Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
1.
Reprod Toxicol ; 130: 108730, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39369966

RESUMO

A strong link between antipsychotic drug use and reduced human sperm quality has been reported. Trifluoperazine (TFP), a commonly used antipsychotic, is now being explored for anticancer applications. Although there are hints that TFP might affect the male reproductive system, its impact on human sperm quality remains uncertain. Using a human sperm and TFP in vitro coculture system, we examined the effect of TFP (12.5, 25, 50 and 100 µM) on human sperm function and physiological parameters. The results showed that 50 µM and 100 µM TFP induced the accumulation of reactive oxygen species (ROS) and a decrease in the mitochondrial membrane potential (MMP) of human sperm, leading to decreased sperm viability, while 25 µM TFP inhibited only the penetration ability, total sperm motility, and progressive motility. Although 12.5 µM and 25 µM TFP increased [Ca2+]i in human sperm, they did not affect capacitation or the acrosome reaction. These results may be explained by the observation that 12.5 µM and 25 µM TFP did not increase tyrosine phosphorylation in human sperm, although TFP increased [Ca2+]i in a time-course traces similar to that of progesterone. Our results indicated that TFP could cause male reproductive toxicity by inducing the accumulation of ROS and a decrease in the MMP in human sperm.

2.
Environ Monit Assess ; 196(9): 842, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39186147

RESUMO

Recovery of valuable resources, such as phosphate recovery from wastewater, can help close the nutrient cycle and is interesting to investigate. This study aims to evaluate phosphate recovery and set aside TOC, OC, and IC in agricultural wastewater using electrocoagulation with a helix electrode configuration. This study employed the Response Surface Methodology (RSM) for statistical analysis and modeling, utilizing a central composite design (CCD). Variation of calcium concentration (2-7 mg/L), voltage (15-45 V), and electrocoagulation time (5-15 min) was applied in an electrocoagulation reactor with a helix-shaped stainless steel cathode and a solid cylindrical Mg anode. Based on RSM analysis, electrocoagulation with a helical electrode configuration significantly affects phosphate recovery and the removal of TOC, OC, and IC when treating agricultural wastewater. Under operating conditions of 15 V, 15 min time, and 2 mg/L calcium concentration, we achieved the lowest phosphate concentration of 0.003 mg/L (99.74% reduction). The highest TOC allowance is > 100% of the initial concentration, the TC allowance is 55.79%, and the IC allowance is 30.91%. The formation of metal hydroxides affects the efficiency of TOC removal in the electrocoagulation process, and higher electrolysis times lead to higher TOC removal efficiency. Higher voltages also improve the coagulation and flotation processes in the reactor. Calcium concentration plays a role in enhancing the flocculation process and binding phosphonates from wastewater.


Assuntos
Agricultura , Cálcio , Fosfatos , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água , Águas Residuárias/química , Agricultura/métodos , Cálcio/análise , Cálcio/química , Eliminação de Resíduos Líquidos/métodos , Fosfatos/análise , Poluentes Químicos da Água/análise , Eletrocoagulação/métodos
3.
Front Endocrinol (Lausanne) ; 15: 1410370, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38872963

RESUMO

Background: The involvement of ATP and cAMP in sperm function has been extensively documented, but the understanding of the role of adenosine and adenosine receptors remains incomplete. This study aimed to examine the presence of adenosine A2A receptor (A2AR) and study the functional role of A2AR in human sperm. Methods: The presence and localization of A2AR in human sperm were examined by western blotting and immunofluorescence assays. The functional role of A2AR in sperm was assessed by incubating human sperm with an A2AR agonist (regadenoson) and an A2AR antagonist (SCH58261). The sperm level of A2AR was examined by western blotting in normozoospermic and asthenozoospermic men to evaluate the association of A2AR with sperm motility and in vitro fertilization (IVF) outcomes. Results: A2AR with a molecular weight of 43 kDa was detected in the tail of human sperm. SCH58261 decreased the motility, penetration ability, intracellular Ca2+ concentration, and CatSper current of human sperm. Although regadenoson did not affect these sperm parameters, it alleviated the adverse effects of SCH58261 on these parameters. In addition, the mean level of A2AR in sperm from asthenozoospermic men was lower than that in sperm from normozoospermic men. The sperm level of A2AR was positively correlated with progressive motility. Furthermore, the fertilization rate during IVF was lower in men with decreased sperm level of A2AR than in men with normal sperm level of A2AR. Conclusions: These results indicate that A2AR is important for human sperm motility and is associated with IVF outcome.


Assuntos
Fertilização in vitro , Receptor A2A de Adenosina , Motilidade dos Espermatozoides , Espermatozoides , Adulto , Feminino , Humanos , Masculino , Agonistas do Receptor A2 de Adenosina/farmacologia , Antagonistas do Receptor A2 de Adenosina/farmacologia , Astenozoospermia/metabolismo , Pirazóis/farmacologia , Pirimidinas/farmacologia , Receptor A2A de Adenosina/metabolismo , Motilidade dos Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo , Espermatozoides/efeitos dos fármacos , Triazóis/farmacologia
4.
Curr Issues Mol Biol ; 46(5): 4403-4416, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38785535

RESUMO

Acute pancreatitis (AP) is characterized by elevated intracellular Ca2+ concentrations, mitochondrial dysfunction, and oxidative stress in pancreatic acinar cells. Algal oil (AO) has demonstrated antioxidant and anti-inflammatory properties. This study aims to explore the effects of algal oil on the microenvironment of AP. Rat pancreatic acinar AR42J cells were pretreated with AO containing 0, 50, 100, or 150 µM of docosahexaenoic acid (DHA) 2 h prior to AP induction using sodium taurocholate (STC). After 1 h of STC treatment, AR42J cells exhibited a significant increase in intracellular Ca2+ concentration and the production of amylase, lipase, reactive oxygen species, and pro-inflammatory mediators, including tumor necrosis factor-α and interleukin-6. These STC-induced increases were markedly reduced in cells pretreated with AO. In comparison to cells without AO, those treated with a high dose of AO before STC exposure demonstrated a significant increase in mitochondrial membrane potential and a decrease in lipid peroxidation. Furthermore, STC-activated nuclear factor kappa-B (NF-κB) was attenuated in AO-pretreated cells, as evidenced by a significant decrease in activated NF-κB. In conclusion, AO may prevent damage to pancreatic acinar cells by alleviating intracellular Ca2+ overload, mitigating mitochondrial dysfunction, reducing oxidative stress, and attenuating NF-κB-targeted inflammation.

5.
Bioorg Med Chem ; 103: 117695, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38522346

RESUMO

Resveratrol oligomers, ranging from dimers to octamers, are formed through regioselective synthesis involving the phenoxy radical coupling of resveratrol building blocks, exhibiting remarkable therapeutic potential, including antidiabetic properties. In this study, we elucidate the mechanistic insights into the insulin secretion potential of a resveratrol dimer, (-)-Ampelopsin F (AmF), isolated from the acetone extract of Vatica chinensis L. stem bark in Pancreatic Beta-TC-6 cell lines. The AmF (50 µM) treated cells exhibited a 3.5-fold increase in insulin secretion potential as compared to unstimulated cells, which was achieved through the enhancement of mitochondrial membrane hyperpolarization, elevation of intracellular calcium concentration, and upregulation of GLUT2 and glucokinase expression in pancreatic Beta-TC-6 cell lines. Furthermore, AmF effectively inhibited the activity of DPP4, showcasing a 2.5-fold decrease compared to the control and a significant 6.5-fold reduction compared to the positive control. These findings emphasize AmF as a potential lead for the management of diabetes mellitus and point to its possible application in the next therapeutic initiatives.


Assuntos
Flavonoides , Células Secretoras de Insulina , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Resveratrol , Glucoquinase/metabolismo , Glucose/metabolismo
6.
MethodsX ; 12: 102570, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38322134

RESUMO

Calcium (Ca2+), a critical secondary messenger, is also known as the molecule of life and death. The cell responds to a minute change in Ca2+ concentration and tightly maintains Ca2+ homeostasis. Therefore, determining the cell Ca2+ level is critical to understand Ca2+ distribution in the cell and various cell processes. Many techniques have been developed to measure Ca2+ in the cell. We review here different methods used to detect and measure Ca2+ in filamentous fungi. Ca2+-sensitive fluorescent chlortetracycline hydrochloride (CTC), Ca2+-selective microelectrode, Ca2+ isotopes, aequorins, and RGECOs are commonly used to measure the Ca2+ level in filamentous fungi. The use of CTC was one of the earliest methods, developed in 1988, to measure the Ca2+ gradient in the filamentous fungus Neurospora crassa. Subsequently, Ca2+-specific microelectrodes were developed later in the 1990s to identify Ca2+ ion flux variations, and to measure Ca2+ concentration. Another method for quantifying Ca2+ is by using radio-labeled Ca2+ as a tracer. The usage of 45Ca to measure Ca2+ in Saccharomyces cerevisiae was reported previously and the same methodology was also used to detect Ca2+ in N. crassa recently. Subsequently, genetically engineered Ca2+ indicators (GECIs) like aequorins and RGECOs have been developed as Ca2+ indicators to detect and visualize Ca2+ inside the cell. In this review, we summarize various methodologies used to detect and measure Ca2+ in filamentous fungi with their advantages and limitations. •Chlortetracycline (CTC) fluorescence assay is used for visualizing Ca2+ level, whereas microelectrodes technique is used to determine Ca2+ flux in the cell.•Radioactive 45Ca is useful for quantification of Ca2+ in the cellular compartments.•Genetically modified calcium indicators (GECIs) are used to study Ca2+ dynamics in the cell.

7.
Intern Med ; 63(8): 1139-1147, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37690849

RESUMO

A hypercalcemic crisis due to primary hyperparathyroidism is a life-threatening condition. We herein report a 71-years-old man with hypercalcemic crisis due to primary hyperparathyroidism with parathyroid adenoma. Generally, hemodialysis or continuous hemodiafiltration using calcium-free or low-calcium dialysate is performed early for hypercalcemic crisis. In this case, continuous hemodialysis with a common calcium concentration dialysate improved the hypercalcemic crisis, and parathyroidectomy was performed. The patient recovered sufficiently. Prediction of hypercalcemia crisis, appropriate introduction and methods of blood purification therapy, and timing decisions for parathyroidectomy are required for therapeutic management of hypercalcemic crisis with parathyroid adenoma.


Assuntos
Hipercalcemia , Hiperparatireoidismo Primário , Neoplasias das Paratireoides , Masculino , Humanos , Idoso , Cálcio , Hipercalcemia/etiologia , Hipercalcemia/terapia , Neoplasias das Paratireoides/complicações , Neoplasias das Paratireoides/cirurgia , Hiperparatireoidismo Primário/complicações , Hiperparatireoidismo Primário/terapia , Soluções para Diálise , Cálcio da Dieta , Diálise Renal
8.
Cryobiology ; 114: 104834, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38065230

RESUMO

Maintaining appropriate intracellular calcium of oocytes is necessary to prevent ultrastructure and organelle damage caused by freezing and cryoprotectants. The present study aimed to investigate whether cryoprotectant-induced changes in the calcium concentrations of oocytes can be regulated to reduce damage to developmental potential and ultrastructure. A total of 33 mice and 1381 oocytes were used to explore the effects of intracellular calcium on the development and ultrastructures of oocytes subjected to 2-aminoethoxydiphenyl borate (2-APB) inhibition or thapsigargin (TG) stimulation. Results suggested that high levels intracellular calcium interfered with TG compromised oocyte survival (84.4 % vs. 93.4 %, p < 0.01) and blastocyst formation in fresh and cryopreservation oocytes (78.1 % vs. 86.4 %, and 60.5 % vs. 72.5 %, p < 0.05) compared with that of 2-APB pretreated oocytes in which Ca2+ was stabilized even though no differences in fertilization and cleavage was detected (p > 0.05). Examination by transmission electron microscopy indicated that the microvilli decreased and shortened, cortical granules considerably decreased in the cortex area, mitochondrial vesicles and vacuoles increased, and the proportion of vacuole mitochondria increased after oocytes were exposed to cryoprotectants. The cryopreservation-warming process deteriorated the negative effects on organelles of survival oocytes. By contrast, a low level of intracellular calcium mediated with 2-APB was supposed to contribute to the protection of organelles. These findings suggested oocyte injuries induced by cryoprotectants and low temperatures can be alleviated. More studies are necessary to confirm the relationship among Ca2+ concentration of the cytoplasm, ultrastructural injuries, and disrupted developmental potential in oocytes subjected to cryopreservation and warming.


Assuntos
Cálcio , Criopreservação , Animais , Camundongos , Criopreservação/métodos , Cálcio/farmacologia , Oócitos , Congelamento , Crioprotetores/farmacologia
9.
Neurotoxicology ; 99: 226-243, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37926220

RESUMO

Exposure to pesticides is associated with an increased risk of developing Parkinson's disease (PD). Currently, rodent-based risk assessment studies cannot adequately capture neurodegenerative effects of pesticides due to a lack of human-relevant endpoints targeted at neurodegeneration. Thus, there is a need for improvement of the risk assessment guidelines. Specifically, a mechanistic assessment strategy, based on human physiology and (patho)biology is needed, which can be applied in next generation risk assessment. The Adverse Outcome Pathway (AOP) framework is particularly well-suited to provide the mechanistic basis for such a strategy. Here, we conducted a semi-systematic review in Embase and MEDLINE, focused on neurodegeneration and pesticides, to develop an AOP network for parkinsonian motor symptoms. Articles were labelled and included/excluded using the online platform Sysrev. Only primary articles, written in English, focused on effects of pesticides or PD model compounds in models for the brain were included. A total of 66 articles, out of the 1700 screened, was included. PD symptoms are caused by loss of function and ultimately death of dopaminergic neurons in the substantia nigra (SN). Our literature review highlights that a unique feature of these cells that increases their vulnerability is their reliance on continuous low-level influx of calcium. As such, excess intracellular calcium was identified as a central early Key Event (KE). This KE can lead to death of dopaminergic neurons of the SN, and eventually parkinsonian motor symptoms, via four distinct pathways: 1) activation of calpains, 2) endoplasmic reticulum stress, 3) impairment of protein degradation, and 4) oxidative damage. Several receptors have been identified that may serve as molecular initiating events (MIEs) to trigger one or more of these pathways. The proposed AOP network provides the biological basis that can be used to develop a mechanistic testing strategy that captures neurodegenerative effects of pesticides.


Assuntos
Rotas de Resultados Adversos , Doença de Parkinson , Transtornos Parkinsonianos , Praguicidas , Humanos , Doença de Parkinson/metabolismo , Cálcio/metabolismo , Transtornos Parkinsonianos/induzido quimicamente , Neurônios Dopaminérgicos , Praguicidas/efeitos adversos , Substância Negra
10.
Explore (NY) ; 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37926604

RESUMO

INTRODUCTION: A revision of several experimental results on cells shows that electromagnetic radiation, either produced by biofield therapy (BFT) or laser, induced an increase in intracellular free calcium concentration. An explanation of this phenomenon is proposed. METHODS: Quantum chemistry calculations were performed on Ca2+ with different degrees of hydration with the DFT/r2SCAN-3c method together with the implicit solvation model SMD. RESULTS: Ca2+ dehydration energy by quantum calculations, in an aqueous medium, coincides with the experimental results of the energy of the photon emitted in biofield therapies and lasers. This strongly suggests that the increased intracellular free calcium concentration is because of calcium ion dehydration upon the application of radiation. The Ca2+ dehydration increases the membrane potential due to an augment of the net charge on Ca2+ and it moves near the membrane by the attraction of its negative ions. The voltage-dependent channels are also activated by this membrane potential. CONCLUSION: The increased intracellular Ca2+ concentration occurs with biofield therapy (BFT) or laser. A novel explanation is given based on resonance-induced Ca2+ dehydration with applied radiation, supported by experimental data and theoretical calculations.

11.
Int J Mol Sci ; 24(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37895141

RESUMO

Since glucose stimulates protein biosynthesis in beta cells concomitantly with the stimulation of insulin release, the possible interaction of both processes was explored. The protein biosynthesis was inhibited by 10 µM cycloheximide (CHX) 60 min prior to the stimulation of perifused, freshly isolated or 22 h-cultured NMRI mouse islets. CHX reduced the insulinotropic effect of 25 mM glucose or 500 µM tolbutamide in fresh but not in cultured islets. In cultured islets the second phase of glucose stimulation was even enhanced. In fresh and in cultured islets CHX strongly reduced the content of proinsulin, but not of insulin, and moderately diminished the [Ca2+]i increase during stimulation. The oxygen consumption rate (OCR) of fresh islets was about 50% higher than that of cultured islets at basal glucose and was significantly increased by glucose but not tolbutamide. In fresh, but not in cultured, islets CHX diminished the glucose-induced OCR increase and changes in the NAD(P)H- and FAD-autofluorescence. It is concluded that short-term CHX exposure interferes with the signal function of the mitochondria, which have different working conditions in fresh and in cultured islets. The interference may not be an off-target effect but may result from the inhibited cytosolic synthesis of mitochondrial proteins.


Assuntos
Ilhotas Pancreáticas , Camundongos , Feminino , Animais , Secreção de Insulina , Ilhotas Pancreáticas/metabolismo , Cicloeximida/farmacologia , Insulina/metabolismo , Glucose/metabolismo , Tolbutamida/farmacologia , Tolbutamida/metabolismo , NAD/metabolismo , Mitocôndrias/metabolismo , Cálcio/metabolismo
12.
Medicina (Kaunas) ; 59(10)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37893523

RESUMO

Background and Objectives: We have recently reported that Fluvastatin, Atorvastatin, Simvastatin and Rosuvastatin have calcium channel antagonistic activities using rabbits' intestinal preparations. The current study is focused on the effects of Pitavastatin and Lovastatin for possible inhibition of vascular L-Type calcium channels, which may have vasorelaxant effect(s). Combined effects of Pitavastatin and Lovastatin in the presence of Amlodipine were also tested for vasorelaxation. Materials and Methods: Possible relaxing effects of Pitavastatin and Lovastatin on 80 mM Potassium chloride (KCL)-induced contractions and on 1 µM norepinephrine (N.E)-induced contractions were studied in isolated rabbit's aortic strips preparations. Relaxing effects on 80 mM KCL-induced vascular contractions were further verified by constructing Calcium Concentration Response Curves (CCRCs), in the absence and presence of three different concentrations of Pitavastatin and Lovastatin using CCRCs as negative control. Verapamil was used as a standard drug that has L-Type calcium channel binding activity. In other series of experiments, we studied drug interaction(s) among Pitavastatin, Lovastatin, and amlodipine. Results: The results of this study imply that Lovastatin is more potent than Pitavastatin for having comparatively lower EC50 (7.44 × 10-5 ± 0.16 M) in intact and (4.55 × 10-5 ± 0.10 M) in denuded aortae for KCL-induced contractions. Lovastatin amplitudes in intact and denuded aortae for KCL-induced contractions were, respectively, 24% and 35.5%; whereas amplitudes for Pitavastatin in intact and denuded aortae for KCL-induced contractions were 34% and 40%, respectively. A left shift in the EC50 values for the statins was seen when we added amlodipine in EC50 (Log Ca++ M). Right shift for CCRCs state that Pitavastatin and Lovastatin have calcium channel antagonistic effects. Lovastatin in test concentration (6.74 × 10-7 M) produced a right shift in relatively lower EC50 (-2.5 ± 0.10) Log Ca++ M as compared to Pitavastatin, which further confirms that lovastatin is relatively more potent. The right shift in EC50 resembles the right shift of Verapamil. Additive effect of Pitavastatin and Lovastatin was noted in presence of amlodipine (p < 0.05). Conclusions: KCL (80 mM)-induced vascular contractions were relaxed by Pitavastatin and Lovastatin via inhibitory effects on L-Type voltage-gated calcium channels. Lovastatin and Pitavastatin also relaxed Norepinephrine (1 µM)-induced contractions giving an insight for involvement of dual mode of action of Pitavastatin and Lovastatin.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Vasodilatadores , Animais , Coelhos , Anlodipino/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Lovastatina/farmacologia , Lovastatina/uso terapêutico , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/metabolismo , Verapamil/farmacologia , Norepinefrina/farmacologia
13.
Int J Mol Sci ; 24(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37298207

RESUMO

Cardiotoxins (CaTx) of the three-finger toxin family are one of the main components of cobra venoms. Depending on the structure of the N-terminal or the central polypeptide loop, they are classified into either group I and II or P- and S-types, respectively, and toxins of different groups or types interact with lipid membranes variably. While their main target in the organism is the cardiovascular system, there is no data on the effects of CaTxs from different groups or types on cardiomyocytes. To evaluate these effects, a fluorescence measurement of intracellular Ca2+ concentration and an assessment of the rat cardiomyocytes' shape were used. The obtained results showed that CaTxs of group I containing two adjacent proline residues in the N-terminal loop were less toxic to cardiomyocytes than group II toxins and that CaTxs of S-type were less active than P-type ones. The highest activity was observed for Naja oxiana cobra cardiotoxin 2, which is of P-type and belongs to group II. For the first time, the effects of CaTxs of different groups and types on the cardiomyocytes were studied, and the data obtained showed that the CaTx toxicity to cardiomyocytes depends on the structures both of the N-terminal and central polypeptide loops.


Assuntos
Proteínas Cardiotóxicas de Elapídeos , Contratura , Toxinas Biológicas , Ratos , Animais , Proteínas Cardiotóxicas de Elapídeos/farmacologia , Proteínas Cardiotóxicas de Elapídeos/toxicidade , Cálcio , Miócitos Cardíacos , Venenos Elapídicos/química , Peptídeos , Cálcio da Dieta
14.
ACS Chem Neurosci ; 14(10): 1701-1716, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37104541

RESUMO

Neuropathic pain is a chronic condition that tends to worsen over time, leading to a significant decline in patients' quality of life. The elderly population is disproportionately affected by this burden, as evidenced by the high prevalence of this condition in such a demographic. While previous studies have demonstrated the involvement of various signaling pathways critical to neuropathic pain, the relationship between aging and the onset or persistence of this condition has been overlooked. Greater focus was placed on the efficacy and tolerability of medications, as well as new protocols for assessing pain in patients with cognitive impairment, with less regard for reasons underlying the increased susceptibility of elderly individuals to pain. This Review thus aims to summarize the contributions of aging to neuropathic pain, covering weakened repair function, increased intracellular calcium signaling, enhanced oxidative stress, dysfunctional brain function, impaired descending inhibition, alterations in the innate immune cell population, and the effects of comorbidity caused by aging. A better understanding of these aspects could drive new treatment options thereby yielding better outcomes for elderly patients in pain.


Assuntos
Neuralgia , Qualidade de Vida , Humanos , Idoso , Neuralgia/tratamento farmacológico , Envelhecimento , Doença Crônica
15.
Exp Dermatol ; 32(2): 165-176, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36302111

RESUMO

Melanocytes stimulated by ultraviolet radiation (UVR) produce melanin and melanosomes, which causes skin pigmentation and acts as an important physiological defence process for photoprotection. Neutral luminal pH of melanosomes is critical for providing optimal conditions for the rate-limiting, pH-sensitive melanin synthesizing enzyme tyrosinase (TYR). As a major component of extraocular phototransduction pathway, transient receptor potential ankyrin1 (TRPA1) can be activated by ultraviolet B (UVB) and reported to be expressed in melanocytes. However, whether TRPA1 is involved in the regulation of melanogenesis remains unclear. Melanogenic activity of TRPA1 was evaluated in primary normal human epidermal melanocytes (HEMs) and murine B16-F10 cell cultures, and the effects of topical applications of TRPA1 specific agonist and antagonist on UVB-induced skin pigmentation were confirmed on in vivo guinea pig models. Calcium (Ca2+ ) imaging and pH imaging were performed to analyse the effects of TRPA1 on intracellular Ca2+ concentration ([Ca2+ ]ic ) and melanosome luminal pH. TRPA1 regulated melanin synthesis, UVB-induced Ca2+ influx and melanosome luminal pH in HEMs and B16-F10 cells. Topical treatment of TRPA1 specific agonist JT010 increased UVB-induced skin pigmentation in guinea pigs, while topical using of TRPA1 selective antagonist HC-030031 mitigated such pigmentation. Our results indicated that TRPA1 activated by UVB enhanced the skin pigmentation, most likely by regulating the [Ca2+ ]ic and the melanosomal pH, consequently influencing the enzymatic activity of TYR. Therefore, the results suggest TRPA1 as a potential therapeutic target in the treatment of skin pigmented disorders that are at high risk under UVB irradiation.


Assuntos
Melanossomas , Transtornos da Pigmentação , Humanos , Animais , Camundongos , Cobaias , Melanossomas/metabolismo , Melaninas/metabolismo , Pigmentação da Pele , Raios Ultravioleta , Melanócitos/metabolismo , Transtornos da Pigmentação/metabolismo , Concentração de Íons de Hidrogênio , Pigmentação , Canal de Cátion TRPA1/metabolismo
16.
JACC Basic Transl Sci ; 7(10): 1021-1037, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36337919

RESUMO

Modulation of sarcomere contractility represents a new therapeutic opportunity for the treatment of heart failure by directly targeting the thick and thin filament proteins of the sarcomere to increase cardiac muscle contraction. This study compared the effect of 2 small molecules (M and T) that selectively alter myosin thick filament (M) or troponin thin filament (T) activity on overall cardiac muscle mechanics. This study revealed key differences related to the mechanism utilized by M and T to increase contractile force generation and suggests that targeting different proteins within the sarcomere may result in differentiating therapeutic profiles.

17.
Front Physiol ; 13: 1037230, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439266

RESUMO

Vascular calcification (VC) is associated with a number of cardiovascular diseases, as well as chronic kidney disease. The role of smooth muscle cells (SMC) has already been widely explored in VC, as has the role of intracellular Ca2+ in regulating SMC function. Increased intracellular calcium concentration ([Ca2+]i) in vascular SMC has been proposed to stimulate VC. However, the contribution of the non-selective Piezo1 mechanosensitive cation channels to the elevation of [Ca2+]i, and consequently to the process of VC has never been examined. In this work the essential contribution of Piezo1 channels to arterial medial calcification is demonstrated. The presence of Piezo1 was proved on human aortic smooth muscle samples using immunohistochemistry. Quantitative PCR and Western blot analysis confirmed the expression of the channel on the human aortic smooth muscle cell line (HAoSMC). Functional measurements were done on HAoSMC under control and calcifying condition. Calcification was induced by supplementing the growth medium with inorganic phosphate (1.5 mmol/L, pH 7.4) and calcium (CaCl2, 0.6 mmol/L) for 7 days. Measurement of [Ca2+]i using fluorescent Fura-2 dye upon stimulation of Piezo1 channels (either by hypoosmolarity, or Yoda1) demonstrated significantly higher calcium transients in calcified as compared to control HAoSMCs. The expression of mechanosensitive Piezo1 channel is augmented in calcified arterial SMCs leading to a higher calcium influx upon stimulation. Activation of the channel by Yoda1 (10 µmol/L) enhanced calcification of HAoSMCs, while Dooku1, which antagonizes the effect of Yoda1, reduced this amplification. Application of Dooku1 alone inhibited the calcification. Knockdown of Piezo1 by siRNA suppressed the calcification evoked by Yoda1 under calcifying conditions. Our results demonstrate the pivotal role of Piezo1 channels in arterial medial calcification.

18.
Front Cell Neurosci ; 16: 964227, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36176629

RESUMO

Background: In neonatal mice, anesthesia with sevoflurane depolarizes the GABA Type A receptor (GABAAR), which leads to cognitive impairment. Calcium accumulation in neurons can lead to neurotoxicity. Voltage-gated calcium channels (VGCCs) can increase intracellular calcium concentration under isoflurane and hypoxic conditions. The underlying mechanisms remain largely unknown. Methods: Six-day-old mice were anesthetized with 3% sevoflurane for 2 h/day for 3 days. The Y-Maze, new object recognition (NOR) test, the Barnes maze test, immunoassay, immunoblotting, the TUNEL test, and Golgi-Cox staining were used to assess cognition, calcium concentration, inflammatory response, GABAAR activation, VGCC expression, apoptosis, and proliferation of hippocampal nerve cells in mice and HT22 cells. Results: Compared with the control group, mice in the sevoflurane group had impaired cognitive function. In the sevoflurane group, the expression of Gabrb3 and Cav1.2 in the hippocampal neurons increased (p < 0.01), the concentration of calcium ions increased (p < 0.01), inflammatory reaction and apoptosis of neurons increased (p < 0.01), the proliferation of neurons in the DG area decreased (p < 0.01), and dendritic spine density decreased (p < 0.05). However, the inhibition of Gabrb3 and Cav1.2 alleviated cognitive impairment and reduced neurotoxicity. Conclusions: Sevoflurane activates VGCCs by inducing GABAAR depolarization, resulting in cognitive impairment. Activated VGCCs cause an increase in intracellular calcium concentration and an inflammatory response, resulting in neurotoxicity and cognitive impairment.

19.
Animal Model Exp Med ; 5(5): 445-452, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36168142

RESUMO

BACKGROUND: To understand the relationship between myocardial contractility and external stimuli, detecting ex vivo myocardial contractility is necessary. METHODS: We elaborated a method for contractility detection of isolated C57 mouse papillary muscle using Myostation-Intact system under different frequencies, voltages, and calcium concentrations. RESULTS: The results indicated that the basal contractility of the papillary muscle was 0.27 ± 0.03 mN at 10 V, 500-ms pulse duration, and 1 Hz. From 0.1 to 1.0 Hz, contractility decreased with an increase in frequency (0.45 ± 0.11-0.10 ± 0.02 mN). The voltage-initiated muscle contractility varied from 3 to 6 V, and the contractility gradually increased as the voltage increased from 6 to 10 V (0.14 ± 0.02-0.28 ± 0.03 mN). Moreover, the muscle contractility increased when the calcium concentration was increased from 1.5 to 3 mM (0.45 ± 0.17-1.11 ± 0.05 mN); however, the contractility stopped increasing even when the concentration was increased to 7.5 mM (1.02 ± 0.23 mN). CONCLUSIONS: Our method guaranteed the survivability of papillary muscle ex vivo and provided instructions for Myostation-Intact users for isolated muscle contractility investigations.


Assuntos
Contração Miocárdica , Músculos Papilares , Camundongos , Animais , Músculos Papilares/fisiologia , Contração Miocárdica/fisiologia
20.
Front Vet Sci ; 9: 939440, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35968001

RESUMO

MicroRNAs (miRNAs) are posttranscriptional regulators that play key roles in meat color regulation. Changes in miRNA expression affect their target mRNAs, leading to multifunctional effects on biological processes and phenotypes. In this study, a G > A mutation site located upstream of the precursor miR-22 sequence in Suhuai pigs was significantly correlated with the meat color parameter a*(redness) of the porcine longissimus dorsi (LD) muscle. AA genotype individuals had the highest average meat color a* value and the lowest miR-22 level. When G > A mutation was performed in the miR-22 overexpression vector, miR-22 expression significantly decreased. Considering that Ca2+ homeostasis is closely related to pig meat color, our results further demonstrated that ELOVL6 is a direct target of miR-22 in pigs. The effects of miR-22 on skeletal muscle intracellular Ca2+ were partially caused by the suppression of ELOVL6 expression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA