Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 247: 125734, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37423436

RESUMO

Molecular dissection of disease resistance against Vibrio harveyi infection in yellow drum at the genome-wide level uncovered a C-type lectin-like receptor cluster of differentiation CD302 (named as YdCD302) in our previous study. Here, the gene expression pattern of YdCD302 and its function in mediating the defense response to V. harveyi attack were investigated. Gene expression analysis demonstrated that YdCD302 was ubiquitously distributed in various tissues with the highest transcript abundance in liver. The YdCD302 protein exhibited agglutination and antibacterial activity against V. harveyi cells. Binding assay indicated that YdCD302 can physically interact with V. harveyi cells in a Ca2+-independent manner, and the interaction can activate reactive oxygen species (ROS) production in the bacterial cells to induce RecA/LexA-mediated cell death. After infection with V. harveyi, the expression of YdCD302 can be up-regulated significantly in the main immune organs of yellow drum and potentially further trigger the cytokines involved innate immunity. These findings provide insight into the genetic basis of the disease resistance trait in yellow drum and shed light on the functioning of the CD302 C-type lectin-like receptor in host-pathogen interactions. The molecular and functional characterization of YdCD302 is a significant step towards a better understanding of disease resistance mechanisms and the development of new strategies for disease control.


Assuntos
Doenças dos Peixes , Proteínas de Peixes , Lectinas Tipo C , Perciformes , Vibrioses , Lectinas Tipo C/química , Lectinas Tipo C/metabolismo , Proteínas de Peixes/química , Proteínas de Peixes/metabolismo , Animais , Vibrio/fisiologia , Vibrioses/imunologia , Vibrioses/metabolismo , Vibrioses/veterinária , Doenças dos Peixes/imunologia , Doenças dos Peixes/metabolismo , Clonagem Molecular , Sequência de Aminoácidos , Sequência de Bases , Interações Hospedeiro-Patógeno , Imunidade Inata
2.
J Proteome Res ; 22(7): 2493-2508, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37338096

RESUMO

Syndromic CLN3-Batten is a fatal, pediatric, neurodegenerative disease caused by variants in CLN3, which encodes the endolysosomal transmembrane CLN3 protein. No approved treatment for CLN3 is currently available. The protracted and asynchronous disease presentation complicates the evaluation of potential therapies using clinical disease progression parameters. Biomarkers as surrogates to measure the progression and effect of potential therapeutics are needed. We performed proteomic discovery studies using cerebrospinal fluid (CSF) samples from 28 CLN3-affected and 32 age-similar non-CLN3 individuals. Proximal extension assay (PEA) of 1467 proteins and untargeted data-dependent mass spectrometry [MS; MassIVE FTP server (ftp://MSV000090147@massive.ucsd.edu)] were used to generate orthogonal lists of protein marker candidates. At an adjusted p-value of <0.1 and threshold CLN3/non-CLN3 fold-change ratio of 1.5, PEA identified 54 and MS identified 233 candidate biomarkers. Some of these (NEFL, CHIT1) have been previously linked with other neurologic conditions. Others (CLPS, FAM217B, QRICH2, KRT16, ZNF333) appear to be novel. Both methods identified 25 candidate biomarkers, including CHIT1, NELL1, and ISLR2 which had absolute fold-change ratios >2. NELL1 and ISLR2 regulate axonal development in neurons and are intriguing new candidates for further investigation in CLN3. In addition to identifying candidate proteins for CLN3 research, this study provides a comparison of two large-scale proteomic discovery methods in CSF.


Assuntos
Doenças Neurodegenerativas , Lipofuscinoses Ceroides Neuronais , Humanos , Criança , Chaperonas Moleculares/metabolismo , Proteínas do Líquido Cefalorraquidiano , Glicoproteínas de Membrana/metabolismo , Proteômica , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/metabolismo
3.
Fish Shellfish Immunol ; 55: 140-8, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27235369

RESUMO

Recognizing the presence of invading pathogens by pattern recognition receptors (PRRs) is key to mounting an effective innate immune response. Mammalian CD302 is an unconventional C-type lectin like receptor (CTLR) involved in the functional regulation of immune cells. However, the role of CD302 in fish remains unclear. In this study, we characterized a novel CD302 gene from ayu (Plecoglossus altivelis), which was tentatively named PaCD302. The cDNA sequence of PaCD302 is 1893 nucleotides in length, and encodes a polypeptide of 241 amino acids with molecular weight 27.1 kDa and pI 4.69. Sequence comparison and phylogenetic tree analysis showed that PaCD302 is a type I transmembrane CTLR devoid of the known amino acid residues essential for Ca(2+)-dependent sugar binding. PaCD302 mRNA expression was detected in all tissues and cells tested, with the highest level in the liver. Following Vibrio anguillarum infection, PaCD302 mRNA expression was significantly upregulated in all tissues tested. For further functional analysis, we generated a recombinant protein for PaCD302 (rPaCD302) by prokaryotic expression and raised a specific antibody against rPaCD302. Western blot analysis revealed that the native PaCD302 is glycosylated. Refolded rPaCD302 was unable to bind to five monosaccharides (l-fucose, d-galactose, d-glucose, d-mannose and N-acetyl glucosamine) or two other polysaccharides (lipopolysaccharide and peptidoglycan). It was able to bind to three Gram-positive and seven Gram-negative bacteria, but show no bacterial agglutinating activity. PaCD302 function blocking using anti-PaCD302 IgG resulted in inhibition of phagocytosis and bactericidal activity of ayu monocytes/macrophages (MO/MΦ), suggesting that PaCD302 regulates the function of ayu MO/MΦ. In summary, our study demonstrates that PaCD302 may participate in the immune response of ayu against bacterial infection via modulation of MO/MΦ function.


Assuntos
Doenças dos Peixes/genética , Proteínas de Peixes/genética , Regulação da Expressão Gênica , Imunidade Inata , Lectinas Tipo C/genética , Osmeriformes , Vibrioses/veterinária , Sequência de Aminoácidos , Animais , Clonagem Molecular , DNA Complementar/genética , DNA Complementar/metabolismo , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Proteínas de Peixes/química , Proteínas de Peixes/metabolismo , Lectinas Tipo C/química , Lectinas Tipo C/metabolismo , Macrófagos/imunologia , Monócitos/imunologia , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Alinhamento de Sequência/veterinária , Vibrio/fisiologia , Vibrioses/genética , Vibrioses/imunologia , Vibrioses/microbiologia
4.
Biomol NMR Assign ; 10(1): 189-92, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26725057

RESUMO

DCL-1 (CD302) is a single-pass type one transmembrane protein which is predominantly expressed on myeloid cell lines. It possess the ability of endocytosis and is assumed to play a role in cell adhesion and migration. It has been also connected to several illnesses but more on the level of mRNA than on the protein expression level. More interestingly it is alternatively expressed in the form of a fusion protein with another single-pass type one transmembrane protein DEC205 (CD205) which is normally involved in antigen-uptake and endocytosis. The fusion protein has been assigned to have altered function compared to the wild type proteins. We have performed NMR structural analysis of the 16.2 kDa extracellular domain of DCL-1 to get a better insight onto this molecule. We have been able to assign nearly 97 % of resonance frequencies for the (15)N and (13)C labeled recombinant protein. The assignments have been deposited into Biological Magnetic Resonance Data Bank under the accession number 25802.


Assuntos
Espaço Extracelular , Lectinas Tipo C/química , Ressonância Magnética Nuclear Biomolecular , Receptores de Superfície Celular/química , Humanos , Domínios Proteicos , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA