Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Int Immunopharmacol ; 137: 112443, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38897124

RESUMO

Brucella is an intracellular parasitic bacterium lacking typical virulence factors, and its pathogenicity primarily relies on replication within host cells. In this study, we observed a significant increase in spleen weight in mice immunized with a Brucella strain deleted of the gene for alanine racemase (Alr), the enzyme responsible for alanine racemization (Δalr). However, the bacterial load in the spleen markedly decreased in the mutant strain. Concurrently, the ratio of white pulp to red pulp in the spleen was increased, serum IgG levels were elevated, but no significant damage to other organs was observed. In addition, the inflammatory response was potentiated and the NF-κB-NLRP3 signaling pathway was activated in macrophages (RAW264.7 Cells and Bone Marrow-Derived Cells) infect ed with the Δalr mutant. Further investigation revealed that the Δalr mutant released substantial amounts of protein in a simulated intracellular environment which resulted in heightened inflammation and activation of the TLR4-NF-κB-NLRP3 pathway in macrophages. The consequent cytoplasmic exocytosis reduced intracellular Brucella survival. In summary, cytoplasmic exocytosis products resulting from infection with a Brucella strain deleted of the alr gene effectively activated the TLR4-NFκB-NLRP3 pathway, triggered a robust inflammatory response, and reduced bacterial survival within host cells. Moreover, the Δalr strain exhibits lower toxicity and stronger immunogenicity in mice.


Assuntos
Brucella suis , Brucelose , Macrófagos , NF-kappa B , Proteína 3 que Contém Domínio de Pirina da Família NLR , Receptor 4 Toll-Like , Animais , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , NF-kappa B/metabolismo , Brucelose/imunologia , Brucelose/microbiologia , Brucelose/genética , Células RAW 264.7 , Brucella suis/imunologia , Brucella suis/genética , Brucella suis/patogenicidade , Virulência/genética , Macrófagos/imunologia , Deleção de Genes , Transdução de Sinais/imunologia , Feminino , Camundongos Endogâmicos BALB C , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Baço/imunologia , Inflamação/imunologia
2.
One Health ; 18: 100712, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38590630

RESUMO

Brucellosis is an important zoonotic disease affecting animals and subsistence harvesters in the circumarctic. We investigated recent trends (2015-2022) of brucellosis seropositivity in caribou (Rangifer tarandus) and muskoxen (Ovibos moschatus) in the Central Canadian Arctic by using data from community-based wildlife health surveillance programs. The overall sample prevalence of Brucella antibodies was 10.0% (n = 271) in muskoxen and 15.5% (n = 277) in caribou. Sample seroprevalence in muskoxen varied geographically with an increasing trend of exposure on NW Victoria Island (from 0% to 36.8% between 2016 and 2022; Kendall tau = 0.283, p = 0.001). The presence of Brucella suis biovar 4 was confirmed by culture from clinical cases in this area. Our results indicate that Brucella suis biovar 4 continues to circulate in the Central Canadian Arctic in caribou and muskoxen and may be now circulating in muskoxen independently from caribou. These findings highlight the need to better understand the ecology and drivers of brucellosis emergence in Arctic multi-host systems.

3.
Int J Mol Sci ; 24(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38003334

RESUMO

Brucella, a zoonotic facultative intracellular pathogenic bacterium, poses a significant threat both to human health and to the development of the livestock industry. Alanine racemase (Alr), the enzyme responsible for alanine racemization, plays a pivotal role in regulating virulence in this bacterium. Moreover, Brucella mutants with alr gene deletions (Δalr) exhibit potential as vaccine candidates. However, the mechanisms that underlie the detrimental effects of alr knockouts on Brucella pathogenicity remain elusive. Here, initially, we conducted a bioinformatics analysis of Alr, which demonstrated a high degree of conservation of the protein within Brucella spp. Subsequent metabolomics studies unveiled alterations in amino acid pathways following deletion of the alr gene. Furthermore, alr deletion in Brucella suis S2 induced decreased resistance to stress, antibiotics, and other factors. Transmission electron microscopy of simulated macrophage intracellular infection revealed damage to the cell wall in the Δalr strain, whereas propidium iodide staining and alkaline phosphatase and lactate dehydrogenase assays demonstrated alterations in cell membrane permeability. Changes in cell wall properties were revealed by measurements of cell surface hydrophobicity and zeta potential. Finally, the diminished adhesion capacity of the Δalr strain was shown by immunofluorescence and bacterial enumeration assays. In summary, our findings indicate that the alr gene that regulates amino acid metabolism in Brucella influences the properties of the cell wall, which modulates bacterial adherence capability. This study is the first demonstration that Alr impacts virulence by modulating bacterial metabolism, thereby providing novel insights into the pathogenic mechanisms of Brucella spp.


Assuntos
Alanina Racemase , Brucella , Brucelose , Humanos , Alanina Racemase/genética , Alanina Racemase/química , Alanina Racemase/metabolismo , Brucella/metabolismo , Antibacterianos , Parede Celular/metabolismo , Aminoácidos
4.
Toxins (Basel) ; 15(11)2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37999525

RESUMO

Brucellosis is a notorious zoonotic disease caused by Brucella, which can lead to reproductive diseases in humans and animals, such as infertility and abortion. Lipopolysaccharides (LPS) are the main virulence factor of Brucella. LPS derived from Brucella are different and non-classical and are less toxic and less active than LPS isolated from E. coli. However, the effects and possible mechanisms of Brucella LPS-caused pregnancy loss remain to be revealed. In the present study, we investigated the effects of Brucella suis S2 LPS on early pregnancy loss in mice. The results indicated that embryo implantation failure was induced by Brucella LPS treatment in a dose-dependent manner. The injection of Brucella LPS mainly resulted in fibrinolysis in the decidual area of the uterus on the 6th day post coition (dpc), infiltration of large granular cells among the decidual cells near the embryo on the 8th dpc, a large number of gaps in the decidual area, and cell necrosis around the embryo. In addition, the expression of Cyclin D3 mRNA in the uterus on the 7th and 8th dpc and IGFBP-1 mRNA and the progesterone receptor in the uterus on the 6th and 7th dpc were also inhibited. Moreover, the expression of decidualization marker Cyclin D3 and decidualization prolactin-associated protein (dPRP) in endometrial stromal cells were also inhibited by Brucella LPS treatment in vitro. In summary, Brucella LPS affect the process of endometrial decidualization in mice by affecting the structure of the decidua and the expression of decidual marker factors in endometrial stromal cells.


Assuntos
Brucella suis , Decídua , Gravidez , Humanos , Feminino , Camundongos , Animais , Decídua/metabolismo , Lipopolissacarídeos/farmacologia , Brucella suis/metabolismo , Ciclina D3/metabolismo , Escherichia coli/metabolismo , Útero , RNA Mensageiro/metabolismo
5.
Front Vet Sci ; 10: 1233118, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601758

RESUMO

In 2021, a case of canine brucellosis diagnosed in a dog with orchitis was presented to a veterinary practice in Germany. Serological testing excluded Brucella (B.) canis as a causative agent, but molecular analysis revealed the presence of B. suis biovar 1. Since biovar 1 is not endemic in Europe and the dog had no history of travel to endemic areas, a comprehensive epidemiological investigation was conducted using whole genome sequence data to determine the source of infection. We describe the clinical progress of the animal and the potential infection of a veterinary clinic employee. The findings highlight the importance of considering less common Brucella species as possible causes of canine brucellosis. The data also emphasize that it is quite challenging to identify Brucella species in a routine diagnostic laboratory and to conduct epidemiological investigations to unveil possible transmission routes.

6.
Int J Mol Sci ; 24(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37445922

RESUMO

Brucella suis, the causative agent of brucellosis, poses a significant public health and animal husbandry threat. However, the role of the alanine racemase (alr) gene, which encodes alanine racemase in Brucella, remains unclear. Here, we analyzed an alr deletion mutant and a complemented strain of Brucella suis S2. The knockout strain displayed an unaltered, smooth phenotype in acriflavine agglutination tests but lacked the core polysaccharide portion of lipopolysaccharide (LPS). Genes involved in the LPS synthesis were significantly upregulated in the deletion mutant. The alr deletion strain exhibited reduced intracellular viability in the macrophages, increased macrophage-mediated killing, and upregulation of the apoptosis markers. Bcl2, an anti-apoptotic protein, was downregulated, while the pro-apoptotic proteins, Bax, Caspase-9, and Caspase-3, were upregulated in the macrophages infected with the deletion strain. The infected macrophages showed increased mitochondrial membrane permeability, Cytochrome C release, and reactive oxygen species, activating the mitochondrial apoptosis pathway. These findings revealed that alanine racemase was dispensable in B. suis S2 but influenced the strain's rough features and triggered the mitochondrial apoptosis pathway during macrophage invasion. The deletion of the alr gene reduced the intracellular survival and virulence. This study enhances our understanding of the molecular mechanism underlying Brucella's survival and virulence and, specifically, how alr gene affects host immune evasion by regulating bacterial LPS biosynthesis.


Assuntos
Alanina Racemase , Brucella suis , Brucelose , Animais , Brucella suis/genética , Lipopolissacarídeos , Virulência/genética , Brucelose/microbiologia
7.
Pathogens ; 12(6)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37375482

RESUMO

Despite Brucella suis biovar 2's (BSB2) active circulation in wildlife, no canine infections have been reported. The present paper is the first to describe two cases of BSB2 infections in French dogs. The first case occurred in 2020 and concerned a 13-year-old male neutered Border Collie with clinical signs of prostatitis. The urine culture revealed the excretion of significant levels of Brucella in the sample. The second case concerned a German Shepherd with bilateral orchitis, in which it was possible to detect Brucella colonies following neutering. HRM-PCR and classical biotyping methods classified both isolated strains as BSB2, in contrast to expected B. canis, which is usually the etiological agent of canine brucellosis in Europe. The wgSNP and MLVA analyses highlighted the genetic proximity of two isolates to BSB2 strains originating from wildlife. No pig farms were present in the proximity of either dog's residence, ruling out potential spill over from infected pigs. Nevertheless, the dogs used to take walks in the surrounding forests, where contact with wildlife (i.e., wild boars or hares, or their excrements) was possible. These cases highlight the importance of adopting a One Health approach to control the presence of zoonotic bacteria in wild animals and avoid spillovers into domestic animals and, potentially, humans.

8.
Vasc Endovascular Surg ; 57(8): 941-948, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37313853

RESUMO

Brucellosis is one of the most common zoonotic infections in the world. Human infections are the result of direct exposure to infected animals or ingestion of unprocessed dairy products. While Brucella sp. infection has largely been eliminated from commercial cattle and swine with aggressive vaccination, there is a significant prevalence of Brucella sp. infection in the expanding population of feral swine in the US. We report the surgical treatment of a ruptured mycotic aneurysm of the abdominal aorta due to Brucella suis in a woman living in a rural community with a large population of feral swine. Vascular surgeons should be aware that brucellosis can result in arterial infection and should be considered in the differential diagnosis in patients with a history of exposure to feral swine or the ingestion of unprocessed dairy products.


Assuntos
Brucella suis , Brucelose , Doenças dos Suínos , Feminino , Animais , Suínos , Humanos , Bovinos , Animais Selvagens , Doenças dos Suínos/epidemiologia , Resultado do Tratamento , Brucelose/epidemiologia , Brucelose/veterinária
9.
Pathogens ; 12(5)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37242308

RESUMO

Invasive feral swine (Sus scrofa) are one of the most important wildlife species for disease surveillance in the United States, serving as a reservoir for various diseases of concern for the health of humans and domestic animals. Brucella suis, the causative agent of swine brucellosis, is one such pathogen carried and transmitted by feral swine. Serology assays are the preferred field diagnostic for B. suis infection, as whole blood can be readily collected and antibodies are highly stable. However, serological assays frequently have lower sensitivity and specificity, and few studies have validated serological assays for B. suis in feral swine. We conducted an experimental infection of Ossabaw Island Hogs (a breed re-domesticated from feral animals) as a disease-free proxy for feral swine to (1) improve understanding of bacterial dissemination and antibody response following B. suis infection and (2) evaluate potential changes in the performance of serological diagnostic assays over the course of infection. Animals were inoculated with B. suis and serially euthanized across a 16-week period, with samples collected at the time of euthanasia. The 8% card agglutination test performed best, whereas the fluorescence polarization assay demonstrated no capacity to differentiate true positive from true negative animals. From a disease surveillance perspective, using the 8% card agglutination test in parallel with either the buffered acidified plate antigen test or the Brucella abortus/suis complement fixation test provided the best performance with the highest probability of a positive assay result. Application of these combinations of diagnostic assays for B. suis surveillance among feral swine would improve understanding of spillover risks at the national level.

10.
Vet Microbiol ; 282: 109751, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37104938

RESUMO

Brucella suis commonly infects swine but occasionally also other animal species and humans. Wild boars are the most important reservoir of B. suis biovar 2, continually infecting susceptible hosts through close contact. Nevertheless, the genetic diversity of B. suis in wildlife remains understudied. Here, we typed 17 Slovenian B. suis biovar 2 isolates obtained in 2017-2019 from wild boars (n = 16) and a hare (n = 1) using whole-genome sequencing (WGS). To assess the global phylogenetic diversity of B. suis, we compared them to 126 publicly available B. suis genomes. All Slovenian isolates fell within the biovar 2 lineage, confirming the previous multiplex PCR typing results. According to MLST-21, the wild boar isolates were of sequence types (STs) ST16 (n = 8) and ST153 (n = 8); the maximum genetic distance between isolates of the same ST was 28 wgMLST alleles. The ST153 isolates were restricted to the Slovenian-Croatian border and clustered together with the Croatian ST153 isolates from swine, indicating cross-border transmission of B. suis ST153 strain. The hare isolate was of ST40 and was genetically distant (≥ 489 alleles) from the wild boar isolates. The genome-wide phylogeny clearly separated different B. suis biovars. The present study is the first report on the population structure of B. suis in wildlife in Slovenia and shows that the Slovenian B. suis population is genetically heterogeneous. At the species level, B. suis biovars are clearly separated in the WGS-based phylogenetic tree and can therefore be reliably predicted using WGS.


Assuntos
Brucella suis , Brucelose , Lebres , Doenças dos Suínos , Humanos , Suínos , Animais , Animais Selvagens , Filogeografia , Brucelose/epidemiologia , Brucelose/veterinária , Filogenia , Tipagem de Sequências Multilocus/veterinária , Lebres/genética , Sus scrofa , Doenças dos Suínos/epidemiologia
11.
J Vet Diagn Invest ; 35(3): 258-265, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36988301

RESUMO

Porcine brucellosis, which is caused by Brucella suis biovar (bv) 2, is a re-emerging disease that causes reproductive problems in pigs in Europe. The pathogenesis and lesions of B. suis intrauterine infection are poorly characterized; characterization could facilitate the diagnosis and investigation of porcine brucellosis. We collected samples of placentas and fetuses for histologic and microbiologic studies during an outbreak of abortions on a pig-breeding farm in Spain. Brucella was cultured from the vaginal swabs obtained from sows that had aborted, some placentas, and fetal tissues (spleen, liver, lung, gastric content); molecular testing confirmed B. suis bv 2 infection. Histologically, there was necrotizing and hemorrhagic placentitis; suppurative hepatitis; lymphoid depletion and sinusoidal histiocytosis in the spleen, lymph nodes, and thymus; and bronchointerstitial pneumonia. Hemorrhages were observed in the umbilical cord, heart, kidneys, and brain. We detected Brucella by immunohistochemistry (IHC) in all of the placentas and fetal organs studied, specifically in the trophoblasts of the chorionic epithelium, in the cytoplasm of macrophages in the chorionic stroma, and extracellularly in necrotic debris. Furthermore, we assessed the lymphocyte population in the placentas through the use of IHC (anti-CD3, anti-Pax5 antibodies), revealing that the lymphocytic response was composed of T cells but not B cells.


Assuntos
Brucella suis , Brucelose , Doenças dos Suínos , Gravidez , Suínos , Animais , Feminino , Doenças dos Suínos/microbiologia , Brucelose/microbiologia , Brucelose/veterinária , Placenta/patologia , Feto/patologia
12.
Microorganisms ; 11(2)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36838443

RESUMO

Brucella species are highly pathogenic zoonotic agents and are found in vertebrates all over the world. To date, Germany is officially declared free from brucellosis and continuous surveillance is currently limited to farm ruminants. However, porcine brucellosis, mostly caused by B. suis biovar 2, is still found in wild boars and hares. In the present study, a three-year monitoring program was conducted focusing on the wild boar population in the state of Bavaria. Serologic screening of 11,956 animals and a direct pathogen detection approach, including a subset of 681 tissue samples, was carried out. The serologic incidence was 17.9%, which is in approximate accordance with previously published results from various European countries. Applying comparative whole genome analysis, five isolated B. suis biovar 2 strains from Bavaria could be assigned to three known European genetic lineages. One isolate was closely related to another strain recovered in Germany in 2006. Concluding, porcine brucellosis is endemic in Bavaria and the wild boar population represents a reservoir for genetically distinct B. suis biovar 2 strains. However, the transmission risk of swine brucellosis to humans and farm animals is still regarded as minor due to low zoonotic potential, awareness, and biosafety measures.

13.
Aust Vet J ; 101(4): 133-141, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36655500

RESUMO

Brucella suis is an emerging, zoonotic disease predominantly affecting dogs and humans that engage in feral pig hunting in Australia and other countries. Although B. suis infection in dogs shares some clinical similarities to the host-adapted species (B. canis), B. suis remains an incompletely understood pathogen in dogs with limited published data on its pathogenesis and clinical features. This case series describes the presentations, diagnosis, and clinical management of B. suis infection in three dogs: (1) a bitch with dystocia, abortion and mastitis; (2) an entire male dog with septic arthritis and presumptive osteomyelitis; and (3) a castrated male dog with lymphadenitis. Unique features of these cases are reported including the first documented detection of B. suis from milk and isolation from lymph nodes of canine patients, as well as the follow-up of pups born to a B. suis-infected bitch. Consistent with previous reports, all three dogs showed a favourable clinical response to combination antibiotic therapy with rifampicin and doxycycline. Individually tailored drug regimens were required based on the clinical presentation and other factors, including owner expectations and compliance with therapy as well as a zoonotic risk assessment (generally considered low, except around time of whelping). The authors include their recommendations for the clinical management of dogs that are at-risk or seropositive for B. suis with or without clinical signs or laboratory-confirmed infection.


Assuntos
Brucella suis , Brucelose , Doenças do Cão , Doenças dos Suínos , Suínos , Gravidez , Feminino , Animais , Cães , Humanos , Masculino , Brucelose/diagnóstico , Brucelose/tratamento farmacológico , Brucelose/veterinária , Aborto Animal , Rifampina/uso terapêutico , Animais Selvagens , Sus scrofa , Doenças do Cão/diagnóstico , Doenças do Cão/tratamento farmacológico , Doenças dos Suínos/diagnóstico , Doenças dos Suínos/tratamento farmacológico
14.
Immunol Res ; 71(2): 247-266, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36459272

RESUMO

Brucella suis mediates the transmission of brucellosis in humans and animals and a significant facultative zoonotic pathogen found in livestock. It has the capacity to survive and multiply in a phagocytic environment and to acquire resistance under hostile conditions thus becoming a threat globally. Antibiotic resistance is posing a substantial public health threat, hence there is an unmet and urgent clinical need for immune-based non-antibiotic methods to treat brucellosis. Hence, we aimed to explore the whole proteome of Brucella suis to predict antigenic proteins as a vaccine target and designed a novel chimeric vaccine (multi-epitope vaccine) through subtractive genomics-based reverse vaccinology approaches. The applied subsequent hierarchical shortlisting resulted in the identification of Multidrug efflux Resistance-nodulation-division (RND) transporter outer membrane subunit (gene BepC) that may act as a potential vaccine target. T-cell and B-cell epitopes have been predicted from target proteins using a number of immunoinformatic methods. Six MHC I, ten MHC II, and four B-cell epitopes were used to create a 324-amino-acid MEV construct, which was coupled with appropriate linkers and adjuvant. To boost the immunological response to the vaccine, the vaccine was combined with the TLR4 agonist HBHA protein. The MEV structure predicted was found to be highly antigenic, non-toxic, non-allergenic, flexible, stable, and soluble. To confirm the interactions with the receptors, a molecular docking simulation of the MEV was done using the human TLR4 (toll-like receptor 4) and HLAs. The stability and binding of the MEV-docked complexes with TLR4 were assessed using molecular dynamics (MD) simulation. Finally, MEV was reverse translated, its cDNA structure was evaluated, and then, in silico cloning into an E. coli expression host was conducted to promote maximum vaccine protein production with appropriate post-translational modifications. These comprehensive computer calculations backed up the efficacy of the suggested MEV in protecting against B. suis infections. However, more experimental validations are needed to adequately assess the vaccine candidate's potential. HIGHLIGHTS: • Subtractive genomic analysis and reverse vaccinology for the prioritization of novel vaccine target • Examination of chimeric vaccine in terms of allergenicity, antigenicity, MHC I, II binding efficacy, and structural-based studies • Molecular docking simulation method to rank based vaccine candidate and understand their binding modes.


Assuntos
Vacina contra Brucelose , Brucella suis , Brucelose , Animais , Humanos , Brucella suis/genética , Brucella suis/imunologia , Brucelose/genética , Brucelose/imunologia , Brucelose/prevenção & controle , Biologia Computacional , Epitopos de Linfócito B/genética , Epitopos de Linfócito T , Escherichia coli , Simulação de Acoplamento Molecular , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/imunologia , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/uso terapêutico , Farmacorresistência Bacteriana/genética , Farmacorresistência Bacteriana/imunologia , Proteoma/genética , Proteoma/imunologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Vacina contra Brucelose/genética , Vacina contra Brucelose/imunologia , Vacina contra Brucelose/uso terapêutico , Epitopos/genética , Epitopos/imunologia , Desenvolvimento de Vacinas , Desenho de Fármacos
15.
Bioengineering (Basel) ; 9(11)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36354544

RESUMO

Brucella suis, one of the causative agents of brucellosis, is Gram-negative intracellular bacteria that may be found all over the globe and it is a significant facultative zoonotic pathogen found in livestock. It may adapt to a phagocytic environment, reproduce, and develop resistance to harmful environments inside host cells, which is a crucial part of the Brucella life cycle making it a worldwide menace. The molecular underpinnings of Brucella pathogenicity have been substantially elucidated due to comprehensive methods such as proteomics. Therefore, we aim to explore the complete Brucella suis proteome to prioritize the novel proteins as drug targets via subtractive proteo-genomics analysis, an effort to conjecture the existence of distinct pathways in the development of brucellosis. Consequently, 38 unique metabolic pathways having 503 proteins were observed while among these 503 proteins, the non-homologs (n = 421), essential (n = 350), drug-like (n = 114), virulence (n = 45), resistance (n = 42), and unique to pathogen proteins were retrieved from Brucella suis. The applied subsequent hierarchical shortlisting resulted in a protein, i.e., isocitrate lyase, that may act as potential drug target, which was finalized after the extensive literature survey. The interacting partners for these shortlisted drug targets were identified through the STRING database. Moreover, structure-based studies were also performed on isocitrate lyase to further analyze its function. For that purpose, ~18,000 ZINC compounds were screened to identify new potent drug candidates against isocitrate lyase for brucellosis. It resulted in the shortlisting of six compounds, i.e., ZINC95543764, ZINC02688148, ZINC20115475, ZINC04232055, ZINC04231816, and ZINC04259566 that potentially inhibit isocitrate lyase. However, the ADMET profiling showed that all compounds fulfill ADMET properties except for ZINC20115475 showing positive Ames activity; whereas, ZINC02688148, ZINC04259566, ZINC04232055, and ZINC04231816 showed hepatoxicity while all compounds were observed to have no skin sensitization. In light of these parameters, we recommend ZINC95543764 compound for further experimental studies. According to the present research, which uses subtractive genomics, proteins that might serve as therapeutic targets and potential lead options for eradicating brucellosis have been narrowed down.

16.
Microorganisms ; 10(8)2022 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-36014002

RESUMO

Brucellosis is one of the most important and widespread bacterial zoonoses worldwide. Cases are reported annually across the range of known infectious species of the genus Brucella. Globally, Brucella melitensis, primarily hosted by domestic sheep and goats, affects large proportions of livestock herds, and frequently spills over into humans. While some species, such as Brucella abortus, are well controlled in livestock in areas of North America, the Greater Yellowstone Ecosystem supports the species in native wild ungulates with occasional spillover to livestock. Elsewhere in North America, other Brucella species still infect domestic dogs and feral swine, with some associated human cases. Brucella spp. patterns vary across space globally with B. abortus and B. melitensis the most important for livestock control. A myriad of other species within the genus infect a wide range of marine mammals, wildlife, rodents, and even frogs. Infection in humans from these others varies with geography and bacterial species. Control in humans is primarily achieved through livestock vaccination and culling and requires accurate and rapid species confirmation; vaccination is Brucella spp.-specific and typically targets single livestock species for distribution. Traditional bacteriology methods are slow (some media can take up to 21 days for bacterial growth) and often lack the specificity of molecular techniques. Here, we summarize the molecular techniques for confirming and identifying specific Brucella species and provide recommendations for selecting the appropriate methods based on need, sensitivity, and laboratory capabilities/technology. As vaccination/culling approaches are costly and logistically challenging, proper diagnostics and species identification are critical tools for targeting surveillance and control.

17.
Microorganisms ; 10(7)2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35889081

RESUMO

The aim of this study was to develop a multiplex bead assay using a Brucella rLPS antigen, a Brucella suis smooth antigen, and a Yersinia enterocolitica O:9 antigen that not only discriminates Brucella-infected from Brucella-uninfected pigs and wild boar, but also overcomes the cross reactivity with Y. enterocolitica O:9. Sera from 126 domestic pigs were tested: 29 pigs were Brucella infected, 80 were non-infected and 17 were confirmed to be false positive serological reactors (FPSR). Sera from 49 wild boar were tested: 18 were positive and 31 were negative. Using the rLPS antigen, 26/29 Brucella-infected domestic pigs and 15/18 seropositive wild boar were positive, while 75/80 non-Brucella infected domestic pigs, all FPSR, and all seronegative wild boar were negative. Using the smooth B. suis 1330 antigen, all Brucella-infected domestic pigs, 9/17 FPSR and all seropositive wild boar were positive, while all non-infected pigs and 30/31 seronegative wild boar were negative. The ratio of the readouts from the smooth B. suis antigen and Y. enterocolitica O:9 antigen enabled discriminating all Brucella infected individuals from the FPSR domestic pigs. These results demonstrate the potential of this assay for use in the surveillance of brucellosis, overcoming the cross-reactivity with Y. enterocolitica.

18.
Front Vet Sci ; 9: 915692, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35799841

RESUMO

Porcine brucellosis, caused by Brucella suis (B. suis), is a notifiable disease causing significant economic losses in production systems. Most infected pigs may act as carriers and shed B. suis even if asymptomatic. This can contribute to environmental persistence, thus hindering control efforts. Here, the environment and the offspring were investigated during and after a B. suis outbreak at a sow breeding farm. The diagnosis of B. suis in sows (n = 1,140) was performed by culture and polymerase chain reaction (PCR) from vaginal swabs, indirect enzyme-linked immunosorbent assay (I-ELISA) from sera, and brucellin skin test (BST). B. suis diagnosis in post-weaning pigs (n = 899) was performed by I-ELISA in sera and BST. The environmental surveillance programme was implemented by placing gauze sponges (n = 175) pre-hydrated in a surfactant and inactivating liquid for Brucella DNA detection by PCR in different farm areas. Our results showed that the offspring of infected sows reacted to in vivo techniques for B. suis. Furthermore, the offspring born during the outbreak displayed higher seropositivity (I-ELISA) and reactivity (BST) than those pigs born after. Brucella DNA was detected in pregnant sow areas, boxes, boots, and post-weaning pig areas. In addition, Brucella DNA environmental detection was higher during the B. suis outbreak than the post B. suis outbreak. The environmental approach has proven to be a simple, practical, valuable, and safe method to detect and monitor B. suis. These results suggest a role of the environment and the offspring that should be considered in porcine brucellosis surveillance and control programmes.

19.
BMC Vet Res ; 18(1): 224, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35698071

RESUMO

BACKGROUND: Brucella suis is a zoonotic pathogen with a serious impact on public health and the pig industry worldwide. Information regarding B. suis in pigs in Egypt is scarce. This study aimed to investigate the prevalence of B. suis in slaughtered domestic pigs at El-Basatin abattoir in Cairo, Egypt. A total of 1,116 domestic pigs slaughtered in 2020 were sampled for Brucella isolation and identification. Identified Brucella isolates were molecularly confirmed at species, and biovar levels using Bruce ladder PCR and Suis ladder multiplex PCR. Additionally, high-risk practices of 16 abattoir workers (4 veterinarians, 10 butchering and evisceration workers, and 2 scalding workers) were investigated using a pre-piloted structured questionnaire. RESULTS: Brucella isolates were recovered from 1.3% of examined pigs (n = 14) at consistently low rates (1.1-2.9%) across the year of sampling from February to December 2020. All isolates were confirmed as B. suis biovar (bv) 2. Remarkably, 92.9% (13/14) of isolates showed atypical ability to produce H2S and hence were considered as B. suis bv2 atypical phenotype. The prevalence was higher in males (1.8%) than in females (0.9). However, this difference was not significant (Odds ratio = 1.9; CI 95% 0.7 - 5.7; P = 0.2). No detectable pathological lesions were associated with B. suis bv2 infection in examined pigs. All strains were isolated from cervical lymph nodes, highlighting a potential oral transmission. High-risk practices were recorded among swine abattoir workers in this study: 75% do not wear gloves or disinfect their knives daily, and 18.8% were willing to work with open wound injuries. CONCLUSIONS: To the best of our knowledge, this is the first isolation of B. suis bv2 in Egypt. Detection of H2S producing B. suis bv2 atypical phenotype is alarming as it may result in misinterpretation of these isolates as highly human pathogenic B. suis bv1 in Egypt and possibly elsewhere. Further epidemiological tracing studies are crucial for the detection of the origin of this biovar. Including pigs in the national surveillance program of brucellosis, and an education program for swine abattoir workers about occupational risk of B. suis is a need in Egypt.


Assuntos
Brucella suis , Brucelose , Doenças dos Suínos , Animais , Brucella suis/genética , Brucelose/epidemiologia , Brucelose/veterinária , Egito/epidemiologia , Feminino , Masculino , Reação em Cadeia da Polimerase Multiplex/veterinária , Sus scrofa/genética , Suínos , Doenças dos Suínos/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA