Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.221
Filtrar
1.
Curr Nutr Rep ; 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39227555

RESUMO

PURPOSE OF REVIEW: Ischemic stroke is the second deadly disease worldwide, but current treatment is very limited. The brain, rich in lipids and high in oxygen consumption, is susceptible to damage from oxidative stress after ischemic stroke. Thus, antioxidants are promising neuroprotective agents for treatment and prevention of ischemic stroke. Coenzyme Q10 is the only lipophilic antioxidant that can be synthesized de novo by cells and plays a key role as an electron carrier in the oxidative phosphorylation of the mitochondrial electron transport chain. However, the reduced form of coenzyme Q10 (Ubiquinol) levels are significantly deficient in the brain. The aim of this article is to review the therapeutic effects and mechanisms of coenzyme Q10 in ischemic stroke. RECENT FINDINGS: Current studies have found that coenzyme Q10 protects and treats ischemic stroke through multiple mechanisms based on the evidence from in vitro experiments, in vivo experiments, and clinical observations. For the first time, we reviewed the neuroprotective effects of coenzyme Q10 in ischemic stroke. Coenzyme Q10 exerts neuroprotective effects after ischemic stroke through anti-oxidative stress, anti-nitrosative stress, anti-inflammation, and anti-cell death. Here, we provided the evidence on the therapeutic and preventive effects of coenzyme Q10 in ischemic stroke and suggested the potential value of coenzyme Q10 as a medication candidate.

2.
Nutr Res ; 129: 55-67, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39217889

RESUMO

Peripheral nerve injuries (PNIs) are prevalent conditions mainly resulting from systemic causes, including autoimmune diseases and diabetes mellitus, or local causes, for example, chemical injury and perioperative nerve injury, which can cause a varying level of neurosensory disturbances (NSDs). Coenzyme Q10 (CoQ10) is an essential regulator of mitochondrial respiration and oxidative metabolism. Here, we review the pathophysiology of NSDs caused by PNIs, the current understanding of CoQ10's bioactivities, and its potential therapeutic roles in nerve regeneration, based on evidence from experimental and clinical studies involving CoQ10 supplementation. In summary, CoQ10 supplementation shows promise as a neuroprotective agent, potentially enhancing treatment efficacy for NSDs by reducing oxidative stress and inflammation. Future studies should focus on well-designed clinical trials with large sample sizes, using CoQ10 formulations with proven bioavailability and varying treatment duration, to further elucidate its neuroprotective effects and to optimize nerve regeneration in PNIs-induced NSDs.

3.
Biol Pharm Bull ; 47(8): 1415-1421, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39111843

RESUMO

The efficacy of mesenchymal stem cell (MSC) transplantation has been reported for various diseases. We previously developed a drug delivery system targeting mitochondria (MITO-Porter) by using a microfluidic device to encapsulate Coenzyme Q10 (CoQ10) on a large scale. The current study aimed to confirm if treatment with CoQ10 encapsulated by MITO-Porter enhanced mitochondrial functions in MSCs, with the potential to improve MSC transplantation therapy. We used highly purified human bone marrow-derived MSCs, described as rapidly expanding clones (RECs), and attempted to control and increase the amount of CoQ10 encapsulated in the MITO-Porter using microfluidic device system. We treated these RECs with CoQ10 encapsulated MITO-Porter, and evaluated its cellular uptake, co-localization with mitochondria, changes in mitochondrial respiratory capacity, and cellular toxicity. There was no significant change in mitochondrial respiratory capacity following treatment with the previous CoQ10 encapsulated MITO-Porter; however, mitochondrial respiratory capacity in RECs was significantly increased by treatment with CoQ10-rich MITO-Porter. Utilization of a microfluidic device enabled the amount of CoQ10 encapsulated in MITO-Porter to be controlled, and treatment with CoQ10-rich MITO-Porter successfully activated mitochondrial functions in MSCs. The MITO-Porter system thus provides a promising tool to improve MSC cell transplantation therapy.


Assuntos
Células-Tronco Mesenquimais , Mitocôndrias , Ubiquinona , Ubiquinona/análogos & derivados , Ubiquinona/administração & dosagem , Ubiquinona/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Células Cultivadas , Dispositivos Lab-On-A-Chip
4.
Ann Med ; 56(1): 2389469, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39129455

RESUMO

BACKGROUND: To quantitatively evaluate the effect of coenzyme Q10 (CoQ10) pretreatment on outcomes of IVF or ICSI in women with diminished ovarian reserve (DOR) based on the existing randomized controlled trials (RCTs). METHODS: Nine databases were comprehensively searched from database inception to November 01, 2023, to identify eligible RCTs. Reproductive outcomes of interest consisted of three primary outcomes and six secondary outcomes. The sensitivity analysis was adopted to verify the robustness of pooled results. RESULTS: There were six RCTs in total, which collectively involved 1529 participants with DOR receiving infertility treatment with IVF/ICSI. The review of available evidence suggested that CoQ10 pretreatment was significantly correlated with elevated clinical pregnancy rate (OR = 1.84, 95%CI [1.33, 2.53], p = 0.0002), number of optimal embryos (OR = 0.59, 95%CI [0.21, 0.96], p = 0.002), number of oocytes retrieved (MD = 1.30, 95%CI [1.21, 1.40], p < 0.00001), and E2 levels on the day of hCG (SMD = 0.37, 95%CI [0.07, 0.66], p = 0.01), along with a reduction in cycle cancellation rate (OR = 0.60, 95%CI [0.44, 0.83], p = 0.002), miscarriage rate (OR = 0.38, 95%CI [0.15, 0.98], p = 0.05), total days of Gn applied (MD = -0.89, 95%CI [-1.37, -0.41], p = 0.0003), and total dose of Gn used (MD = -330.44, 95%CI [-373.93, -286.96], p < 0.00001). The sensitivity analysis indicated that our pooled results were robust. CONCLUSIONS: These findings suggested that CoQ10 pretreatment is an effective intervention in improving IVF/ICSI outcomes for women with DOR. Still, this meta-analysis included relatively limited sample sizes with poor descriptions of their methodologies. Rigorously conducted trials are needed in the future.


Assuntos
Fertilização in vitro , Reserva Ovariana , Taxa de Gravidez , Ensaios Clínicos Controlados Aleatórios como Assunto , Injeções de Esperma Intracitoplásmicas , Ubiquinona , Humanos , Ubiquinona/análogos & derivados , Ubiquinona/uso terapêutico , Ubiquinona/administração & dosagem , Ubiquinona/farmacologia , Feminino , Reserva Ovariana/efeitos dos fármacos , Gravidez , Injeções de Esperma Intracitoplásmicas/métodos , Fertilização in vitro/métodos , Infertilidade Feminina/terapia , Infertilidade Feminina/tratamento farmacológico , Adulto , Indução da Ovulação/métodos
5.
Clin Oral Investig ; 28(9): 486, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39145807

RESUMO

OBJECTIVES: To evaluate the effects of coenzyme Q10 (CoQ10) on alveolar bone remodeling and orthodontic tooth movement (OTM). MATERIALS AND METHODS: An orthodontic appliance was placed in 42 female Sprague‒Dawley rats were divided into two groups: the orthodontic force (OF) group (n = 21) and the OF + CoQ10 (CoQ10) treatment group (n = 21). Each group was divided into 3 subgroups, and the rats were sacrificed on days 3, 7 and 14. The rats in CoQ10 and OF groups were administered 100 mg/kg b.w./day CoQ10 (in 1 mL/b.w. soybean oil) and 1 mL b.w./day soybean oil, respectively, by orogastric gavage. The OTM was measured at the end of the experiment. The osteoclast, osteoblast and capillary numbers; vascular endothelial growth factor (VEGF), receptor activator nuclear kappa B ligand (RANKL) and osteoprotegrin (OPG) levels in tissue; and total antioxidant status (TAS) and total oxidant status (TOS) in blood were determined. RESULTS: Compared with the OF group, the CoQ10 treatment group exhibited decreased orthodontic tooth movement and osteoclast and capillary numbers. Indeed, the levels of VEGF and RANKL decreased, while the levels of OPG increased except on day 7. Additionally, the CoQ10 treatment group exhibited lower TOS and higher TAS on days 7 and 14 (p < 0.05). Histological findings showed that the morphology of osteoblasts changed in the CoQ10 group; however, there was no significant difference in the number of osteoblasts between the groups (p > 0.05). CONCLUSION: Due to its effect on oxidative stress and inflammation, CoQ10 regulates bone remodeling by inhibiting osteoclast differentiation, promoting osteoblast differentiation and reducing the amount of OTM. CLINICAL RELEVANCE: Considering that OTM may be slowed with the use of CoQ10, topics such as orthodontic treatment duration, orthodontic force activation and appointment frequency should be considered in treatment planning. It is predicted that the use of CoQ10 will support the effectiveness of treatment in clinical applications such as preventing relapse in orthodontic treatment by regulating bone modulation and anchorage methods that suppress/optimize unwanted tooth movement.


Assuntos
Remodelação Óssea , Ratos Sprague-Dawley , Técnicas de Movimentação Dentária , Ubiquinona , Ubiquinona/análogos & derivados , Ubiquinona/farmacologia , Animais , Ratos , Feminino , Remodelação Óssea/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ligante RANK/metabolismo , Processo Alveolar/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Antioxidantes/farmacologia
6.
Int J Mol Sci ; 25(15)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39125641

RESUMO

Age-related macular degeneration (AMD) and diabetic retinopathy (DR) are common retinal diseases responsible for most blindness in working-age and elderly populations. Oxidative stress and mitochondrial dysfunction play roles in these pathogenesis, and new therapies counteracting these contributors could be of great interest. Some molecules, like coenzyme Q10 (CoQ10), are considered beneficial to maintain mitochondrial homeostasis and contribute to the prevention of cellular apoptosis. We investigated the impact of adding CoQ10 (Q) to a nutritional antioxidant complex (Nutrof Total®; N) on the mitochondrial status and apoptosis in an in vitro hydrogen peroxide (H2O2)-induced oxidative stress model in human retinal pigment epithelium (RPE) cells. H2O2 significantly increased 8-OHdG levels (p < 0.05), caspase-3 (p < 0.0001) and TUNEL intensity (p < 0.01), and RANTES (p < 0.05), caspase-1 (p < 0.05), superoxide (p < 0.05), and DRP-1 (p < 0.05) levels, and also decreased IL1ß, SOD2, and CAT gene expression (p < 0.05) vs. control. Remarkably, Q showed a significant recovery in IL1ß gene expression, TUNEL, TNFα, caspase-1, and JC-1 (p < 0.05) vs. H2O2, and NQ showed a synergist effect in caspase-3 (p < 0.01), TUNEL (p < 0.0001), mtDNA, and DRP-1 (p < 0.05). Our results showed that CoQ10 supplementation is effective in restoring/preventing apoptosis and mitochondrial stress-related damage, suggesting that it could be a valid strategy in degenerative processes such as AMD or DR.


Assuntos
Apoptose , Peróxido de Hidrogênio , Estresse Oxidativo , Epitélio Pigmentado da Retina , Ubiquinona , Humanos , Ubiquinona/análogos & derivados , Ubiquinona/farmacologia , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Antioxidantes/farmacologia , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Linhagem Celular , Suplementos Nutricionais
7.
Antioxidants (Basel) ; 13(8)2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39199213

RESUMO

Coenzyme Q10 (CoQ) is a ubiquitous lipid with different biological functions. In blood, there is a close relationship between CoQ status and cholesterol, which strongly supports the study of both molecules simultaneously. The objective of this study was to evaluate plasma CoQ, lipoprotein concentrations and CoQ/Chol ratio in a cohort of paediatric patients with different types of dyslipidaemias. A total of 60 paediatric patients were recruited (age range: 7 months-18 years), including 52 with different types of hypercholesterolemia, 2 with isolated hypertriglyceridemia and 6 with hypobetalipoproteinemia. Plasma CoQ was analysed by HPLC with electrochemical detection, and lipoprotein and cholesterol concentrations by standard automated methods. The lowest CoQ values were detected in patients with hypobetalipoproteinemia and in two cases of liver cirrhosis. Mean CoQ values were significantly higher in hypercholesterolemic patients compared to controls (average values 1.07 µmol/L and 0.63 µmol/L) while the CoQ/cholesterol ratio did not show differences (170 vs. 163, respectively). Mean CoQ values were significantly lower in the group of patients with hypobetalipoproteinemia compared to controls (mean CoQ values of 0.22 µmol/L vs. 0.63 µmol/L, respectively), while those of CoQ/cholesterol did not show differences. Pearson's correlation test showed a positive correlation between the CoQ and cholesterol values (r = 0.565, p < 0.001) and between the CoQ and the LDL cholesterol values (r = 0.610, p < 0.001). Our results suggest that it is advisable to analyse plasma CoQ and cholesterol concentrations in patients with hypobetalipoproteinemia and hypercholesterolemia associated with liver damage.

8.
Int Immunopharmacol ; 141: 112941, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39191119

RESUMO

Increasing evidence has demonstrated that coenzyme Q10 (CoQ10) exhibits a range of biological properties. Herein, we explored the protective effect and potential molecular mechanism of CoQ10 on lipopolysaccharide (LPS)-induced acute lung injury (ALI). We found that medium (10 mg/kg) and high (50 mg/kg) doses of CoQ10 ameliorated LPS (50 µg/µL)-induced ALI to varying degrees, as demonstrated by reduced lung coefficient, lower wet/dry weight lung tissue ratio, decreased bronchoalveolar lavage fluid protein concentration, less anatomical and histopathological damage to the lung, and increased expression of proteins related to lung epithelial barrier structure. CoQ10 also alleviated LPS-induced oxidative stress and inflammation mediated by NOD-like receptor protein 3 (NLRP3) by reducing the reactive oxygen species (ROS), malondialdehyde, and mitochondrial ROS concentrations, increasing superoxide dismutase, glutathione, and catalase activity, and decreasing NLRP3 expression at the protein and mRNA levels. Moreover, CoQ10 alleviated structural and functional damage to the mitochondria, inhibited mitochondrial fission, and promoted mitochondrial fusion, mainly by inhibiting phosphorylation of dynamin-related protein 1 (Drp1) at Ser616 and Ser637. Correlation analysis revealed that mitochondrial fission (especially Drp1) was positively correlated with oxidative stress, NLRP3-mediated inflammation, and structural damage to the lung epithelial barrier. Molecular docking analysis showed that CoQ10 binds stably to Drp1, with a binding energy of -5.9 kcal/mol. Furthermore, the use of schaftoside (a Drp1 inhibitor) has further elucidated the mechanism of action of CoQ10. Together, these results suggest that CoQ10 alleviates LPS-induced ALI by regulating mitochondrial dynamics, attenuating oxidative stress, and decreasing NLRP3-medated inflammation, thereby promoting lung epithelial barrier structural remodeling.

9.
Artigo em Inglês | MEDLINE | ID: mdl-39108105

RESUMO

Antioxidants play a pivotal role in maintaining skin health and integrity, combating the deleterious effects of oxidative stress induced by environmental aggressors such as UV ra-diation, pollution, and lifestyle factors. This paper reviews the contributions of key antioxidants, including Vitamin C, Vitamin E, Vitamin A, green tea extract, Coenzyme Q10, Resveratrol, Selenium, and Polyphenols, in skin health care. Vitamin C, known for its collagen synthesis promotion and photoprotection properties, alongside Vitamin E, a lipid-soluble antioxidant, syn-ergistically works to neutralize free radicals and repair damaged skin cells. Vitamin A, in the form of retinol, plays a critical role in skin cell regeneration and the maintenance of skin integ-rity. Green tea extract, rich in Polyphenols, offers anti-inflammatory and anticarcinogenic prop-erties, making it a potent ingredient for skin protection. Coenzyme Q10, a naturally occurring antioxidant in the body, aids in energy production for cell repair and regeneration, while Resveratrol, found in grapes and berries, provides anti-ageing benefits by enhancing skin's re-sistance to oxidative stress. Selenium, an essential mineral, contributes to the protection of skin cells from oxidative damage. The incorporation of these antioxidants in skincare products and dietary sources is discussed, highlighting the importance of a holistic approach in skincare re-gimes. The paper emphasizes the synergy between topical applications and dietary intake of antioxidants, advocating for a comprehensive strategy for promoting skin health and preventing age-related skin alterations. Method: For the review article, a variety of search engines and databases were used to identify relevant articles. Furthermore, for biomedical literature focusing on antioxidants and their ef-fects on skin health, PubMed was used. Moreover, to access a wide range of scholarly articles, including those related to dermatology and skincare, Google Scholar was used. Scopus provides comprehensive coverage of peer-reviewed literature across various scientific disciplines. Web of Science identifies high-impact articles and research on antioxidants in skincare. In addition, for accessing full-text articles on antioxidants and their applications in dermatology, Science Direct was used. The inclusion criteria for the review paper were as follows: only studies pub-lished in peer-reviewed journals were included to ensure the credibility and reliability of the information. Articles published in English were considered, to avoid language-related biases and ensure comprehension. Studies published within the last 10 years were included to provide the most current insights into antioxidant research in skincare. Articles must specifically focus on the role of antioxidants (Vitamin C, Vitamin E, Vitamin A, green tea extract, Coenzyme Q10, Resveratrol, Selenium, Polyphenols) in skin health care. Both experimental studies (in vivo and in vitro) and clinical trials were included to provide a comprehensive overview of the antioxidant effects. Full-text articles were included to allow for thorough data extraction and analysis. The exclusion criteria for the review paper were as follows: Publications that were not peer-re-viewed, such as editorials, opinion pieces, and non-scholarly articles, were excluded. Articles published in languages other than English were excluded due to potential translation challenges and to maintain consistency. Studies that did not focus on the specified antioxidants or their impact on skin health were excluded. Duplicate publications were excluded to avoid redundancy in the review. Articles with insufficient or incomplete data were excluded to ensure the quality and reliability of the review findings.

10.
J Clin Aesthet Dermatol ; 17(8): 50-55, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39148958

RESUMO

Background: Coenzyme Q10 (CoQ10) is a naturally produced, lipid-soluble molecule crucial for cellular energy production and antioxidant activity. It diminishes with age and under external stress factors in skin, leading to signs of aging. Beyond its role in cellular energy production within the mitochondria, CoQ10 is vital to skin's defense against oxidative stress, a key contributor to premature aging. Use of topical skincare products with CoQ10 can be effective to replenish levels of CoQ10 and reverse skin aging. Objective: This publication discusses the role of CoQ10 in skin aging along with the benefits of topical skincare products that incorporate CoQ10 as an ingredient. Methods: We searched the PubMed database using terms "Coenzyme Q10" and "skin" and "aging." Overall, the search yielded 80 results, but a limitation of 10 years was then applied to restrict publications to those with the most up-to-date science. Results: A total of 36 publications were identified and included as background for this article. These 36 publications encompassed both original research articles and review articles. Discussion: Applying topical skincare products with CoQ10 replenishes CoQ10 cellular levels, helping to normalize cellular energy homeostasis and providing antioxidative effects to support and repair cutaneous damage including signs of skin aging. In ex vivo and in vivo studies, application of CoQ10 increased CoQ10 levels both on the skin surface (i.e., stratum corneum) and even more in deeper levels of the skin. Clinically, topical application of CoQ10-formulated products reduces the depth of cutaneous wrinkles, a sign associated with aging. Conclusion: Aging and stressed skin are, in part, the result of alterations in cellular metabolic homeostasis, which can be reversed via the benefits of topical application of CoQ10-enriched formulations that stimulate cutaneous energy metabolism and reduce free radicals via antioxidant function. By restoring physiological homeostasis, topical skincare products with CoQ10 replenish the skin's antioxidant levels, increase cellular (energy) metabolism, and reduce the signs of skin aging.

11.
Neurotoxicology ; 105: 21-33, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39209270

RESUMO

Deterioration in the neurocognitive function of cancer patients referred to as "Chemobrain" is a devastating obstacle associated with cyclophosphamide (CYP). CYP is an alkylating agent, clinically utilized as an efficient anticancer and immunosuppressant. Coenzyme Q10 (CoQ10) is a worthwhile micronutrient with diverse biological activities embracing antioxidant, anti-apoptotic, and neuroprotective effects. The current experiment was designed for investigating the neuroprotective capability of CoQ10 versus CYP-elicited chemobrain in rats besides elucidating the causal molecular mechanisms. Male Sprague Dawley rats received CoQ10 (10 mg/kg, orally, once daily, for 10 days) and/or a single dose of CYP (200 mg/kg i.p. on day 7). CoQ10 counteracted CYP-induced cognitive and motor dysfunction as demonstrated by the findings of neurobehavioral tests (passive avoidance, Y maze, locomotion, and rotarod tests). Histopathological analysis further affirmed the neuroprotective abilities of CoQ10. CoQ10 effectually diminished CYP-provoked oxidative injury by restoring the antioxidant activity of catalase (CAT) enzyme while reducing malondialdehyde (MDA) levels. Besides, CoQ10 efficiently repressed CYP-induced neuronal apoptosis by downregulating the expression of Bax and caspase-3 while upregulating the Bcl-2 expression. Moreover, CoQ10 hampered CYP-provoked upregulation in acetylcholinesterase (AChE) activity. Furthermore, CoQ10 considerably augmented hippocampal neurogenesis by elevating the expressions of brain-derived neurotrophic factor (BDNF) and Ki-67. These promising neuroprotective effects can be credited to upregulating Wnt/ß-catenin pathway as evidenced by the elevated expressions of Wnt-3a, ß-catenin, and Phoshpo-glycogen synthase kinase-3 ß (p-GSK-3ß). Collectively, these findings proved the neuroprotective capabilities of CoQ10 against CYP-induced chemobrain through combating oxidative injury, repressing intrinsic apoptosis, boosting neurogenesis, and eventually upregulating the Wnt/ß-catenin pathway.

12.
Adv Pharm Bull ; 14(2): 364-377, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39206395

RESUMO

Purpose: The objective of this study was to develop a nanoencapsulated platform for coenzyme Q10 nanoparticles (coQNPs) or selenium nanoparticles (SeNPs) and explore their potential therapeutic benefits in treating hyperlipidemia and combating simvastatin (SV)-induced myopathy and adverse reactions in hyperlipidemic rats. Methods: The physical and chemical properties of the solid nanoparticles, coQNPs, and SeNPs were characterized, including zeta potential studies. Male Wistar albino rats were treated with various interventions for 112 days, including a nano-vehicle only, high-fat diet (HFD), HFD with SV alone, or with coQNPs or/and SeNPs for the last 30 days. Results: The coQNPs and SeNPs exhibited uniform spherical shapes with high encapsulation efficiency (EE% 91.20±2.14 and 94.89±1.54, respectively). The results demonstrated that coQNPs and SeNPs effectively reduced hyperlipidemia, insulin resistance, SV-induced myopathy, and hepatotoxicity. However, combining SV with coQNPs and SeNPs resulted in severe liver and muscle damage. Treatment with SV and SeNPs or SV and coQNPs alone showed significant improvements compared to SV treatment alone. Conclusion: These findings suggest that the CoQNPs or SeNPs platforms offer advanced relief for hyperlipidemia and insulin resistance while limiting adverse effects such as myopathy and hepatotoxicity.

13.
Toxicol Res (Camb) ; 13(4): tfae131, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39165833

RESUMO

The relationship between amyloid beta (Aß) and oxidative stress (OS), both prominent factors in Alzheimer's disease-related neural degeneration, is deeply interconnected. The cleavage of the extracellular domain of Amyloid precursor protein (APP) and phosphorylating different substrates, respectively, the ß-site amyloid precursor protein cleaving enzyme-1 (BACE-1) and Glycogen synthase kinase-3-beta (GSK-3ß) enzymes initiate the synthesis of Aß, which causes cognitive deficits in AD. This study aimed to explore the protective potential of Coenzyme Q10 (CoQ10). It also sought to uncover any synergistic effects when combined with donepezil, an acetylcholinesterase inhibitor, in treating Alzheimer's disease in male albino rats, focusing on the modulation of the BACE-1/GSK-3ß pathway. The experiment involved 70 rats categorized into different groups: control, donepezil alone, CoQ10 alone, AD-model, donepezil co-treatment, CoQ10 co-treatment, and CoQ10 + donepezil combination. Various assessments, such as cholinesterase activity, oxidative stress, serum iron profile, Brain Derived Neurotrophic Factor (BDNF), Tau protein, ß-site amyloid precursor protein cleaving enzyme-1 (BACE-1), phosphatase and tensin homolog (Pten), and Glycogen synthase kinase-3-beta (GSK-3ß), were conducted on behavioral and biochemical aspects. CoQ10 treatment demonstrated memory improvement, enhanced locomotion, and increased neuronal differentiation, mainly through the inhibition of the dual BACE-1/GSK-3ß. These findings were substantiated by histological and immunohistological examinations of the hippocampus.

14.
Mol Biol Rep ; 51(1): 930, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39174728

RESUMO

BACKGROUND: Among the three most used anticancer drugs, cyclophosphamide, Adriamycin, and 5-Fluorouracil (CAF), the most significant outcome is chemobrain, caused by increased oxidative stress, inflammatory insult, and mitochondrial dysfunction. OBJECTIVE: In this study, endogenous antioxidant coenzyme Q10 (CoQ10) was evaluated for its neuroprotective effects in CICI. MATERIALS AND METHODS: The chemobrain was induced in Swiss albino female mice by administering CAF (40 + 4 + 25 mg/kg) intraperitoneal (i.p.) in three cycles (single injection per week) followed by treatment with CoQ10 (40 mg/kg; p.o.) for up to 3 weeks followed by behavioral, biochemical, molecular and histopathological analysis. RESULTS: Treatment with CoQ10 significantly improved cognition by improving exploring time in novel objects recognition test followed by increasing the time spent in the target quadrant in MWM test as compared to CAF-treated animals. Moreover, CoQ10 demonstrated antioxidant properties by reducing the expression of LPO while increasing levels of GSH, SOD, and catalase as compared to CAF-treated animals. While the levels of AChEs were significantly reduced after CoQ10 treatment in CAF-treated animals. In terms of its mechanism, it effectively counteracted the pro-inflammatory substances (TNF-α and IL-1ß) triggered by CAF while also enhancing the levels of anti-inflammatory markers (IL-10 and Nrf2). Moreover, CoQ10 showed mitochondrial enhancers and it improved the level of Complex (I, II, and IV). Besides that, mitochondrial morphological analysis was done by TEM, and neuronal morphology along with quantification analysis was performed by H&E staining using Image J software to confirm the neuroprotective effect of CoQ10 over CAF-induced cognitive impairment. CONCLUSION: This study suggests CoQ10 can protect the mitochondria by imposing antioxidant, and anti-inflammatory properties, which could be a potential therapy for CICI.


Assuntos
Antioxidantes , Estresse Oxidativo , Ubiquinona , Animais , Ubiquinona/análogos & derivados , Ubiquinona/farmacologia , Ubiquinona/uso terapêutico , Camundongos , Feminino , Antioxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Comprometimento Cognitivo Relacionado à Quimioterapia/tratamento farmacológico , Comprometimento Cognitivo Relacionado à Quimioterapia/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Doxorrubicina/efeitos adversos , Fluoruracila/efeitos adversos , Fluoruracila/farmacologia , Modelos Animais de Doenças , Antineoplásicos/farmacologia , Antineoplásicos/efeitos adversos , Ciclofosfamida/efeitos adversos , Ciclofosfamida/farmacologia
15.
J Biochem Mol Toxicol ; 38(9): e23817, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39177155

RESUMO

Heavy metal contamination is an alarming concern on a global scale, as drinking tainted water significantly increases human susceptibility to heavy metals. In a realistic scenario, humans are often exposed to a combination of harmful chemicals rather than a single toxicant. Phloretin (PHL), biochanin-A (BCA), and coenzyme Q10 (CoQ10) are bioactive compounds owning plentiful pharmacological properties. Henceforth, the current research explored the putative energizing effects of selected nutraceuticals in combined chromium (Cr) and arsenic (As) intoxicated Swiss albino mice. Potassium dichromate (75 ppm) and sodium meta-arsenite (100 ppm) were given in the drinking water to induce hepatotoxicity, conjugated with PHL and BCA (50 mg/kg each), and CoQ10 (10 mg/kg) intraperitoneally for 2 weeks. After the statistical evaluation, it was observed that the hepato-somatic index, metal load, and antioxidant activity (lipid peroxidation and protein carbonyl content) increased along with the concomitant decrease in the antioxidants (catalase, glutathione-S-transferase, superoxide dismutase, reduced glutathione, and total thiol) in the Cr and As intoxicated mice. Additionally, light microscopy observations, DNA breakages, decreased silent information regulator 1 (SIRT1), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), heme oxygenase (HO-1), and NAD(P)H quinone dehydrogenase 1 (NQO1) gene expressions, together with stimulated apoptotic cell death manifested by the increased expressions of caspase 8 and caspase 3, thus, proved consistency with the aforementioned outcomes. Importantly, the treatment with nutraceuticals not only restored the antioxidant activity but also favorably altered the expressions of SIRT1, Nrf2, HO-1, and NQO1 signaling and apoptosis markers. These findings highlight the crucial role of the PHL, BCA, and CoQ10 combination in reducing Cr and As-induced hepatotoxicity in mice. By averting the triggered apoptosis in conjunction with oxidative stress, this combination increases the SIRT1, Nrf2, HO-1, and NQO1 signaling, thereby reassuringly maintaining the cellular equilibrium.


Assuntos
Apoptose , Cromo , Genisteína , Fígado , NAD(P)H Desidrogenase (Quinona) , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Floretina , Transdução de Sinais , Sirtuína 1 , Ubiquinona , Animais , Sirtuína 1/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ubiquinona/análogos & derivados , Ubiquinona/farmacologia , Camundongos , NAD(P)H Desidrogenase (Quinona)/metabolismo , Genisteína/farmacologia , Apoptose/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Cromo/toxicidade , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Floretina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Masculino , Arsênio/toxicidade , Heme Oxigenase (Desciclizante)/metabolismo , Heme Oxigenase-1/metabolismo , Proteínas de Membrana
16.
Future Cardiol ; 20(4): 221-228, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-39049769

RESUMO

Aim: We aim to analyze past literature to evaluate the efficacy of coenzyme Q10 (CoQ-10) in the population with heart failure (HF). Methods: A systematic literature search was conducted through MEDLINE (via PubMed) and Cochrane Library. The outcomes analyzed were a reduction in HF-related mortality, an improvement in exercise capacity, and the left ventricular ejection fraction (LVEF). Results: Among 16 studies, CoQ-10 significantly reduced HF-related mortality by 40% and improved exercise capacity in patients with HF, but demonstrated no significant difference in LVEF however, the potential of its efficacy on LVEF could not be ruled out. Conclusion: CoQ-10 significantly enhances exercise capacity and reduces HF-related mortality; however, its impact on patients with reduced LVEF requires further investigation.


[Box: see text].


Assuntos
Insuficiência Cardíaca , Ubiquinona , Humanos , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/fisiopatologia , Ubiquinona/análogos & derivados , Ubiquinona/uso terapêutico , Ubiquinona/farmacologia , Volume Sistólico/fisiologia , Tolerância ao Exercício/fisiologia , Tolerância ao Exercício/efeitos dos fármacos , Função Ventricular Esquerda/fisiologia , Função Ventricular Esquerda/efeitos dos fármacos , Resultado do Tratamento
17.
Antioxidants (Basel) ; 13(7)2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-39061829

RESUMO

Researchers have studied the effects of exercise on serum methyl-arginine and vitamin D metabolites; however, the effects of exercise combined with antioxidants are not well documented. Since oxidative stress affects the metabolism of vitamin D and methyl-arginine, we hypothesised that the antioxidant coenzyme Q10 (CoQ10) might modulate exercise-induced changes. A group of twenty-eight healthy men participated in this study and were divided into two groups: an experimental group and a control group. The exercise test was performed until exhaustion, with gradually increasing intensity, before and after the 21-day CoQ10 supplementation. Blood samples were collected before, immediately after, and 3 and 24 h after exercise. CoQ10, vitamin D metabolites, asymmetric dimethylarginine (ADMA), symmetric dimethylarginine, methylarginine, dimethylamine, arginine, citrulline, and ornithine were analysed in serum samples. CoQ10 supplementation caused a 2.76-fold increase in the concentration of serum CoQ10. Conversely, the 25(OH)D3 concentration increased after exercise only in the placebo group. ADMA increased after exercise before supplementation, but a decrease was observed in the CoQ10 supplementation group 24 h after exercise. In conclusion, our data indicate that CoQ10 supplementation modifies the effects of exercise on vitamin D and methyl-arginine metabolism, suggesting its beneficial effects. These findings contribute to the understanding of how antioxidants like CoQ10 can modulate biochemical responses to exercise, potentially offering new insights for enhancing athletic performance and recovery.

18.
Clin Psychopharmacol Neurosci ; 22(3): 484-492, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39069688

RESUMO

Objective: This study provides histological evidence of the combined effects of L-Carnitine, and Coenzyme Q10 on gliosis and anhedonia in a rat model of multiple sclerosis (MS). Methods: Fifty male Sprague Dawley rats were randomly divided into 5 groups of 10 rats each. Group 1 was the control group. The rest of the groups were disease models and were given 0.2% cuprizone w/w to induce MS. After 4 weeks, Group 3 started receiving L-Carnitine, Group 4 was given Coenzyme Q10, and Group 5 received both, while cuprizone poisoning continued. After 12 weeks sucrose preference test and tail suspension test were performed for anhedonia. Rats were euthanized and brains were dissected, and assessed for astrocytes, oligodendrocytes, and microglial count. Results: A significant increase in oligodendrocyte count, while a reduction in astrocyte and microglial count was seen in the synergistic group (p < 0.05). Synergism could not be proved in anhedonia. Conclusion: The combination of Coenzyme Q10 and L-Carnitine has a synergistic effect in controlling gliosis in a rat model of MS, but synergism could not be demonstrated on anhedonia.

19.
F S Sci ; 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004304

RESUMO

OBJECTIVE: To evaluate the impact of coenzyme Q-10 (CoQ-10) on the dysregulated synthesis of extracellular matrix proteins mediated by transforming growth factor beta 3 (TGF-ß3) in uterine leiomyomas. DESIGN: Laboratory study. SETTING: University. PATIENTS: None. INTERVENTIONS: Treatment of immortalized uterine myometrial and leiomyoma cells to TGF-ß3 and CoQ-10. MAIN OUTCOME MEASURES: The protein concentrations of collagen 1A1 (COL1A1), collagen 3A1 (COL3A1), collagen 11A1 (COL11A1), and fibronectin (FN1) were assessed through western blot analysis after treatment of immortalized uterine myometrial and leiomyoma cells with both transforming growth factor beta (TGF-ß) 3 and concentrations of CoQ-10 at 10, 50, and 100 µM concurrently for 24 hours. RESULTS: Immortalized uterine leiomyoma and myometrial cells exposed to TGF-ß3 for 24 hours demonstrated a significant up-regulation of COL1A1, COL3A1, COL11A1, and FN1 compared with untreated cells. In leiomyoma cells, concurrent treatment with CoQ-10 over the same timeframe revealed a dose-dependent decrease in these protein concentrations compared with those in cells treated with TGF-ß3 alone. At the highest concentration of 100 µM of CoQ-10, significant decreases in the amounts of COL1A1 (0.59 ± 0.10-fold), COL3A1 (0.46 ± 0.09-fold), COL11A1 (0.53 ± 0.09-fold), and FN1 (0.56 ± 0.09-fold) were observed. Similarly, myometrial cells exposed to both TGF-ß3 and CoQ-10 demonstrated a dose-responsive decline in the amount of extracellular matrix protein compared with cells exposed to TGF-ß3 alone. Significant reductions in the amounts of COL1A1 (0.75 ± 0.03-fold), COL3A1 (0.48 ± 0.06-fold), COL11A1 (0.38 ± 0.06), and FN1 (0.69 ± 0.04-fold) were appreciated at 100-µM CoQ-10. CONCLUSION: Coenzyme Q-10 mitigated the aberrant production of key biomarkers of the extracellular matrix mediated by TGF-ß3 in uterine leiomyomas. Our findings highlight a promising nonhormonal compound that can counteract the fibroproliferative process inherent to leiomyomas.

20.
Front Microbiol ; 15: 1410505, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39027092

RESUMO

Coenzyme Q10 (CoQ10) is an essential medicinal ingredient. In this study, we obtained a high-yielding mutant strain of CoQ10, VK-2-3, by subjecting R. sphaeroides V-0 (V-0) to a 12C6+ heavy ion beam and high-voltage prick electric field treatment. To investigate the mutation mechanism, the complete genomes of VK-2-3 and V-0 were sequenced. Collinearity analysis revealed that the nicotinamide adenine dinucleotide-dependent dehydrogenase (NAD) gene underwent rearrangement in the VK-2-3 genome. The NAD gene was overexpressed and silenced in V-0, and this construct was named RS.NAD and RS.ΔNAD. The results showed that the titers of CoQ10 in the RS.NAD and RS.ΔNAD increased and decreased by 16.00 and 33.92%, respectively, compared to those in V-0, and these differences were significant. Our results revealed the mechanism by which the VK-2-3 CoQ10 yield increases through reverse metabolic engineering, providing insights for genetic breeding and mechanistic analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA