Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Neurosci ; 18: 1415115, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39165342

RESUMO

Introduction: Deletion or mutation of members of the spectrin gene family contributes to many neurologic and neuropsychiatric disorders. While each spectrinopathy may generate distinct neuropathology, the study of ßΙ spectrin's role (Sptb) in the brain has been hampered by the hematologic consequences of its loss. Methods: Jaundiced mice (ja/ja) that lack ßΙ spectrin suffer a rapidly fatal hemolytic anemia. We have used exchange transfusion of newborn ja/ja mice to blunt their hemolytic pathology, enabling an examination of ßΙ spectrin deficiency in the mature mouse brain by ultrastructural and biochemical analysis. Results: ßΙ spectrin is widely utilized throughout the brain as the ßΙΣ2 isoform; it appears by postnatal day 8, and concentrates in the CA1,3 region of the hippocampus, dentate gyrus, cerebellar granule layer, cortical layer 2, medial habenula, and ventral thalamus. It is present in a subset of dendrites and absent in white matter. Without ßΙ spectrin there is a 20% reduction in postsynaptic density size in the granule layer of the cerebellum, a selective loss of ankyrinR in cerebellar granule neurons, and a reduction in the level of the postsynaptic adhesion molecule NCAM. While we find no substitution of another spectrin for ßΙ at dendrites or synapses, there is curiously enhanced ßΙV spectrin expression in the ja/ja brain. Discussion: ßΙΣ2 spectrin appears to be essential for refining postsynaptic structures through interactions with ankyrinR and NCAM. We speculate that it may play additional roles yet to be discovered.

2.
J Nutr Sci Vitaminol (Tokyo) ; 70(3): 210-218, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38945886

RESUMO

L-Theanine is contained in green tea at 1-3% per dry matter as an amino acid with an umami taste, and the antidepressant effect and protective effect against stress-induced brain atrophy in mice, as well as the related mechanism have been reported. However, effects of theanine on the hippocampus from the proteome analysis and the action mechanism have not been examined. In this study, we mainly investigated the possibility of theanine's cognitive impairment-preventing function and the action mechanism by proteomics in the hippocampus of SAMP8 administered with theanine. In addition to improvement in the aging score with theanine administration, in proteomics, significant suppressions in the expressions of synapsin 2, α-synuclein, ß-synuclein, and protein tau were observed by theanine administration, and the expression of CAM kinase II beta and alpha exhibited a significant increase and increasing tendency with theanine administration, respectively. The expression of tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein tended to increase by theanine administration. On the other hand, serotonin/tryptophan, GABA/glutamic acid and glutamine/glutamic acid ratios in the hippocampus showed an increasing tendency, a significant increase, and an increasing tendency with theanine administration, respectively. These results suggested that theanine might have been involved in the improvement of neurodegeneration or cognitive impairment by suppressing the productions of synapsin, synuclein and protein tau which are considered to be produced along with aging and oxidation, and by enhancing the production of serotonin by increasing the expression of CAM kinase II, and further by affecting the metabolism of glutamate.


Assuntos
Envelhecimento , Glutamatos , Hipocampo , Animais , Glutamatos/farmacologia , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Camundongos , Masculino , Envelhecimento/efeitos dos fármacos , Sinapsinas/metabolismo , Ácido Glutâmico/metabolismo , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo , Proteômica/métodos , Suplementos Nutricionais , Serotonina/metabolismo , Dieta/métodos , Ácido gama-Aminobutírico/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Disfunção Cognitiva/prevenção & controle , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo
3.
Biomolecules ; 14(2)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38397420

RESUMO

The dysregulation of intracellular calcium levels is a critical factor in neurodegeneration, leading to the aberrant activation of calcium-dependent processes and, ultimately, cell death. Ca2+ signals vary in magnitude, duration, and the type of neuron affected. A moderate Ca2+ concentration can initiate certain cellular repair pathways and promote neuroregeneration. While the peripheral nervous system exhibits an intrinsic regenerative capability, the central nervous system has limited self-repair potential. There is evidence that significant variations exist in evoked calcium responses and axonal regeneration among neurons, and individual differences in regenerative capacity are apparent even within the same type of neurons. Furthermore, some studies have shown that neuronal activity could serve as a potent regulator of this process. The spatio-temporal patterns of calcium dynamics are intricately controlled by a variety of proteins, including channels, ion pumps, enzymes, and various calcium-binding proteins, each of which can exert either positive or negative effects on neural repair, depending on the cellular context. In this concise review, we focus on several calcium-associated proteins such as CaM kinase II, GAP-43, oncomodulin, caldendrin, calneuron, and NCS-1 in order to elaborate on their roles in the intrinsic mechanisms governing neuronal regeneration following traumatic damage processes.


Assuntos
Cálcio , Neurônios , Cálcio/metabolismo , Neurônios/metabolismo , Sinalização do Cálcio/fisiologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Regeneração Nervosa
4.
J Comp Neurol ; 530(9): 1470-1493, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35029299

RESUMO

Immunoreactivity for calcium-/calmodulin-dependent protein kinase II (CaMKII) in the primate dorsal lateral geniculate nucleus (dLGN) has been attributed to geniculocortical relay neurons and has also been suggested to arise from terminals of retinal ganglion cells. Here, we combined immunostaining with single-cell injections to investigate the expression of CaMKII in retinal ganglion cells of three primate species: macaque (Macaca fascicularis, M. nemestrina), human, and marmoset (Callithrix jacchus). We found that in all species, about 2%-10% of the total ganglion cell population expressed CaMKII. In all species, CaMKII was expressed by multiple types of wide-field ganglion cell including large sparse, giant sparse (melanopsin-expressing), broad thorny, and narrow thorny cells. Three other ganglion cells types, namely, inner and outer stratifying maze cells in macaque and tufted cells in marmoset were also found. Double labeling experiments showed that CaMKII-expressing cells included inner and outer stratifying melanopsin cells. Nearly all CaMKII-expressing ganglion cell types identified here are known to project to the koniocellular layers of the dLGN as well as to the superior colliculus. The best characterized koniocellular projecting cell type-the small bistratified (blue ON/yellow OFF) cell-was, however, not CaMKII-positive in any species. Our results indicate that the pattern of CaMKII expression in retinal ganglion cells is largely conserved across different species of primate suggesting a common functional role. But the results also show that CaMKII is not a marker for all koniocellular projecting retinal ganglion cells.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Células Ganglionares da Retina , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Callithrix , Corpos Geniculados , Humanos , Macaca fascicularis/metabolismo , Retina/metabolismo , Células Ganglionares da Retina/fisiologia
5.
Behav Brain Res ; 395: 112877, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32841609

RESUMO

Studies have shown that epigenetic changes such as alteration in histone acetylation and DNA methylation in various brain regions play an essential role in anxiety behavior. According to the critical role of calcium/calmodulin protein kinaseII (CaMKII) in these processes, the present study examined the effect of CaMKII inhibitor (KN93) on neuronal activity and level of c-fos in the amygdala and nucleus accumbens (NAC) in the offspring of morphine-exposed parents. Adult male and female Wistar rats received morphine orally (for 21 days). After the washout period (10 days), rats were mated with either drug-naïve or morphine-exposed rats. KN93 was microinjected into the brain of male offspring. The anxiety-like behavior, the neuronal firing rate in the NAC and the amygdala and level of c-fos were assessed by related techniques. Data showed the offspring with one and/or two morphine-abstinent parent(s) had more anxiety-like behavior than the control group. However, the administration of KN-93 decreased anxiety in the offspring of morphine-exposed rats compared with saline-treated groups. The expression level of the c-fos was not significantly altered by the inhibition of CaMKII in the amygdala, but the c-fos level was reduced in the NAC. The neuronal firing rate of these groups was associated with an increase in the amygdala in comparison to the saline groups but was decreased in the NAC. Results showed that CaMKII had a role in anxiety-like behavior in the offspring of morphine-exposed parents, and changes in neuronal firing rate and c-fos level in the NAC might be involved in this process.


Assuntos
Ansiedade/metabolismo , Benzilaminas/farmacologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Sulfonamidas/farmacologia , Tonsila do Cerebelo/metabolismo , Analgésicos Opioides/efeitos adversos , Analgésicos Opioides/farmacologia , Animais , Ansiedade/tratamento farmacológico , Ansiedade/fisiopatologia , Transtornos de Ansiedade/tratamento farmacológico , Transtornos de Ansiedade/metabolismo , Transtornos de Ansiedade/fisiopatologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/efeitos dos fármacos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/toxicidade , Feminino , Masculino , Exposição Materna/efeitos adversos , Morfina/efeitos adversos , Morfina/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Núcleo Accumbens/metabolismo , Exposição Paterna/efeitos adversos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Wistar
6.
Am J Physiol Heart Circ Physiol ; 317(5): H969-H980, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31518169

RESUMO

Multifunctional Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a multigene family with isoform-specific regulation of vascular smooth muscle (VSM) functions. In previous studies, we found that vascular injury resulted in VSM dedifferentiation and reduced expression of the CaMKIIγ isoform in medial wall VSM. Smooth muscle knockout of CaMKIIγ enhanced injury-induced VSM neointimal hyperplasia, whereas CaMKIIγ overexpression inhibited VSM proliferation and neointimal formation. In this study, we evaluated DNA cytosine methylation/demethylation as a mechanism for regulating CaMKII isoform expression in VSM. Inhibition of cytosine methylation with 5-Aza-2'-deoxycytidine significantly upregulated CaMKIIγ expression in cultured VSM cells and inhibited CaMKIIγ downregulation in organ-cultured aorta ex vivo. With the use of methylated cytosine immunoprecipitation, the rat Camk2g promoter was found hypomethylated in differentiated VSM, whereas injury- or cell culture-induced VSM dedifferentiation coincided with Camk2g promoter methylation and decreased expression. We report for the first time that VSM cell phenotype switching is accompanied by marked induction of thymine DNA glycosylase (TDG) protein and mRNA expression in injured arteries in vivo and in cultured VSM synthetic phenotype cells. Silencing Tdg in VSM promoted expression of CaMKIIγ and differentiation markers, including myocardin, and inhibited VSM cell proliferation and injury-induced neointima formation. This study indicates that CaMKIIγ expression in VSM is regulated by cytosine methylation/demethylation and that TDG is an important determinant of this process and, more broadly, VSM phenotype switching and function.NEW & NOTEWORTHY Expression of the calcium calmodulin-dependent protein kinase II-γ isoform (CaMKIIγ) is associated with differentiated vascular smooth muscle (VSM) and negatively regulates proliferation in VSM synthetic phenotype (VSMSyn) cells. This study demonstrates that thymine DNA glycosylase (TDG) plays a key role in regulating CaMKIIγ expression in VSM through promoter cytosine methylation/demethylation. TDG expression is strongly induced in VSMSyn cells and plays key roles in negatively regulating CaMKIIγ expression and more broadly VSM phenotype switching.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Lesões das Artérias Carótidas/enzimologia , Plasticidade Celular , Metilação de DNA , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Timina DNA Glicosilase/metabolismo , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Lesões das Artérias Carótidas/genética , Lesões das Artérias Carótidas/patologia , Artéria Carótida Primitiva/enzimologia , Artéria Carótida Primitiva/patologia , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Regulação Enzimológica da Expressão Gênica , Masculino , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Neointima , Fenótipo , Regiões Promotoras Genéticas , Ratos Sprague-Dawley , Transdução de Sinais , Timina DNA Glicosilase/genética
7.
Adv Pharmacol ; 78: 171-202, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28212797

RESUMO

Ca2+-dependent signaling pathways are central regulators of differentiated vascular smooth muscle (VSM) contractile function. In addition, Ca2+ signals regulate VSM gene transcription, proliferation, and migration of dedifferentiated or "synthetic" phenotype VSM cells. Synthetic phenotype VSM growth and hyperplasia are hallmarks of pervasive vascular diseases including hypertension, atherosclerosis, postangioplasty/in-stent restenosis, and vein graft failure. The serine/threonine protein kinase Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a ubiquitous mediator of intracellular Ca2+ signals. Its multifunctional nature, structural complexity, diversity of isoforms, and splice variants all characterize this protein kinase and make study of its activity and function challenging. The kinase has unique autoregulatory mechanisms, and emerging studies suggest that it can function to integrate Ca2+ and reactive oxygen/nitrogen species signaling. Differentiated VSM expresses primarily CaMKIIγ and -δ isoforms. CaMKIIγ isoform expression correlates closely with the differentiated phenotype, and some studies link its function to regulation of contractile activity and Ca2+ homeostasis. Conversely, synthetic phenotype VSM cells primarily express CaMKIIδ and substantial evidence links it to regulation of gene transcription, proliferation, and migration of VSM in vitro, and vascular hypertrophic and hyperplastic remodeling in vivo. CaMKIIδ and -γ isoforms have opposing functions at the level of cell cycle regulation, proliferation, and VSM hyperplasia in vivo. Isoform switching following vascular injury is a key step in promoting vascular remodeling. Recent availability of genetically engineered mice with smooth muscle deletion of specific isoforms and transgenics expressing an endogenous inhibitor protein (CAMK2N) has enabled a better understanding of CaMKII function in VSM and should facilitate future studies.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cálcio/metabolismo , Músculo Liso Vascular/metabolismo , Animais , Diferenciação Celular/fisiologia , Humanos , Camundongos , Miócitos de Músculo Liso/metabolismo , Transdução de Sinais/fisiologia
8.
Basic Res Cardiol ; 111(6): 65, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27683174

RESUMO

CaM kinase II (CaMKII) has been suggested to drive pathological cardiac remodeling and heart failure. However, the evidence provided so far is based on inhibitory strategies using chemical compounds and peptides that also exert off-target effects and followed exclusively preventive strategies. Therefore, the aim of this study was to investigate whether specific CaMKII inhibition after the onset of cardiac stress delays or reverses maladaptive cardiac remodeling and dysfunction. Combined genetic deletion of the two redundant CaMKII genes δ and γ was induced after the onset of overt heart failure as the result of pathological pressure overload induced by transverse aortic constriction (TAC). We used two different strategies to engineer an inducible cardiomyocyte-specific CaMKIIδ/CaMKIIγ double knockout mouse model (DKO): one model bases on tamoxifen-inducible mER/Cre/mER expression under control of the cardiac-specific αMHC promoter; the other strategy bases on overexpression of Cre recombinase via cardiac-specific gene transfer through adeno-associated virus (AAV9) under control of the cardiac-specific myosin light chain promoter. Both models led to a substantial deletion of CaMKII in failing hearts. To approximate the clinical situation, CaMKII deletion was induced 3 weeks after TAC surgery. In both models of DKO, the progression of cardiac dysfunction and interstitial fibrosis could be slowed down as compared to control animals. Taken together, we show for the first time that "therapeutic" CaMKII deletion after cardiac damage is sufficient to attenuate maladaptive cardiac remodeling and to reverse signs of heart failure. These data suggest that CaMKII inhibition is a promising therapeutic approach to combat heart failure.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Insuficiência Cardíaca/enzimologia , Insuficiência Cardíaca/patologia , Miócitos Cardíacos/enzimologia , Animais , Western Blotting , Modelos Animais de Doenças , Camundongos , Camundongos Knockout , Remodelação Ventricular/fisiologia
9.
J Biol Chem ; 290(39): 23751-65, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26245899

RESUMO

Ca(2+) permeation and/or binding to the skeletal muscle L-type Ca(2+) channel (CaV1.1) facilitates activation of Ca(2+)/calmodulin kinase type II (CaMKII) and Ca(2+) store refilling to reduce muscle fatigue and atrophy (Lee, C. S., Dagnino-Acosta, A., Yarotskyy, V., Hanna, A., Lyfenko, A., Knoblauch, M., Georgiou, D. K., Poché, R. A., Swank, M. W., Long, C., Ismailov, I. I., Lanner, J., Tran, T., Dong, K., Rodney, G. G., Dickinson, M. E., Beeton, C., Zhang, P., Dirksen, R. T., and Hamilton, S. L. (2015) Skelet. Muscle 5, 4). Mice with a mutation (E1014K) in the Cacna1s (α1 subunit of CaV1.1) gene that abolishes Ca(2+) binding within the CaV1.1 pore gain more body weight and fat on a chow diet than control mice, without changes in food intake or activity, suggesting that CaV1.1-mediated CaMKII activation impacts muscle energy expenditure. We delineate a pathway (Cav1.1→ CaMKII→ NOS) in normal skeletal muscle that regulates the intracellular distribution of the fatty acid transport protein, CD36, altering fatty acid metabolism. The consequences of blocking this pathway are decreased mitochondrial ß-oxidation and decreased energy expenditure. This study delineates a previously uncharacterized CaV1.1-mediated pathway that regulates energy utilization in skeletal muscle.


Assuntos
Antígenos CD36/metabolismo , Canais de Cálcio Tipo L/metabolismo , Cálcio/metabolismo , Ácidos Graxos/metabolismo , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Animais , Antígenos CD36/genética , Canais de Cálcio Tipo L/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Metabolismo Energético/fisiologia , Ácidos Graxos/genética , Masculino , Camundongos , Camundongos Transgênicos , Mitocôndrias Musculares/genética , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/metabolismo , Oxirredução
10.
Skelet Muscle ; 5: 4, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25717360

RESUMO

BACKGROUND: Ca(2+) influx through CaV1.1 is not required for skeletal muscle excitation-contraction coupling, but whether Ca(2+) permeation through CaV1.1 during sustained muscle activity plays a functional role in mammalian skeletal muscle has not been assessed. METHODS: We generated a mouse with a Ca(2+) binding and/or permeation defect in the voltage-dependent Ca(2+) channel, CaV1.1, and used Ca(2+) imaging, western blotting, immunohistochemistry, proximity ligation assays, SUnSET analysis of protein synthesis, and Ca(2+) imaging techniques to define pathways modulated by Ca(2+) binding and/or permeation of CaV1.1. We also assessed fiber type distributions, cross-sectional area, and force frequency and fatigue in isolated muscles. RESULTS: Using mice with a pore mutation in CaV1.1 required for Ca(2+) binding and/or permeation (E1014K, EK), we demonstrate that CaV1.1 opening is coupled to CaMKII activation and refilling of sarcoplasmic reticulum Ca(2+) stores during sustained activity. Decreases in these Ca(2+)-dependent enzyme activities alter downstream signaling pathways (Ras/Erk/mTORC1) that lead to decreased muscle protein synthesis. The physiological consequences of the permeation and/or Ca(2+) binding defect in CaV1.1 are increased fatigue, decreased fiber size, and increased Type IIb fibers. CONCLUSIONS: While not essential for excitation-contraction coupling, Ca(2+) binding and/or permeation via the CaV1.1 pore plays an important modulatory role in muscle performance.

11.
Eur J Pharmacol ; 748: 133-42, 2015 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-25542757

RESUMO

In previous studies, we found that stimulation of Toll-like receptor 5 (TLR5) by flagellin induced the activation of mitogen-activated protein kinase (MAPK)-activated protein kinase-2 (MAPKAPK-2) through activation of the p38 MAPK pathway in cultured alveolar epithelial A549 cells. Our studies strongly suggested that MAPKAPK-2 phosphorylated epidermal growth factor receptor (EGFR) at Ser1047. It has been reported that phosphorylation of Ser1047 after treatment with tumor necrosis factor α (TNFα) induced the internalization of EGFR. In the present study, we first found that treatment of A549 cells with hydrogen peroxide induced the activation of MAPKAPK-2 and phosphorylation of EGFR at Ser1047 within 30 min. This was different from flagellin treatment because hydrogen peroxide treatment induced the phosphorylation of EGFR at Tyr1173 as well as Ser1047, indicating the activation of EGFR. We also found that KN93, an inhibitor of CaM kinase II, inhibited the hydrogen peroxide-induced phosphorylation of EGFR at Ser1047 through inhibition of the activation of the p38 MAPK pathway. Furthermore, we examined the internalization of EGFR by three different methods. Flow cytometry with an antibody against the extracellular domain of EGFR and biotinylation of cell surface proteins revealed that flagellin, but not hydrogen peroxide, decreased the amount of cell-surface EGFR. In addition, activation of extracellular signal-regulated kinase by EGF treatment was reduced by flagellin pre-treatment. These results strongly suggested that hydrogen peroxide activated the p38 MAPK pathway via activation of CaM kinase II and that flagellin and hydrogen peroxide regulate the functions of EGFR by different mechanisms.


Assuntos
Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Receptores ErbB/metabolismo , Flagelina/farmacologia , Peróxido de Hidrogênio/farmacologia , Alvéolos Pulmonares/citologia , Acetilcisteína/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Células Epiteliais/citologia , Receptores ErbB/química , Proteínas de Choque Térmico HSP27/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Proteico/efeitos dos fármacos , Serina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia
12.
Genetics ; 196(3): 745-65, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24653209

RESUMO

Neurons release neuropeptides via the regulated exocytosis of dense core vesicles (DCVs) to evoke or modulate behaviors. We found that Caenorhabditis elegans motor neurons send most of their DCVs to axons, leaving very few in the cell somas. How neurons maintain this skewed distribution and the extent to which it can be altered to control DCV numbers in axons or to drive release from somas for different behavioral impacts is unknown. Using a forward genetic screen, we identified loss-of-function mutations in UNC-43 (CaM kinase II) that reduce axonal DCV levels by ∼90% and cell soma/dendrite DCV levels by ∼80%, leaving small synaptic vesicles largely unaffected. Blocking regulated secretion in unc-43 mutants restored near wild-type axonal levels of DCVs. Time-lapse video microscopy showed no role for CaM kinase II in the transport of DCVs from cell somas to axons. In vivo secretion assays revealed that much of the missing neuropeptide in unc-43 mutants is secreted via a regulated secretory pathway requiring UNC-31 (CAPS) and UNC-18 (nSec1). DCV cargo levels in unc-43 mutants are similarly low in cell somas and the axon initial segment, indicating that the secretion occurs prior to axonal transport. Genetic pathway analysis suggests that abnormal neuropeptide function contributes to the sluggish basal locomotion rate of unc-43 mutants. These results reveal a novel pathway controlling the location of DCV exocytosis and describe a major new function for CaM kinase II.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Neurônios Motores/metabolismo , Neuropeptídeos/metabolismo , Vesículas Secretórias/metabolismo , Animais , Axônios/diagnóstico por imagem , Axônios/metabolismo , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Códon sem Sentido , Dendritos/diagnóstico por imagem , Dendritos/metabolismo , Exocitose , Microscopia Eletrônica , Neurônios Motores/ultraestrutura , Fosfoproteínas/metabolismo , Transporte Proteico , Vesículas Secretórias/ultraestrutura , Ultrassonografia , Proteínas de Transporte Vesicular/metabolismo
13.
Mol Med Rep ; 6(5): 1140-4, 2012 11.
Artigo em Inglês | MEDLINE | ID: mdl-22895536

RESUMO

Post-traumatic stress disorder (PTSD) is a significant problem that may affect individuals who have been exposed to a traumatic event or events, including combat, violent crime or childhood abuse. The medial prefrontal cortex (mPFC) is known to be significantly involved in emotional adjustment, particularly introspection, amygdala inhibition and emotional memory. In the acute phase of severe traumatic stress, the mPFC appears to undergo a change in plasticity for a short time, which suggests that the mPFC may be the reponse-sensitizing region. Calcium (Ca2+) is one of most significant intracellular messengers; the appropriate concentration of Ca2+ is necessary for neuronal excitability. When the Ca2+ concentration increases, Ca2+, calmodulin (CaM) and CaM kinase IIα (CaMKIIα) combine together to form the Ca2+­CaM­CaMKIIα signaling pathway, which is important in the plasticity of the central nervous system, learning and memory, mind, behavior and other types of cognitive activities. Our team studied the changes in the Ca2+-CaM-CaMKIIα levels in the mPFC of rats following a single-prolonged stress (SPS). The SPS, a credible method for establishing a rat model of PTSD, has been internationally recognized. The free intracellular Ca2+ concentration in the mPFC in the PTSD group was significantly higher than that in the control group 1 day after SPS exposure (P<0.05) and decreased 7 days after SPS; CaM expression significantly increased, while CaMKIIα expression significantly decreased in the mPFC 1 day after SPS compared with the control group. These findings suggest dysfunction of the Ca2+-CaM-CaMKIIα cascades in the mPFC, which may relate to the pathogenesis of the abnormal functioning of the mPFC in PTSD.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cálcio/metabolismo , Calmodulina/metabolismo , Córtex Pré-Frontal/enzimologia , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Calmodulina/genética , Células Cultivadas , Masculino , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais , Transtornos de Estresse Pós-Traumáticos/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA