Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Appl Clin Genet ; 17: 133-141, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39347515

RESUMO

Introduction: Inborn errors of immunity (IEI) are disorders that present a health issue, especially in developing countries where there is a high rate of consanguineous marriages and an increasing rate of diagnosis. One of these disorders is Bare Lymphocyte Syndrome II (BLS II) which is a rare and genetically complex disease that has high morbidity and mortality. The exact genotypic and phenotypic characteristics are still poorly characterized especially in developing countries. Case Presentation: Here, we report the first case of BLS II in a seven-month-old Sudanese female with recurrent chest infections, dermatitis, persistent diarrhea, and failure to thrive. The patient's all four sisters and three paternal uncles died in early infancy. Laboratory investigations revealed low CD3+, CD4+, and CD8+ lymphocytes, along with normal CD19+ and CD16+ lymphocytes, and low serum IgM and IgA levels. Genetic analysis revealed two CIITA variants; c.2296C >G p. (Pro766Ala) and c.439+1G >A. Conclusion: Further bioinformatics, immunological and clinical workups supported a pathogenic effect of both mutations affecting the function of CIITA protein, and suggesting a compound heterozygote mutation. The patient was started on prophylactic antibiotics and regular intravenous immunoglobulin replacement therapy. The prognosis of this disease is poor in most of the cases, with only a few reported cases surviving until adulthood.

2.
Metabolism ; : 156036, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39342987

RESUMO

Nonalcoholic steatohepatitis (NASH) is a primary cause of liver cirrhosis and hepatocellular carcinoma, presenting a significant and unmet medical challenge. The necessity to investigate the molecular mechanisms underlying NASH is highlighted by the observed decrease in programmed cell death 4 (PDCD4) expression in NASH patients, suggesting that PDCD4 may play a protective role in maintaining liver health. In this study, we identify PDCD4 as a natural inhibitor of NASH development in mice. The absence of PDCD4 leads to the spontaneous progression of NASH. Notably, PDCD4-deficient hepatocytes display elevated major histocompatibility complex class II (MHCII) expression due to CIITA activation, indicating that PCDC4 prevents the abnormal transformation of hepatocytes into antigen-presenting cells (APCs). Cell co-culture experiments reveal that hepatocytes lacking PDCD4, which resemble APCs, can directly activate CD4+ T cells by presenting multiple peptides, resulting in the release of inflammatory factors. Additionally, both cellular and animal studies show that CIITA promotes lipid accumulation in hepatocytes and exacerbates NASH progression. In summary, our findings reveal a novel role of PDCD4 in regulating CIITA and MHCII expression during NASH development, offering new therapeutic approaches for NASH treatment.

3.
Fish Shellfish Immunol ; 153: 109857, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39182707

RESUMO

The major histocompatibility complex class II (MHCII) molecules are crucial elements of the adaptive immune system, essential for orchestrating immune responses against foreign pathogens. However, excessive expression of MHCII can disrupt normal physiological functions. Therefore, the host employs various mechanisms to regulate MHCII expression and maintain immune homeostasis. Despite this importance, limited studies have explored the negative regulation of MHCII transcription in bony fish. In this study, we found that interferon h (IFNh), a subtype of type I IFN in sea perch Lateolabrax japonicus, could inhibit the activation of IFNγ induced-MHCII expression by modulating the transcription of the class II major histocompatibility complex transactivator (CIITA). Transcriptome analysis revealed 57 up-regulated and 69 down-regulated genes in cells treated with both IFNγ and IFNh compared to those treated with IFNγ alone. To maintain cellular homeostasis, interferon regulatory factor 9 (IRF9) was up-regulated following IFNγ stimulation, thereby preventing MHCII overexpression. Mechanistically, IRF9 bound to the CIITA promoter and suppressed its expression activated by IRF1. Furthermore, IRF9 inhibited the promoter activity of both MHCII-α and MHCII-ß induced by CIITA. Our findings highlight the roles of IFNh and IRF9 as suppressors regulating MHCII expression at different hierarchical levels. This study provides insights into the intricate regulation of antigen presentation and the foundation for further exploration of the interaction mechanisms between aquatic virus and fish.


Assuntos
Proteínas de Peixes , Interferon gama , Animais , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Interferon gama/genética , Interferon gama/imunologia , Regulação da Expressão Gênica/imunologia , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/genética , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/imunologia , Imunidade Inata/genética , Perfilação da Expressão Gênica/veterinária , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Proteínas Nucleares , Transativadores
4.
Front Immunol ; 15: 1426620, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39035010

RESUMO

The nucleotide-binding and oligomerization domain-like receptors (NLRs) NLR family CARD domain-containing protein 5 (NLRC5) and Class II Major Histocompatibility Complex Transactivator (CIITA) are transcriptional regulators of major histocompatibility complex (MHC) class I and class II genes, respectively. MHC molecules are central players in our immune system, allowing the detection of hazardous 'non-self' antigens and, thus, the recognition and elimination of infected or transformed cells from the organism. Recently, CIITA and NLRC5 have emerged as regulators of selected genes of the butyrophilin (BTN) family that interestingly are located in the extended MHC locus. BTNs are transmembrane proteins exhibiting structural similarities to B7 family co-modulatory molecules. The family member BTN2A2, which indeed contributes to the control of T cell activation, was found to be transcriptionally regulated by CIITA. NLRC5 emerged instead as an important regulator of the BTN3A1, BTN3A2, and BTN3A3 genes. Together with BTN2A1, BTN3As regulate non-conventional Vγ9Vδ2 T cell responses triggered by selected metabolites of microbial origin or accumulating in hematologic cancer cells. Even if endogenous metabolites conform to the canonical definition of 'self', metabolically abnormal cells can represent a danger for the organism and should be recognized and controlled by immune system cells. Collectively, new data on the role of NLRC5 in the expression of BTN3As link the mechanisms regulating canonical 'non-self' presentation and those marking cells with abnormal metabolic configurations for immune recognition, an evolutionary parallel that we discuss in this perspective review.


Assuntos
Butirofilinas , Peptídeos e Proteínas de Sinalização Intracelular , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Butirofilinas/metabolismo , Butirofilinas/genética , Butirofilinas/imunologia , Animais , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Transativadores/genética , Transativadores/metabolismo , Regulação da Expressão Gênica , Ativação Linfocitária/imunologia , Antígenos CD
7.
Front Immunol ; 15: 1387835, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39035008

RESUMO

Oral Squamous Cell Carcinoma (OSCC) is the most common malignant tumor of the oral cavity. Despite recent advances in the field of oral cancer therapy, including the introduction of immunotherapeutic approaches, the 5-year survival rate remains steadily assessed around 50%. Thus, there is an urgent need for new therapeutic strategies. After the characterization of the immune phenotype of three human OSCC cell lines (CAL-27, SCC-25, and SCC-4) and one mouse OSCC cell line (MOC2) showing their similarities to resected patient tumors, we explored for the first time an experimental preclinical model of therapeutic vaccination with mouse OSCC MOC2 cell line stably expressing MHC class II antigens after CIITA gene transfection (MOC2-CIITA). Mice injected with MOC2-CIITA reject or strongly retard tumor growth; more importantly, vaccinated animals that fully reject MOC2-CIITA tumors display anti-tumor immunological memory protective against challenge with parental MOC2 tumor cells. Further experiments of adoptive cell transfer or in vivo cell depletion show that both CD4+ and CD8+ T lymphocytes prove fundamental in tumor rejection. This unprecedented approach for oral cancer opens the way for possible future translation of novel immunotherapeutic strategies to the human setting for the treatment of this tumor.


Assuntos
Vacinas Anticâncer , Carcinoma de Células Escamosas , Neoplasias Bucais , Animais , Neoplasias Bucais/imunologia , Neoplasias Bucais/terapia , Camundongos , Humanos , Linhagem Celular Tumoral , Vacinas Anticâncer/imunologia , Carcinoma de Células Escamosas/imunologia , Carcinoma de Células Escamosas/terapia , Linfócitos T Auxiliares-Indutores/imunologia , Vacinação , Transativadores/genética , Transativadores/imunologia , Feminino , Memória Imunológica , Linfócitos T CD4-Positivos/imunologia , Proteínas Nucleares
8.
J Diabetes Metab Disord ; 23(1): 1151-1162, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38932894

RESUMO

Background: Type I diabetes mellitus (T1DM) is a significant health challenge, especially for children, owing to its chronic autoimmune nature. Although the exact etiology of T1DM remains elusive, the interplay of genetic predisposition, immune responses, and environmental factors are postulated. Genetic factors control immune reactivity against ß-cells. Given the pivotal roles of CIITA and CLEC2D genes in modulating a variety of immune pathologies, we hypothesized that genetic variations in CIITA and CLEC2D genes may impact T1DM disease predisposition. This study was designed to explore the association between gene polymorphisms in CIITA (rs8048002) and CLEC2D (rs2114870) and type 1 diabetes (T1DM), with a focus on analyzing the functional consequence of those gene variants. Methods: The study enlisted 178 healthy controls and 148 individuals with type 1 diabetes (T1DM) from Suez Canal University Hospital. Genotyping for CIITA and CLEC2D was done using allelic-discrimination polymerase chain reaction (PCR). Levels of glycated hemoglobin (HbA1c) and lipid profiles were determined through automated analyzer, while fasting blood glucose and insulin serum levels were measured using the enzyme-linked immunosorbent assay (ELISA) technique. RegulomeDB was used to examine the regulatory functions of CIITA (rs8048002) and CLEC2D (rs2114870) gene variants. Results: Analysis of the genotype distribution of the CIITA rs8048002 polymorphism revealed a significantly higher prevalence of the rare C allele in T1DM patients compared to the control group (OR = 1.77; P = 0.001). Both the CIITA rs8048002 heterozygote TC genotype (OR = 1.93; P = 0.005) and the rare homozygote CC genotype (OR = 3.62; P = 0.006) were significantly more frequent in children with T1DM when compared to the control group. Conversely, the rare A allele of CLEC2D rs2114870 was found to be significantly less frequent in T1DM children relative to the control group (OR = 0.58; P = 0.002). The heterozygote GA genotype (OR = 0.61; P = 0.033) and the rare homozygote AA genotype (OR = 0.25; P = 0.004) were also significantly less frequent in T1DM patients compared to the control group. Both CIITA (rs8048002) and CLEC2D (rs2114870) gene variants were predicted to have regulatory functions, indicated by a RegulomeDB score of (1f) for each. Conclusion: The rare C allele of CIITA rs8048002 genetic variant was associated with an increased risk of developing T1DM, while the less common A allele of CLEC2D rs2114870 was associated with a reduced risk of T1DM. Supplementary Information: The online version contains supplementary material available at 10.1007/s40200-024-01402-w.

9.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731828

RESUMO

HLA-DR-positive NK cells, found in both healthy individuals and patients with different inflammatory diseases, are characterized as activated cells. However, data on their capacity for IFNγ production or cytotoxic response vary between studies. Thus, more precise investigation is needed of the mechanisms related to the induction of HLA-DR expression in NK cells, their associations with NK cell differentiation stage, and functional or metabolic state. In this work, HLA-DR-expressing NK cell subsets were investigated using transcriptomic analysis, metabolic activity assays, and analysis of intercellular signaling cascades. We demonstrated that HLA-DR+CD56bright NK cells were characterized by a proliferative phenotype, while HLA-DR+CD56dim NK cells exhibited features of adaptive cells and loss of inhibitory receptors with increased expression of MHC class II trans-activator CIITA. The activated state of HLA-DR-expressing NK cells was confirmed by higher levels of ATP and mitochondrial mass observed in this subset compared to HLA-DR- cells, both ex vivo and after stimulation in culture. We showed that HLA-DR expression in NK cells in vitro can be induced both through stimulation by exogenous IL-2 and IL-21, as well as through auto-stimulation by NK-cell-produced IFNγ. At the intracellular level, HLA-DR expression depended on the activation of STAT3- and ERK1/2-mediated pathways, with subsequent activation of isoform 3 of the transcription factor CIITA. The obtained results broaden the knowledge about HLA-DR-positive NK cell appearance, diversity, and functions, which might be useful in terms of understanding the role of this subset in innate immunity and assessing their possible implications in NK cell-based therapy.


Assuntos
Diferenciação Celular , Antígenos HLA-DR , Interferon gama , Células Matadoras Naturais , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/imunologia , Humanos , Antígenos HLA-DR/metabolismo , Antígenos HLA-DR/genética , Interferon gama/metabolismo , Antígeno CD56/metabolismo , Ativação Linfocitária/imunologia , Interleucina-2/metabolismo , Interleucina-2/farmacologia , Células Cultivadas , Proteínas Nucleares , Transativadores
10.
J Cell Sci ; 137(10)2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38682259

RESUMO

SARS-CoV-2 interferes with antigen presentation by downregulating major histocompatibility complex (MHC) II on antigen-presenting cells, but the mechanism mediating this process is unelucidated. Herein, analysis of protein and gene expression in human antigen-presenting cells reveals that MHC II is downregulated by the SARS-CoV-2 main protease, NSP5. This suppression of MHC II expression occurs via decreased expression of the MHC II regulatory protein CIITA. CIITA downregulation is independent of the proteolytic activity of NSP5, and rather, NSP5 delivers HDAC2 to the transcription factor IRF3 at an IRF-binding site within the CIITA promoter. Here, HDAC2 deacetylates and inactivates the CIITA promoter. This loss of CIITA expression prevents further expression of MHC II, with this suppression alleviated by ectopic expression of CIITA or knockdown of HDAC2. These results identify a mechanism by which SARS-CoV-2 limits MHC II expression, thereby delaying or weakening the subsequent adaptive immune response.


Assuntos
Antígenos de Histocompatibilidade Classe II , Histona Desacetilase 2 , Proteínas Nucleares , Regiões Promotoras Genéticas , SARS-CoV-2 , Transativadores , Humanos , Apresentação de Antígeno/genética , Células Apresentadoras de Antígenos/metabolismo , Células Apresentadoras de Antígenos/imunologia , COVID-19/virologia , COVID-19/imunologia , COVID-19/genética , COVID-19/metabolismo , Cisteína Endopeptidases/metabolismo , Cisteína Endopeptidases/genética , Regulação para Baixo/genética , Células HEK293 , Antígenos de Histocompatibilidade Classe II/metabolismo , Antígenos de Histocompatibilidade Classe II/genética , Histona Desacetilase 2/metabolismo , Histona Desacetilase 2/genética , Fator Regulador 3 de Interferon/metabolismo , Fator Regulador 3 de Interferon/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Regiões Promotoras Genéticas/genética , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/imunologia , Transativadores/metabolismo , Transativadores/genética , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/genética
11.
Toxics ; 12(4)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38668515

RESUMO

The capacity of particulate matter (PM) to enhance and stimulate the expression of pro-inflammatory mediators has been previously demonstrated in non-antigen-presenting cells (human bronchial epithelia). Nonetheless, many proposed mechanisms for this are extrapolated from known canonical molecular pathways. This work evaluates a possible mechanism for inflammatory exacerbation after exposure to PM2.5 (from Puerto Rico) and CuSO4, using human bronchial epithelial cells (BEAS-2B) as a model. The induction of CIITA, MHCII genes, and various pro-inflammatory mediators was investigated. Among these, the phosphorylation of STAT1 Y701 was significantly induced after 4 h of PM2.5 exposure, concurrent with a slight increase in CIITA and HLA-DRα mRNA levels. INFγ mRNA levels remained low amidst exposure time, while IL-6 levels significantly increased at earlier times. IL-8 remained low, as expected from attenuation by IL-6 in the known INFγ-independent inflammation pathway. The effects of CuSO4 showed an increase in HLA-DRα expression after 8 h, an increase in STAT1 at 1 h, and RF1 at 8 h We hypothesize and show evidence that an inflammatory response due to PM2.5 extract exposure in human bronchial epithelia can be induced early via an alternate non-canonical pathway in the absence of INFγ.

12.
Scand J Immunol ; 99(1): e13335, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38441205

RESUMO

Major histocompatibility complex class II (MHC-II) deficiency or bare lymphocyte syndrome (BLS) is a rare, early-onset, autosomal recessive, and life-threatening inborn error of immunity. We aimed to assess the demographic, clinical, laboratory, follow-up, and treatment characteristics of patients with MHC-II deficiency, together with their survival. We retrospectively investigated 21 patients with MHC-II deficiency. Female/male ratio was 1.63. The median age at diagnosis was 16.3 months (5 months-9.7 years). Nineteen patients (90.5%) had parental consanguinity. Pulmonary diseases (pneumonia, chronic lung disease) (81%), diarrhoea (47.6%), and candidiasis (28.6%) were common. Four (19%) had autoimmunity, two developed septic arthritis, and three (14%) developed bronchiectasis in the follow-up. Three patients (14%) had CMV viraemia, one with bilateral CMV retinitis. Eight (38.1%) had lymphocytopenia, and four (19%) had neutropenia. Serum IgM, IgA, and IgG levels were low in 18 (85.7%), 15 (71.4%), and 11 (52.4%) patients, respectively. CD4+ lymphocytopenia, a reversed CD4+/CD8+ ratio, and absent/low HLA-DR expressions were detected in 93.3%, 86.7%, and 100% of the patients, respectively. Haematopoietic stem cell transplantation (HSCT) was performed on nine patients, and four died of septicaemia and ARDS after HSCT. The present median age of patients survived is 14 years (1-31 years). Genetic analysis was performed in 10 patients. RFX5 homozygous gene defect was found in three patients (P1, P4 and P8), and RFXANK (P2 and P14) and RFXAP (P18 and P19) heterozygous gene defects were found in each two patients, respectively. This large cohort showed that BLS patients have severe combined immunodeficiency (SCID)-like clinical findings. Flow cytometric MHC-II expression study is crucial for the diagnosis, differential diagnosis with SCID, early haematopoietic stem cell transplantation (HSCT), and post-HSCT follow-up. Genetic studies are required first for matched family donor evaluation before HSCT and then for genetic counselling.


Assuntos
Infecções por Citomegalovirus , Linfopenia , Imunodeficiência Combinada Severa , Humanos , Feminino , Masculino , Adolescente , Turquia , Estudos Retrospectivos
13.
Mycoses ; 67(1): e13680, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38214420

RESUMO

CIITA, a member of NOD-like receptor (NLR) family, is the major MHC II trans-activator and mediator of Th1 immunity, but its function and interaction with NLRP3 have been little studied. We found activation of NLRP3 inflammasome, increased expression of CIITA, CBP, pSTAT1, STAT1, MHC II, IFN-γ and IFN-γ-inducible chemokines (CCL1 and CXCL8), and colocalisation of NLRP3 with CIITA in Malassezia folliculitis lesions, Malassezia globosa-infected HaCaT cells and mouse skin. CoIP with anti-CIITA or anti-NLRP3 antibody pulled down NLRP3 or both CIITA and ASC. NLRP3 silencing or knockout caused CIITA downexpression and their colocalisation disappearance in HaCaT cells and mouse skin of Nlrp3-/- mice, while CIITA knockdown had no effect on NLRP3, ASC, IL-1ß and IL-18 expression. NLRP3 inflammasome inhibitors and knockdown significantly suppressed IFN-γ, CCL1, CXCL8 and CXCL10 levels in M. globosa-infected HaCaT cells. CCL1 and CXCL8 expression was elevated in Malassezia folliculitis lesions and reduced in Nlrp3-/- mice. These results demonstrate that M. globosa can activate NLRP3 inflammasome, CIITA/MHC II signalling and IFN-γ-inducible chemokines in human keratinocytes and mouse skin. NLRP3 may regulate CIITA by their binding and trigger Th1 immunity by secreting CCL1 and CXCL8/IL-8, contributing to the pathogenesis of Malassezia-associated skin diseases.


Assuntos
Quimiocinas C , Foliculite , Malassezia , Humanos , Camundongos , Animais , Interferon gama , Interferons , Antígenos de Histocompatibilidade Classe II/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Inflamassomos , Regiões Promotoras Genéticas , Transativadores/genética , Transativadores/metabolismo , Quimiocinas/genética , Queratinócitos
14.
Cell Signal ; 115: 111031, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38168631

RESUMO

Tumor-associated macrophages (TAMs) mainly exhibit the characteristics of M2-type macrophages, and the regulation of TAM polarization is a new target for cancer therapy, among which lncRNAs are key regulatory molecules. This study aimed to explore the effects of lncRNA-HOXC-AS2 on non-small cell lung cancer (NSCLC) by regulating TAM polarization. THP-1 cells were used to differentiate into macrophages, and TAMs were obtained by coculture with A549 cells. The M1/M2 cell phenotype and HOXC-AS2 expression were detected, and A549-derived exosomes (A549-exo) were used to elucidate the effects of A549 on macrophage polarization and HOXC-AS2 expression. Then, by interfering with HOXC-AS2 or STAT1, the effects of HOXC-AS2 regulation of STAT1 on the TAM phenotype and STAT1/SOCS1 and STAT1/CIITA pathways were analyzed, and the proliferation and metastasis of NSCLC cells in the coculture system were also detected. Results showed that HOXC-AS2 expression in M2 macrophages and TAMs was significantly higher than that in M1 macrophages, and A549-exo promoted HOXC-AS2 expression and M2 polarization. Intervention HOXC-AS2 resulted in increased M1 marker expression, decreased M2 marker expression, and activation of STAT1/SOCS1 and STAT1/CIITA pathways in TAMs. In addition, HOXC-AS2 was mainly expressed in the cytoplasm of TAMs and could bind to STAT1. Further experiments confirmed that intervention HOXC-AS2 promoted the M1 polarization of TAMs by targeting STAT1 and weakened the promoting effects of TAMs on the proliferation and metastasis of NSCLC. In conclusion, HOXC-AS2 inhibited the activation of STAT1/SOCS1 and STAT1/CIITA pathways and promoted M2 polarization of TAMs by binding with STAT1, thus promoting NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , RNA Longo não Codificante , Humanos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias Pulmonares/metabolismo , Macrófagos Associados a Tumor/metabolismo , Macrófagos/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral , Proteína 1 Supressora da Sinalização de Citocina/genética , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Fator de Transcrição STAT1/metabolismo
15.
BMC Res Notes ; 16(1): 372, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38115045

RESUMO

OBJECTIVE: The class II transactivator (CIITA), encoded by the CIITA gene, controls expression of immune response regulators, which affect bone homeostasis. Previously, we investigated a functional CIITA polymorphism in elderly women. Women carrying the allele associated with lower CIITA levels displayed higher bone mineral density (BMD), but also higher bone loss. The present exploratory study in a rat model sought to investigate effects of differential expression of Ciita on bone structural integrity and strength. Two strains DA (normal-to-high expression) and DA.VRA4 (lower expression) underwent ovariectomy (OVX) or sham-surgery at ~ 14-weeks of age (DA OVX n = 8, sham n = 4; DA.VRA4 OVX n = 10, sham n = 2). After 16-weeks, femoral BMD and bone mineral content (BMC) were measured and morphometry and biomechanical testing performed. RESULTS: In DA.VRA4 rats, BMD/BMC, cross-sectional area and biomechanical properties were lower. Ciita expression was accompanied by OVX-induced changes to cross-sectional area and femoral shaft strength; DA rats had lower maximum load-to-fracture. Thus, while lower Ciita expression associated with lower bone mass, OVX induced changes to structural and mechanical bone properties were less pronounced. CONCLUSION: The data tentatively suggests association between Ciita expression and structural and mechanical bone properties, and a possible role in bone changes resulting from estrogen deficiency.


Assuntos
Densidade Óssea , Fraturas Ósseas , Ratos , Feminino , Animais , Humanos , Idoso , Osso e Ossos , Fêmur , Ovariectomia , Estradiol , Hormônios Esteroides Gonadais
16.
Int J Neurosci ; : 1-19, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37933915

RESUMO

PURPOSE: Inappropriate inflammatory responses within the nervous system (neuroinflammation) have been implicated in several neurological conditions. Class II transactivator (CIITA), a principal regulator of the major histocompatibility complex II (MHCII), is known to play essential roles in inflammation. Hence, CIITA and its interactors could be potentially involved in multiple neurological disorders. However, the molecular mechanisms underlying CIITA-mediated neuroinflammation (NI) are yet to be understood. MATERIALS AND METHODS: In this regard, we analyzed the potential involvement of CIITA and its interactome in the regulation of neuroinflammation. In the present study, using various computational tools, we aimed (1) to identify NI-related proteins, (2) to filter the critical interactors in the CIITA-NI network, and (3) to analyze the protein-disease interactions and the associated molecular pathways through which CIITA could influence neuroinflammation. RESULTS: CIITA was found to interact with P T GS2, GSK3B, and NR3C1 and may influence depressive disorders. Further, the IL4/IL13 pathway was found to be potentially underlying the CIITA-interactomemediated effects on neurological disorders. Moreover, CIITA was found to be connected to genes associated with depressive disorder through IL4, wherein CIITA was found to be potentially involved in depressive disorders through IL-4/IL-13 and hippo pathways. However, the present study is based on the existing data on protein interactomes and could be re-evaluated as newer interactions are discovered. Also, the functional mechanisms of CIITA's roles in neuroinflammation must be evaluated further. CONCLUSION: Notwithstanding these limitations, the results presented here, could form a basis for further experimental studies to assess CIITA as a potential therapeutic target in managing depression and other neuroinflammatory disorders.

17.
Front Pediatr ; 11: 1269396, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37842025

RESUMO

Background: Bare lymphocyte syndrome type II (BLS II) is a rare form of severe combined immunodeficiency caused by mutations in the CIITA gene, which regulates major histocompatibility complex class II (MHC II) expression. Objective: We report the case of a Saudi boy with a novel mutation in the CIITA gene who presented with acute and late meningoencephalomyelitis, resulting in severe neurodevelopmental regression. Methods: We reviewed the patient's clinical and laboratory data obtained from medical records and performed a literature search on BLS II. Results: The patient presented with acute meningoencephalomyelitis confirmed by MRI findings and was later found to carry a homozygous pathogenic variant in the CIITA gene p.(Leu473Hisfs*15). The patient had no MCH II expression, confirming the genetic diagnosis of autosomal recessive BLS II. Surprisingly, the patient's prior clinical history was unremarkable for significant infections or autoimmunity. Conclusions: We report a case with a novel CIITA gene mutation presenting atypically with a late and isolated severe infection. Isolated severe meningoencephalomyelitis may be a manifestation of primary immunodeficiency.

18.
Biomed J ; 46(5): 100631, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37467968

RESUMO

Human nucleotide-binding oligomerization domain (NOD)-like receptors (NLR) include a large family of proteins that have important functions in basic physio-pathological processes like inflammation, cell death and regulation of transcription of key molecules for the homeostasis of the immune system. They are all characterized by a common backbone structure (the STAND ATPase module consisting in a nucleotide-binding domain (NBD), an helical domain 1 (HD1) and a winged helix domain (WHD), used by both prokaryotes and eukaryotes as defense mechanism. In this review, we will focus on the MHC class II transactivator (CIITA), the master regulator of MHC class II (MHC-II) gene expression and the founding member of NLR. Although a consistent part of the described NLR family components is often recalled as innate or intrinsic immune sensors, CIITA in fact occupies a special place as a unique example of regulator of both intrinsic and adaptive immunity. The description of the discovery of CIITA and the genetic and molecular characterization of its expression will be followed by the most recent studies that have unveiled this dual role of CIITA, key molecule in intrinsic immunity as restriction factor for human retroviruses and precious tool to induce the expression of MHC-II molecules in cancer cells, rendering them potent surrogate antigen presenting cells (APC) for their own tumor antigens.


Assuntos
Neoplasias , Transativadores , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Imunoterapia , Nucleotídeos , Neoplasias/terapia
19.
Front Oncol ; 13: 1145753, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37427112

RESUMO

In order to develop an N6-methyladenosine-related gene prognostic index (m6A-GPI) that can predict the prognosis in colorectal cancer (CRC), we obtained m6A-related differentially expressed genes (DEGs) based on The Cancer Genome Atlas (TCGA) and m6Avar database, seven genes were screened by weighted gene co-expression network analysis (WGCNA) and least absolute shrinkage and selection operator (LASSO) analysis. Then, m6A-GPI was constructed based on the risk score. Survival analysis indicated that patients in the lower m6A-GPI group have more prolonged disease-free survival (DFS), and different clinical characteristic groups (tumor site and stage) also showed differential risk scores. In the analysis of the molecular characteristics, the risk score is positively associated with homologous recombination defects (HRD), copy number alterations (CNA), and the mRNA expression-based stemness index (mRNAsi). In addition, m6A-GPI also plays an essential role in tumor immune cell infiltration. The immune cell infiltration in the low m6A-GPI group is significantly higher in CRC. Moreover, we found that CIITA, one of the genes in m6A-GPI was up-regulated in CRC tissues based on real-time RT-PCR and Western blot. m6A-GPI is a promising prognostic biomarker that can be used to distinguish the prognosis of CRC patients in CRC.

20.
Proc Natl Acad Sci U S A ; 120(24): e2218955120, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37279268

RESUMO

Major histocompatibility complex (MHC) class I and II molecules play critical roles in the activation and regulation of adaptive immunity through antigen presentation to CD8+ and CD4+ T cells, respectively. Strict regulation of MHC expression is critical for proper immune responses. CIITA (MHC class II transactivator), an NLR (nucleotide-binding domain, leucine-rich-repeat containing) protein, is a master regulator of MHC class II (MHC-II) gene transcription. Although it has been known that CIITA activity is regulated at the transcriptional and protein levels, the mechanism to determine CIITA protein level has not been elucidated. Here, we show that FBXO11 is a bona fide E3 ligase of CIITA and regulates CIITA protein level through ubiquitination-mediated degradation. A nonbiased proteomic approach for CIITA-binding protein identified FBXO11, a member of the Skp1-Cullin-1-F-box E3 ligase complex, as a binding partner of CIITA but not MHC class I transactivator, NLRC5. The cycloheximide chase assay showed that the half-life of CIITA is mainly regulated by FBXO11 via the ubiquitin-proteasome system. The expression of FBXO11 led to the reduced MHC-II at the promoter activity level, transcriptional level, and surface expression level through downregulation of CIITA. Moreover, human and mouse FBXO11-deficient cells display increased levels of MHC-II and related genes. In normal and cancer tissues, FBXO11 expression level is negatively correlated with MHC-II. Interestingly, the expression of FBXO11, along with CIITA, is associated with prognosis of cancer patients. Therefore, FBXO11 is a critical regulator to determine the level of MHC-II, and its expression may serve as a biomarker for cancer.


Assuntos
Proteínas F-Box , Neoplasias , Animais , Humanos , Camundongos , Proteínas F-Box/genética , Genes MHC da Classe II , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/metabolismo , Antígenos HLA , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias/genética , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Proteômica , Transativadores/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA