positive neuroplastic changes in the brain after CO-OP intervention.

18.
Alzheimers Res Ther ; 16(1): 129, 2024 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886798

RESUMO

BACKGROUND: Autopsy work indicates that the widely-projecting noradrenergic pontine locus coeruleus (LC) is among the earliest regions to accumulate hyperphosphorylated tau, a neuropathological Alzheimer's disease (AD) hallmark. This early tau deposition is accompanied by a reduced density of LC projections and a reduction of norepinephrine's neuroprotective effects, potentially compromising the neuronal integrity of LC's cortical targets. Previous studies suggest that lower magnetic resonance imaging (MRI)-derived LC integrity may signal cortical tissue degeneration in cognitively healthy, older individuals. However, whether these observations are driven by underlying AD pathology remains unknown. To that end, we examined potential effect modifications by cortical beta-amyloid and tau pathology on the association between in vivo LC integrity, as quantified by LC MRI signal intensity, and cortical neurodegeneration, as indexed by cortical thickness. METHODS: A total of 165 older individuals (74.24 ± 9.72 years, ~ 60% female, 10% cognitively impaired) underwent whole-brain and dedicated LC 3T-MRI, Pittsburgh Compound-B (PiB, beta-amyloid) and Flortaucipir (FTP, tau) positron emission tomography. Linear regression analyses with bootstrapped standard errors (n = 2000) assessed associations between bilateral cortical thickness and i) LC MRI signal intensity and, ii) LC MRI signal intensity interacted with cortical FTP or PiB (i.e., EC FTP, IT FTP, neocortical PiB) in the entire sample and a low beta-amyloid subsample. RESULTS: Across the entire sample, we found a direct effect, where lower LC MRI signal intensity was associated with lower mediolateral temporal cortical thickness. Evaluation of potential effect modifications by FTP or PiB revealed that lower LC MRI signal intensity was related to lower cortical thickness, particularly in individuals with elevated (EC, IT) FTP or (neocortical) PiB. The latter result was present starting from subthreshold PiB values. In low PiB individuals, lower LC MRI signal intensity was related to lower EC cortical thickness in the context of elevated EC FTP. CONCLUSIONS: Our findings suggest that LC-related cortical neurodegeneration patterns in older individuals correspond to regions representing early Braak stages and may reflect a combination of LC projection density loss and emergence of cortical AD pathology. This provides a novel understanding that LC-related cortical neurodegeneration may signal downstream consequences of AD-related pathology, rather than being exclusively a result of aging.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Locus Cerúleo , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Proteínas tau , Humanos , Locus Cerúleo/diagnóstico por imagem , Locus Cerúleo/patologia , Feminino , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Masculino , Idoso , Proteínas tau/metabolismo , Idoso de 80 Anos ou mais , Estudos de Coortes , Peptídeos beta-Amiloides/metabolismo , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Carbolinas , Tiazóis , Compostos de Anilina , Espessura Cortical do Cérebro
19.
Alzheimers Res Ther ; 16(1): 131, 2024 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898507

RESUMO

BACKGROUND: Computer gaming has recently been suggested to be associated with benefits for cognition, but its impact on incident dementia remains uncertain. We aimed to investigate the observational associations of playing computer games with incident dementia, cognitive functions, and brain structural measures, and further explore the genetic associations between computer gaming and dementia. METHODS: We included 471,346 White British participants without dementia at baseline based on the UK Biobank, and followed them until November 2022. We estimated the risk of dementia using Cox proportional hazard models, and assessed the changes of cognitive functions and brain structural measures using logistic regression models and linear regression models. Mendelian randomization (MR) analyses were performed to examine the association between genetically determined computer gaming and dementia. RESULTS: High frequency of playing computer games was associated with decreased risk of incident dementia (HR, 0.81 [95% CI: 0.69, 0.94]). Individuals with high frequency of playing computer games had better performance in prospective memory (OR, 1.46 [1.26, 1.70]), reaction time (beta, -0.195 [-0.243, -0.147]), fluid intelligence (0.334 [0.286, 0.382]), numeric memory (0.107 [0.047, 0.166]), incorrect pairs matching (-0.253 [-0.302, -0.203]), and high volume of gray matter in hippocampus (0.078 [0.023, 0.134]). Genetically determined high frequency of playing computer games was associated with a low risk of dementia (OR, 0.37 [0.15, 0.91]). CONCLUSIONS: Computer gaming was associated with a decreased risk of dementia, favorable cognitive function, and better brain structure, suggesting that computer gaming could modulate cognitive function and may be a promising target for dementia prevention.


Assuntos
Encéfalo , Cognição , Demência , Análise da Randomização Mendeliana , Jogos de Vídeo , Humanos , Demência/epidemiologia , Demência/genética , Masculino , Feminino , Encéfalo/patologia , Cognição/fisiologia , Idoso , Estudos Prospectivos , Pessoa de Meia-Idade , Imageamento por Ressonância Magnética , Reino Unido/epidemiologia , Incidência
20.
BMC Med ; 22(1): 226, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840198

RESUMO

BACKGROUND: Previous studies have linked adolescent motherhood to adverse neurodevelopmental outcomes in offspring, yet the sex-specific effect and underlying mechanisms remain unclear. METHODS: This study included 6952 children aged 9-11 from the Adolescent Brain Cognitive Development study. The exposed group consisted of children of mothers < 20 years at the time of birth, while the unexposed group was composed of children of mothers aged 20-35 at birth. We employed a generalized linear mixed model to investigate the associations of adolescent motherhood with cognitive, behavioral, and autistic-like traits in offspring. We applied an inverse-probability-weighted marginal structural model to examine the potential mediating factors including adverse perinatal outcomes, family conflict, and brain structure alterations. RESULTS: Our results revealed that children of adolescent mothers had significantly lower cognitive scores (ß, - 2.11, 95% CI, - 2.90 to - 1.31), increased externalizing problems in male offspring (mean ratio, 1.28, 95% CI, 1.08 to 1.52), and elevated internalizing problems (mean ratio, 1.14, 95% CI, 0.99 to 1.33) and autistic-like traits (mean ratio, 1.22, 95% CI, 1.01 to 1.47) in female. A stressful family environment mediated ~ 70% of the association with internalizing problems in females, ~ 30% with autistic-like traits in females, and ~ 20% with externalizing problems in males. Despite observable brain morphometric changes related to adolescent motherhood, these did not act as mediating factors in our analysis, after adjusting for family environment. No elevated rate of adverse perinatal outcomes was observed in the offspring of adolescent mothers in this study. CONCLUSIONS: Our results reveal distinct sex-specific neurodevelopmental outcomes impacts of being born to adolescent mothers, with a substantial mediating effect of family environment on behavioral outcomes. These findings highlight the importance of developing sex-tailored interventions and support the hypothesis that family environment significantly impacts the neurodevelopmental consequences of adolescent motherhood.


Assuntos
Transtorno Autístico , Encéfalo , Cognição , Comportamento Problema , Humanos , Feminino , Masculino , Criança , Encéfalo/crescimento & desenvolvimento , Adolescente , Cognição/fisiologia , Conflito Familiar , Mães , Adulto , Gravidez , Adulto Jovem , Gravidez na Adolescência , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA