Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.788
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39000419

RESUMO

The search for the molecular markers of osteoporosis (OP), based on the analysis of differential deoxyribonucleic acid (DNA) methylation in bone cells and peripheral blood cells, is promising for developments in the field of the early diagnosis and targeted therapy of the disease. The Runt-related transcription factor 2 (RUNX2) gene is one of the key genes of bone metabolism, which is of interest in the search for epigenetic signatures and aberrations associated with the risk of developing OP. Based on pyrosequencing, the analysis of the RUNX2 methylation profile from a pool of peripheral blood cells in men and women over 50 years of age of Russian ethnicity from the Volga-Ural region of Russia was carried out. The level of DNA methylation in three CpG sites of the RUNX2 gene was assessed and statistically significant hypomethylation was revealed in all three studied CpG sites in men (U = 746.5, p = 0.004; U = 784, p = 0.01; U = 788.5, p = 0.01, respectively) and in one CpG site in women (U = 537, p = 0.03) with primary OP compared with control. In the general sample, associations were preserved for the first CpG site (U = 2561, p = 0.0001766). The results were obtained for the first time and indicate the existence of potentially new epigenetic signatures of RUNX2 in individuals with OP.


Assuntos
Biomarcadores , Subunidade alfa 1 de Fator de Ligação ao Core , Ilhas de CpG , Metilação de DNA , Osteoporose , Humanos , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Masculino , Feminino , Osteoporose/genética , Pessoa de Meia-Idade , Ilhas de CpG/genética , Idoso , Epigênese Genética
2.
Int J Mol Sci ; 25(13)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39000438

RESUMO

Strong epigenetic pan-cancer biomarkers are required to meet several current, urgent clinical needs and to further improve the present chemotherapeutic standard. We have concentrated on the investigation of epigenetic alteration of the hTERT gene, which is frequently epigenetically dysregulated in a number of cancers in specific developmental stages. Distinct DNA methylation profiles were identified in our data on early urothelial cancer. An efficient EpihTERT assay could be developed utilizing suitable combinations with sequence-dependent thermodynamic parameters to distinguish between differentially methylated states. We infer from this data set, the epigenetic context, and the related literature that a CpG-rich, 2800 bp region, a prominent CpG island, surrounding the transcription start of the hTERT gene is the crucial epigenetic zone for the development of a potent biomarker. In order to accurately describe this region, we have named it "Acheron" (Ἀχέρων). In Greek mythology, this is the river of woe and misery and the path to the underworld. Exploitation of the DNA methylation profiles focused on this region, e.g., idiolocal normalized Methylation Specific PCR (IDLN-MSP), opens up a wide range of new possibilities for diagnosis, determination of prognosis, follow-up, and detection of residual disease. It may also have broad implications for the choice of chemotherapy.


Assuntos
Biomarcadores Tumorais , Metilação de DNA , Epigênese Genética , Neoplasias , Telomerase , Humanos , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/genética , Ilhas de CpG , Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Neoplasias/tratamento farmacológico , Neoplasias/diagnóstico , Telomerase/genética
3.
Mol Biol Rep ; 51(1): 801, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39001882

RESUMO

BACKGROUND: JUB1, a NAC domain containing hydrogen peroxide-induced transcription factor, plays a critical role in plant immunity. Little is known about how JUB1 responds to leaf rust disease in wheat. Recent discoveries in genomics have also unveiled a multitude of sORFs often assumed to be non-functional, to argue for the necessity of including them as potential regulatory players of translation. However, whether methylation on sORFs spanning the 3'UTR of regulatory genes like JUB1 modulate gene expression, remains unclear. METHODS AND RESULTS: In this study, we identified the methylation states of two sORFs in 3'UTR of a homologous gene of JUB1 in wheat, TaJUB1-L, at cytosine residues in CpG, CHH and CHG sites at different time points of disease progression in two near-isogenic lines of wheat (HD2329), with and without Lr24 gene during leaf rust pathogenesis. Here, we report a significant demethylation of the CpG dinucleotides occurring in the sORFs of the 3'UTR in the resistant isolines after 24 h post-infection. Also, the up-regulated gene expression observed through RT-qPCR was directly proportional to the demethylation of the CpG sites in the sORFs. CONCLUSIONS: Our findings indicate that TaJUB1-L might be a positive regulator in providing tolerance during leaf rust pathogenesis and cytosine methylation at 3'UTR might act as a switch for its expression control. These results enrich the potential benefit of conventional methylation assay techniques for unraveling the unexplored enigma in epigenetics during plant-pathogen interaction in a cost-effective and confidentially conclusive manner.


Assuntos
Regiões 3' não Traduzidas , Metilação de DNA , Regulação da Expressão Gênica de Plantas , Doenças das Plantas , Proteínas de Plantas , Fatores de Transcrição , Triticum , Triticum/microbiologia , Triticum/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Regiões 3' não Traduzidas/genética , Metilação de DNA/genética , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Basidiomycota/patogenicidade , Basidiomycota/genética , Folhas de Planta/microbiologia , Folhas de Planta/genética , Resistência à Doença/genética , 5-Metilcitosina/metabolismo
4.
Cell Immunol ; 403-404: 104846, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38996539

RESUMO

CpG ODN2006 is widely used as a potent B cell stimulant in vitro and in vivo. However, it shows a deficit in targeting naïve B cells in vitro. In this study, we investigated whether α-IgM can support ODN2006-induced effects on B cells to obtain enhanced activation with focus on different B cell subsets. Our results delineated robust B cell activation, shown by increased activation marker expression and cytokine secretion by each agent alone, and further augmented when used in combination. Interestingly, α-IgM targeted mainly naïve and marginal zone-like B cells, thus complementing the pronounced effects of ODN2006 on memory B cells and achieving optimal activation for all B cell subsets. Taken together, combining ODN2006 and α-IgM is beneficial for in vitro activation including all B cell subsets. Furthermore, our results suggest that α-IgM could enhance efficacy of ODN2006 in vivo with further need of investigation.

5.
Transl Pediatr ; 13(6): 938-945, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38984021

RESUMO

Background: In 2009, the clinical practice guidelines (CPG) were released by the American Academy of Orthopaedic Surgeons (AAOS), which outline an age-based approach for treating pediatric femoral shaft fractures (PFSF), both nonoperatively and operatively. The aim of the current study was to investigate potential disparities between the recommended treatments for PFSF based on the AAOS-CPG and the actual treatments administered in The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University. Methods: A retrospective review was conducted on the medical charts and radiographs of all PFSF treated at The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University from January 2014 to January 2022. We identified 445 children who met our inclusion criteria and evaluated their treatments according to the AAOS-CPG. Actual treatments were then compared with the treatments recommended by the AAOS-CPG. Binomial and multivariate logistic regression was used to examine whether different factors could predict the choice between operative and nonoperative management. Results: Operative treatments were undertaken in 102 of 215 (47.4%) fractures in children younger than 6 years, in 102 of 122 (83.6%) fractures in those between 6 and 12 years of age, and in 107 of 108 (99.1%) fractures in those older than 12 years. Nonoperative management was conducted in 113 of 215 (52.6%) fractures in children younger than 6 years, in 20 of 122 (16.4%) fractures in those between 6 and 12 years of age, and in 1 of 108 (0.9%) fractures in those older than 12 years of age. Surgeon decisions for non-surgery were in agreement with the CPG 52.6% of the time, whereas agreement reached 90.9% for surgical choices. Predictors of actual operative management were age (P=0.01), patient weight (P<0.001), fracture pattern (P<0.001), presence of other orthopedic injuries requiring surgery (P=0.002), and polytrauma (P=0.02). Conclusions: There was limited concordance between actual treatments and CPG recommendations, particularly for the nonoperative management of fractures in children under 6 years old. Age, patient weight, fracture pattern, presence of other orthopedic injuries requiring surgery, and polytrauma were the main predictors of our operative decision-making process.

6.
Cancer Sci ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039804

RESUMO

Evidence indicates that combinations of anti-EGFR antibodies and KRAS p.G12C (c.34G>T) inhibitors can be an effective treatment strategy for advanced colorectal cancer. We hypothesized that KRAS c.34G>T (p.G12C)-mutated colorectal carcinoma might be a distinct tumor subtype. We utilized a prospective cohort incident tumor biobank (including 1347 colorectal carcinomas) and detected KRAS c.34G>T (p.G12C) mutation in 43 cases (3.2%) and other KRAS mutations (in codon 12, 13, 61, or 146) in 467 cases (35%). The CpG island methylator phenotype (CIMP)-low prevalence was similarly higher in KRAS c.34G>T mutants (52%) and other KRAS mutants (49%) than in KRAS-wild-type tumors (31%). KRAS c.34G>T mutants showed higher CIMP-high prevalence (14%) and lower CIMP-negative prevalence (33%) compared with other KRAS mutants (6% and 45%, respectively; p = 0.0036). Similar to other KRAS mutants, KRAS c.34G>T-mutated tumors were associated with cecal location, non-microsatellite instability (MSI)-high status, BRAF wild type, and PIK3CA mutation when compared with KRAS-wild-type tumors. Compared with BRAF-mutated tumors, KRAS c.34G>T mutants showed more frequent LINE-1 hypomethylation, a biomarker for early-onset colorectal carcinoma. KRAS c.34G>T mutants were not associated with other features, including the tumor tissue abundance of Fusobacterium nucleatum (F. animalis), pks+ Escherichia coli, Bifidobacterium, or (enterotoxigenic) Bacteroides fragilis. Among 1122 BRAF-wild-type colorectal carcinomas, compared with KRAS-wild-type tumors, multivariable-adjusted colorectal cancer-specific mortality hazard ratios (95% confidence interval) were 1.82 (1.05-3.17) in KRAS c.34G>T (p.G12C)-mutated tumors (p = 0.035) and 1.57 (1.22-2.02) in other KRAS-mutated tumors (p = 0.0004). Our study provides novel evidence for clinical and tumor characteristics of KRAS c.34G>T (p.G12C)-mutated colorectal carcinoma.

7.
DNA Repair (Amst) ; 141: 103712, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38959714

RESUMO

Epigenetic cytosine methylation covers most of genomic CpG dinucleotides in human cells. In addition to common deamination-mediated mutagenesis at CpG sites, an alternative deamination-independent pathway associated with DNA polymerase activity was previously described. This mutagenesis is characterized by the TCG→TTG mutational signature and is believed to arise from dAMP misincorporation opposite 5-methylcytosine (mC) or its oxidized derivative 5-hydroxymethylcytosine (hmC) by B-family replicative DNA polymerases with disrupted proofreading 3→5'-exonuclease activity. In addition to being less stable and pro-mutagenic themselves, cytosine modifications also increase the risk of adjacent nucleotides damage, including the formation of 8-oxo-2'-deoxyguanosine (8-oxoG), a well-known mutagenic lesion. The effect of cytosine methylation on error-prone DNA polymerases lacking proofreading activity and involved in repair and DNA translesion synthesis remains unexplored. Here we analyze the efficiency and fidelity of translesion Y-family polymerases (Pol κ, Pol η, Pol ι and REV1) and primase-polymerase PrimPol opposite mC and hmC as well as opposite 8-oxoG adjacent to mC in the TCG context. We demonstrate that epigenetic cytosine modifications suppress Pol ι and REV1 activities and lead to increasing dAMP misincorporation by PrimPol, Pol κ and Pol ι in vitro. Cytosine methylation also increases misincorporation of dAMP opposite the adjacent 8-oxoG by PrimPol, decreases the TLS activity of Pol η opposite the lesion but increases dCMP incorporation opposite 8-oxoG by REV1. Altogether, these data suggest that methylation and hydroxymethylation of cytosine alter activity and fidelity of translesion DNA polymerases.

8.
Genome Med ; 16(1): 85, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956711

RESUMO

BACKGROUND: Restraining or slowing ageing hallmarks at the cellular level have been proposed as a route to increased organismal lifespan and healthspan. Consequently, there is great interest in anti-ageing drug discovery. However, this currently requires laborious and lengthy longevity analysis. Here, we present a novel screening readout for the expedited discovery of compounds that restrain ageing of cell populations in vitro and enable extension of in vivo lifespan. METHODS: Using Illumina methylation arrays, we monitored DNA methylation changes accompanying long-term passaging of adult primary human cells in culture. This enabled us to develop, test, and validate the CellPopAge Clock, an epigenetic clock with underlying algorithm, unique among existing epigenetic clocks for its design to detect anti-ageing compounds in vitro. Additionally, we measured markers of senescence and performed longevity experiments in vivo in Drosophila, to further validate our approach to discover novel anti-ageing compounds. Finally, we bench mark our epigenetic clock with other available epigenetic clocks to consolidate its usefulness and specialisation for primary cells in culture. RESULTS: We developed a novel epigenetic clock, the CellPopAge Clock, to accurately monitor the age of a population of adult human primary cells. We find that the CellPopAge Clock can detect decelerated passage-based ageing of human primary cells treated with rapamycin or trametinib, well-established longevity drugs. We then utilise the CellPopAge Clock as a screening tool for the identification of compounds which decelerate ageing of cell populations, uncovering novel anti-ageing drugs, torin2 and dactolisib (BEZ-235). We demonstrate that delayed epigenetic ageing in human primary cells treated with anti-ageing compounds is accompanied by a reduction in senescence and ageing biomarkers. Finally, we extend our screening platform in vivo by taking advantage of a specially formulated holidic medium for increased drug bioavailability in Drosophila. We show that the novel anti-ageing drugs, torin2 and dactolisib (BEZ-235), increase longevity in vivo. CONCLUSIONS: Our method expands the scope of CpG methylation profiling to accurately and rapidly detecting anti-ageing potential of drugs using human cells in vitro, and in vivo, providing a novel accelerated discovery platform to test sought after anti-ageing compounds and geroprotectors.


Assuntos
Envelhecimento , Metilação de DNA , Longevidade , Humanos , Animais , Metilação de DNA/efeitos dos fármacos , Longevidade/efeitos dos fármacos , Envelhecimento/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Descoberta de Drogas/métodos , Senescência Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Drosophila , Células Cultivadas , Sirolimo/farmacologia
9.
Clin Epigenetics ; 16(1): 88, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38970134

RESUMO

BACKGROUND: DNA methylation may have a regulatory role in monogenic sensorineural hearing loss and complex, polygenic phenotypic forms of hearing loss, including age-related hearing impairment or Meniere disease. The purpose of this systematic review is to critically assess the evidence supporting a functional role of DNA methylation in phenotypes associated with hearing loss. RESULTS: The search strategy yielded a total of 661 articles. After quality assessment, 25 records were selected (12 human DNA methylation studies, 5 experimental animal studies and 8 studies reporting mutations in the DNMT1 gene). Although some methylation studies reported significant differences in CpG methylation in diverse gene promoters associated with complex hearing loss phenotypes (ARHI, otosclerosis, MD), only one study included a replication cohort that supported a regulatory role for CpG methylation in the genes TCF25 and POLE in ARHI. Conversely, several studies have independently confirmed pathogenic mutations within exon 21 of the DNMT1 gene, which encodes the DNA (cytosine-5)-methyltransferase 1 enzyme. This methylation enzyme is strongly associated with a rare disease defined by autosomal dominant cerebellar ataxia, deafness and narcolepsy (ADCA-DN). Of note, rare variants in DNMT1 and DNMT3A genes have also been reported in noise-induced hearing loss. CONCLUSIONS: Evidence supporting a functional role for DNA methylation in hearing loss is limited to few genes in complex disorders such as ARHI. Mutations in the DNMT1 gene are associated with ADCA-DN, suggesting the CpG methylation in hearing loss genes deserves further attention in hearing research.


Assuntos
DNA (Citosina-5-)-Metiltransferase 1 , Metilação de DNA , Humanos , Metilação de DNA/genética , DNA (Citosina-5-)-Metiltransferase 1/genética , Animais , Ilhas de CpG/genética , Epigênese Genética/genética , Perda Auditiva/genética , Mutação , Fenótipo , Regiões Promotoras Genéticas , Perda Auditiva Neurossensorial/genética , Narcolepsia/genética
10.
Int Immunopharmacol ; 138: 112593, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38972210

RESUMO

In lab settings, inbred mouse strains like BALB/c, C57BL/6J, and C57BL/6N are commonly used. Research in immunology and infectious diseases indicates that their Th1 and Th2 immune responses differ. However, the specific differences in the immune response to the vaccination still require investigation. In this study, ovalbumin (OVA) was used as an antigen and CpG-enriched recombinant plasmid (pUC18-CpG) as an adjuvant for immunisation. The level of serum-specific antibody IgG was detected by indirect ELISA. At 35dpi, serum cytokine levels were measured using MILLIPLEX®. T lymphocyte clusters from mouse spleen were examined using flow cytometry to investigate the immunological effects of the CPG-OVA vaccine on three different types of mice. The results showed that pUC18-CpG as an adjuvant could successfully enhance the immune response. BALB/c had the highest level of IgG antibody. In the OVA-only group, the CD4+/CD8+ ratio of the three types of mice was generally increased, and the BALB/c group had the highest ratio. After inoculation with CpG-OVA, the CD4+/CD8+ ratio of the three types of mice was lower than that of the OVA-only group, and C57BL/6J was the lowest. Compared with the CpG-OVA group of the three kinds of mice, the levels of Th2 cytokines IL-6 and IL-10 in BALB/c were increased compared with C57BL/6J and C57BL/6N. After OVA, the six cytokines secreted in C57BL/6J were higher than those in the C57BL/6N OVA group. Therefore, C57 is a better model for examining the function of the vaccine in cellular immunity, whereas BALB/c mice are more prone to humoral immunity. In addition to highlighting the CpG plasmid's ability to successfully activate the immune response of Th1 and Th2, as well as the expression of IgG in vivo and promote T cell immune typing, this study provides valuable insights into immunology and the selection of mouse models for infectious diseases, providing a valuable resource for designing more effective vaccines in the future.

11.
J Cell Mol Med ; 28(13): e18510, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38953409

RESUMO

In recent years, inflammatory disorders have emerged as a significant concern for human health. Through ongoing research on anti-inflammatory agents, alpinetin has shown promising anti-inflammatory properties, including involvement in epigenetic modification pathways. As a crucial regulator of epigenetic modifications, Mecp2 may play a role in modulating the epigenetic effects of alpinetin, potentially impacting its anti-inflammatory properties. To test this hypothesis, two key components, p65 (a member of NF-KB family) and p300 (a type of co-activator), were screened by the expression profiling microarray, which exhibited a strong correlation with the intensity of LPS stimulation in mouse macrophages. Meanwhile, alpinetin demonstrates the anti-inflammatory properties through its ability to disrupt the synthesis of p65 and its interaction with promoters of inflammatory genes, yet it did not exhibit similar effects on p300. Additionally, Mecp2 can inhibit the binding of p300 by attaching to the methylated inflammatory gene promoter induced by alpinetin, leading to obstacles in promoter acetylation and subsequently impacting the binding of p65, ultimately enhancing the anti-inflammatory capabilities of alpinetin. Similarly, in a sepsis mouse model, it was observed that homozygotes overexpressing Mecp2 showed a greater reduction in organ damage and improved survival rates compared to heterozygotes when administered by alpinetin. However, blocking the expression of DNA methyltransferase 3A (DNMT3A) resulted in the loss of Mecp2's anti-inflammatory assistance. In conclusion, Mecp2 may augment the anti-inflammatory effects of alpinetin through epigenetic 'crosstalk', highlighting the potential efficacy of a combined therapeutic strategy involving Mecp2 and alpinetin for anti-inflammatory intervention.


Assuntos
Anti-Inflamatórios , Epigênese Genética , Flavanonas , Proteína 2 de Ligação a Metil-CpG , Regiões Promotoras Genéticas , Proteína 2 de Ligação a Metil-CpG/metabolismo , Proteína 2 de Ligação a Metil-CpG/genética , Animais , Flavanonas/farmacologia , Epigênese Genética/efeitos dos fármacos , Camundongos , Anti-Inflamatórios/farmacologia , Células RAW 264.7 , Metilação de DNA/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Fator de Transcrição RelA/metabolismo , Sepse/tratamento farmacológico , Sepse/genética , Sepse/metabolismo , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/patologia , Inflamação/genética , Inflamação/metabolismo , DNA Metiltransferase 3A/metabolismo , Masculino , Proteína p300 Associada a E1A/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética
13.
Mol Syst Biol ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39026103

RESUMO

Somatic hypermutation in cancer has gained momentum with the increased use of tumour mutation burden as a biomarker for immune checkpoint inhibitors. Spontaneous deamination of 5-methylcytosine to thymine at CpG dinucleotides is one of the most ubiquitous endogenous mutational processes in normal and cancer cells. Here, we performed a systematic investigation of somatic CpG hypermutation at a pan-cancer level. We studied 30,191 cancer patients and 103 cancer types and developed an algorithm to identify somatic CpG hypermutation. Across cancer types, we observed the highest prevalence in paediatric leukaemia (3.5%), paediatric high-grade glioma (1.7%), and colorectal cancer (1%). We discovered germline variants and somatic mutations in the mismatch repair complex MutSα (MSH2-MSH6) as genetic drivers of somatic CpG hypermutation in cancer, which frequently converged on CpG sites and TP53 driver mutations. We further observe an association between somatic CpG hypermutation and response to immune checkpoint inhibitors. Overall, our study identified novel cancer types that display somatic CpG hypermutation, strong association with MutSα-deficiency, and potential utility in cancer immunotherapy.

15.
Sci Rep ; 14(1): 14700, 2024 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926485

RESUMO

Identifying novel epigenetic biomarkers is a promising way to improve the clinical management of patients with breast cancer. Our study aimed to determine the methylation pattern of 25 tumor suppressor genes (TSG) and select the best methylation biomarker associated with clinicopathological features in the cohort of Slovak patients diagnosed with invasive ductal carcinoma (IDC). Overall, 166 formalin-fixed, paraffin-embedded (FFPE) tissues obtained from patients with IDC were included in the study. The methylation status of the promoter regions of 25 TSG was analyzed using semiquantitative methylation-specific MLPA (MS-MLPA). We identified CDH13 as the most frequently methylated gene in our cohort of patients. Further analysis by ddPCR confirmed an increased level of methylation in the promoter region of CDH13. A significant difference in CDH13 methylation levels was observed between IDC molecular subtypes LUM A versus HER2 (P = 0.0116) and HER2 versus TNBC (P = 0.0234). In addition, significantly higher methylation was detected in HER2+ versus HER2- tumors (P = 0.0004) and PR- versus PR+ tumors (P = 0.0421). Our results provide evidence that alteration in CDH13 methylation is associated with clinicopathological features in the cohort of Slovak patients with IDC. In addition, using ddPCR as a methylation-sensitive method represents a promising approach characterized by higher precision and technical simplicity to measure the methylation of target CpGs in CDH13 compared to other conventional methods such as MS-MLPA.


Assuntos
Neoplasias da Mama , Caderinas , Carcinoma Ductal de Mama , Metilação de DNA , Regiões Promotoras Genéticas , Humanos , Caderinas/genética , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Pessoa de Meia-Idade , Carcinoma Ductal de Mama/genética , Carcinoma Ductal de Mama/patologia , Carcinoma Ductal de Mama/metabolismo , Idoso , Eslováquia , Biomarcadores Tumorais/genética , Adulto , Reação em Cadeia da Polimerase/métodos
16.
Epigenomes ; 8(2)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38920624

RESUMO

The post-genomic era has ushered in the extensive application of epigenetic editing tools, allowing for precise alterations of gene expression. The use of reprogrammable editors that carry transcriptional corepressors has significant potential for long-term epigenetic silencing for the treatment of human diseases. The ideal scenario involves precise targeting of a specific genomic location by a DNA-binding domain, ensuring there are no off-target effects and that the process yields no genetic remnants aside from specific epigenetic modifications (i.e., DNA methylation). A notable example is a recent study on the mouse Pcsk9 gene, crucial for cholesterol regulation and expressed in hepatocytes, which identified synthetic zinc-finger (ZF) proteins as the most effective DNA-binding editors for silencing Pcsk9 efficiently, specifically, and persistently. This discussion focuses on enhancing the specificity of ZF-array DNA binding by optimizing interactions between specific amino acids and DNA bases across three promoters containing CpG islands.

17.
Biomimetics (Basel) ; 9(6)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38921198

RESUMO

This study presents the design, simulation, and prototype creation of a quadruped robot inspired by the Acinonyx jubatus (cheetah), specifically designed to replicate its distinctive walking, trotting, and galloping locomotion patterns. Following a detailed examination of the cheetah's skeletal muscle anatomy and biomechanics, a simplified model of the robot with 12 degrees of freedom was conducted. The mathematical transformation hierarchy model was established, and direct kinematics were simulated. A bio-inspired control approach was introduced, employing a Central Pattern Generator model based on Wilson-Cowan neural oscillators for each limb, interconnected by synaptic weights. This approach assisted in the simulation of oscillatory signals for relative phases corresponding to four distinct gaits in a system-level simulation platform. The design phase was conducted using CAD software (SolidWorks 2018), resulting in a 1:3-scale robot mirroring the cheetah's actual proportions. Movement simulations were performed in a virtual mechanics software environment, leading to the construction of a prototype measuring 35.5 cm in length, 21 cm in width, 27 cm in height (when standing), and weighing approximately 2.1 kg. The experimental validation of the prototype's limb angular positions and trajectories was achieved through the image processing of video-recorded movements, demonstrating a high correlation (0.9025 to 0.9560) in joint angular positions, except for the knee joint, where a correlation of 0.7071 was noted. This comprehensive approach from theoretical analysis to practical implementation showcases the potential of bio-inspired robotics in emulating complex biological locomotion.

18.
Gut Microbes ; 16(1): 2363012, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38860458

RESUMO

The intestinal microbiota is an important environmental factor implicated in CRC development. Intriguingly, modulation of DNA methylation by gut microbiota has been reported in preclinical models, although the relationship between tumor-infiltrating bacteria and CIMP status is currently unexplored. In this study, we investigated tumor-associated bacteria in 203 CRC tumor cases and validated the findings using The Cancer Genome Atlas datasets. We assessed the abundance of Bacteroides fragilis, Escherichia coli, Fusobacterium nucleatum, and Klebsiella pneumoniae through qPCR analysis and observed enrichment of all four bacterial species in CRC samples. Notably, except for E. coli, all exhibited significant enrichment in cases of CIMP. This enrichment was primarily driven by a subset of cases distinguished by high levels of these bacteria, which we labeled as "Superhigh". The bacterial Superhigh status showed a significant association with CIMP (odds ratio 3.1, p-value = 0.013) and with MLH1 methylation (odds ratio 4.2, p-value = 0.0025). In TCGA CRC cases (393 tumor and 45 adj. normal), bacterial taxa information was extracted from non-human whole exome sequencing reads, and the bacterial Superhigh status was similarly associated with CIMP (odds ratio 2.9, p < 0.001) and MLH1 methylation (odds ratio 3.5, p < 0.001). Finally, 16S ribosomal RNA gene sequencing revealed high enrichment of Bergeyella spp. C. concisus, and F. canifelinum in CIMP-Positive tumor cases. Our findings highlight that specific bacterial taxa may influence DNA methylation, particularly in CpG islands, and contribute to the development and progression of CIMP in colorectal cancer.


Assuntos
Bactérias , Neoplasias Colorretais , Ilhas de CpG , Metilação de DNA , Microbioma Gastrointestinal , Humanos , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/genética , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Feminino , Masculino , Pessoa de Meia-Idade , Bacteroides fragilis/genética , Bacteroides fragilis/isolamento & purificação , Idoso , Fenótipo
19.
Heliyon ; 10(11): e31847, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38882328

RESUMO

-This paper presents a new control methodology for achieving smooth gait transitions for a hexapod robot using Central Pattern Generators (CPGs). The approach involves modifying the Phase Oscillator within the CPG network to enable smooth transitions between different gaits in order to improve the adaptability to changing environmental conditions. The foot trajectory generator is designed based on the CPG output, allowing the possibility of online adjustment of foot trajectory parameters, such as step height and size, as well as the robot's speed and direction. Our simulation demonstrates the effectiveness of the modified oscillator in achieving smoother gait transitions with a transition time falls close to the output period of the CPG oscillators, and experiments on a real hexapod robot validate the feasibility and efficiency of our approach in considering online adjustability of trajectory parameters, confirming the potential of this methodology to enhance the locomotion capabilities of legged robots for navigating complex terrains.

20.
Comput Biol Chem ; 112: 108107, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38875896

RESUMO

Spontaneous mutations are evolutionary engines as they generate variants for the evolutionary downstream processes that give rise to speciation and adaptation. Single nucleotide mutations (SNM) are the most abundant type of mutations among them. Here, we perform a meta-analysis to quantify the influence of selected global genomic parameters (genome size, genomic GC content, genomic repeat fraction, number of coding genes, gene count, and strand bias in prokaryotes) and local genomic features (local GC content, repeat content, CpG content and the number of SNM at CpG islands) on spontaneous SNM rates across the tree of life (prokaryotes, unicellular eukaryotes, multicellular eukaryotes) using wild-type sequence data in two different taxon classification systems. We find that the spontaneous SNM rates in our data are correlated with many genomic features in prokaryotes and unicellular eukaryotes irrespective of their sample sizes. On the other hand, only the number of coding genes was correlated with the spontaneous SNM rates in multicellular eukaryotes primarily contributed by vertebrates data. Considering local features, we notice that local GC content and CpG content significantly were correlated with the spontaneous SNM rates in the unicellular eukaryotes, while local repeat fraction is an important feature in prokaryotes and certain specific uni- and multi-cellular eukaryotes. Such predictive features of the spontaneous SNM rates often support non-linear models as the best fit compared to the linear model. We also observe that the strand asymmetry in prokaryotes plays an important role in determining the spontaneous SNM rates but the SNM spectrum does not.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA