Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 784
Filtrar
1.
BMC Oral Health ; 24(1): 584, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773504

RESUMO

BACKGROUND: Apical surgery with standard retrograde maneuvers may be challenging in certain cases. Simplifying apical surgery to reduce operating time and streamline retrograde manipulation is an emerging need in clinical endodontics. AIM OF THE STUDY: The aim of the study was to compare the bacterial sealing ability of a calcium silicate-based sealer with the single cone technique combined with root end resection only, and calcium silicate-based sealer as a retrograde filling versus MTA retrofilling, and to analyze bacterial viability using confocal laser scanning microscope (CLSM). MATERIALS AND METHODS: In this in vitro experimental study, 50 extracted human maxillary incisor teeth were instrumented and randomly divided into five groups: three experimental groups, a positive control group, and a negative control group (n = 10/group). In the experimental groups, the roots were obturated using the single cone technique (SCT) and a calcium silicate-based sealer. In group 1, the roots were resected 3 mm from the apex with no further retrograde preparation or filling. In groups 2 and 3, the roots were resected, retroprepared, and retrofilled with either a calcium silicate-based sealer or MTA, respectively. Group 4 (positive control) was filled with a single gutta-percha cone without any sealer. In group 5 (negative control), the canals were left empty, and the roots were sealed with wax and nail varnish. A bacterial leakage model using Enterococcus faecalis was employed to assess the sealing ability over a 30-day period, checking for turbidity and analyzing colony forming units (CFUs) per milliliter. Five specimens from each group were examined using CLSM for bacterial viability. Data for the bacterial sealing ability were statistically analyzed using chi-squared and Kruskal-Wallis tests. RESULTS: The three experimental groups did not show significant differences in terms of bacterial leakage, or bacterial counts (CFUs) (P > 0.05). However, significant differences were observed when comparing the experimental groups to the positive control group. Notably, the calcium silicate-based sealer, when used as a retrofilling, yielded the best sealing ability. CLSM imaging revealed viable bacterial penetration in all the positive control group specimens while for the experimental groups, dead bacteria was the prominent feature seen. CONCLUSION: Within the limitations of this study, it could be concluded that the bacterial sealing ability of calcium silicate-based sealer with the single cone technique combined with root end resection only and calcium silicate-based sealer as a retrograde filling were comparable with MTA retrofilling during endodontic surgical procedures.


Assuntos
Compostos de Cálcio , Materiais Restauradores do Canal Radicular , Silicatos , Silicatos/uso terapêutico , Compostos de Cálcio/uso terapêutico , Humanos , Materiais Restauradores do Canal Radicular/farmacologia , Materiais Restauradores do Canal Radicular/uso terapêutico , Óxidos/farmacologia , Óxidos/uso terapêutico , Combinação de Medicamentos , Compostos de Alumínio/uso terapêutico , Técnicas In Vitro , Microscopia Confocal , Infiltração Dentária/microbiologia , Obturação Retrógrada/métodos , Enterococcus faecalis/efeitos dos fármacos , Viabilidade Microbiana , Incisivo , Apicectomia/métodos
2.
J Endod ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38729300

RESUMO

INTRODUCTION: Recently, calcium silicate-based sealers (CSSs) have gained popularity in endodontic practice due to their biocompatibility and antimicrobial properties. They are considered viable alternatives to epoxy resin-based sealers. With the increased use of CSSs and warm vertical compaction techniques in root canal treatment, evaluating the impact of heat on CSSs properties is essential, therefore this review aimed to present a qualitative synthesis of available in vitro studies assessing the impact of heat on the physical-chemical properties of CSSs. METHODS: Following the PRISMA 2020 guidelines, a systematic advanced electronic search was performed in Scoups, Embase, Medline (via PubMed), Web of Science, and Cochrane databases in November 2023 and updated in April 2024. In vitro studies that evaluated the physical-chemical properties of CSSs were eligible. PRILE 2021 guidelines were used for the assessment of the risk of bias included studies. RESULTS: The search identified a total of 6421 preliminary results and 10 studies were included for qualitative assessment. 11 different physiochemical properties were assessed by the included studies. Setting time and flow were the most evaluated property among the studies. A qualitative synthesis of the evidence on each property is presented. CONCLUSIONS: Based on the in vitro studies assessed in the present systematic review, results reveal that exposing CSSs to heat can accelerate their setting time, reduce their flow, and increase their film thickness. Concerns persist regarding solubility, viscosity, radiopacity, dimensional change, microhardness, porosity, and compressive strength; requiring further research. Certain CSSs, like MTA Fillapex and Endosequence BC sealer HiFlow, show minimal changes under heat, making them potential candidates for warm filling techniques.

3.
BMC Oral Health ; 24(1): 554, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38735924

RESUMO

This in vitro study compared various obturation techniques with bioceramic sealers for filling C-shaped 3D-printed replicas. A mandibular molar with a C-shaped root canal with a C1 configuration was obtained. After instrumenting with M3 Pro Gold files (United Dental, Shanghai, China) up to size #30/0.04, a CBCT scan of the tooth was taken. Sixty 3D-printed replicas of the tooth were created. The samples were obturated with EndoSeal TCS sealer (E. TCS; Maruchi, Wonju, Korea) or EndoSeal MTA (E. MTA; Maruchi, Wonju, Korea) (n = 30). The samples in each group were obturated with the following techniques (n = 10): (1) single-cone technique (SC), (2) SC with ultrasonic activation (UA), and (3) cold hydraulic compaction (CHC). Following incubation, the replicas' apical, middle, and coronal thirds were inspected under a digital microscope, and the proportion of filling material and void were calculated. Also, the obturation time and sealer extrusion were recorded. Data were analyzed using ANOVA, LSD post-hoc, and the chi-square tests (α = 0.05). The results indicated that in the apical third, E. TCS-SC, E. TCS-UA, and E. MTA-UA had the lowest void percentage among groups (p < 0.05). In the middle thirds, samples obturated with E. TCS-UA showed a significantly lower void percentage among all groups (p < 0.05). However, in the coronal third, E. TCS-CHC showed the least void percentage (p < 0.05), followed by E. TCS-UA and E. MTA-CHC. The E. TCS-SC and E. TCS-UA were the least time-consuming methods (p < 0.05). Sealer extrusion significantly differed among the groups, with E. MTA-UA and E. TCS-UA showing higher incidence (p = 0.019). It was concluded that E. TCS-UA was the most convenient obturation technique. However, care must be taken when obturating the canals with high flow and ultrasonic activation near the vital anatomical landmarks.


Assuntos
Impressão Tridimensional , Materiais Restauradores do Canal Radicular , Obturação do Canal Radicular , Obturação do Canal Radicular/métodos , Humanos , Combinação de Medicamentos , Dente Molar/diagnóstico por imagem , Técnicas In Vitro , Compostos de Cálcio , Óxidos , Cavidade Pulpar/diagnóstico por imagem , Compostos de Alumínio , Tomografia Computadorizada de Feixe Cônico/métodos , Silicatos
4.
Adv Mater ; : e2404842, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767289

RESUMO

Revascularization after rotator cuff repair is crucial for tendon-to-bone healing. The chirality of materials has been reported to influence their performance in tissue repair. However, data on the use of chiral structures to optimize biomaterials as a revascularization strategy remain scarce. Here, we develop calcium silicate hydrate (CSO) films with hierarchical chirality on the atomic to micrometer scale. Interestingly, levorotatory CSO (L-CSO) films promote the migration and angiogenesis of endothelial cells, whereas dextral and racemic CSO films do not induce the same effect. Molecular analysis demonstrate that L-chirality can be recognized by integrin receptors and lead to the formation of focal adhesion, which activates mechanosensitive ion channel transient receptor potential vanilloid 4 to conduct Ca2+ influx. Consequently, the phosphorylation of serum response factor is biased by Ca2+ influx to promote the vascular endothelial growth factor receptor 2 signaling pathway, resulting in enhanced angiogenesis. After implanted in a rat rotator cuff tear model, L-CSO films strongly enhance vascularization at the enthesis, promoting collagen maturation, increasing bone and fibrocartilage formation, and eventually improving the biomechanical strength. This study reveals the mechanism through which chirality influences angiogenesis in endothelial cells and provides a critical theoretical foundation for the clinical application of chiral biomaterials. This article is protected by copyright. All rights reserved.

5.
Aust Endod J ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38745548

RESUMO

This study evaluated the effectiveness of three different irrigant activation techniques in cleaning and establishing patency during retreatment of root canals obturated with gutta-percha and bioceramic sealer. 60 extracted premolars with oval-shaped canals were instrumented and obturated with gutta-percha and EndosequenceBC sealer using the 'warm hydraulic condensation' technique. The teeth were retreated using Protaper Universal Retreatment and XP-Endo Shaper system and divided into four groups according to the irrigant activation protocol used: control, passive ultrasonic irrigation (PUI), Endovac irrigation (EVI) and XP-Endo Finisher R (XPFR). Apical patency was achieved in all the samples of the XPFR group (100%), which showed a significantly higher success rate compared with the control (73.3%) and EVI groups (73.3%) (p < 0.05). The scanning electron microscopic evaluation revealed significantly cleaner middle and apical third root canals in the PUI and XPFR groups compared with the control group (p < 0.05). These findings suggest that XPFR effectively cleans and establishes patency in root canals filled with bioceramic sealers.

6.
Int J Paediatr Dent ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605507

RESUMO

BACKGROUND: Different pulp capping materials have different origins and compositions, require different preparations, and may vary in their bioactive properties. AIM: The purpose of this study was to evaluate the antibacterial activity, biocompatibility, and mineralization-inducing potential of calcium silicate-based pulp capping materials. DESIGN: Six contemporary calcium silicate-based cements, ProRoot MTA, MTA Angelus, Biodentine, EndoSequence, NeoMTA 2, and NeoPutty, were evaluated. The antibacterial effects of these materials against Streptococcus mutans UA159 and Enterococcus faecalis ATCC 29212 were determined by the agar diffusion assay and the direct culture test. The biocompatibility and mineralization-inducing potential of these materials in preodontoblastic 17IIA11 cells were evaluated by the MTT assay and by Alizarin Red S staining, respectively. RESULTS AND CONCLUSION: In agar diffusion test, only Biodentine showed distinct antibacterial effects against S. mutans. All the tested materials, however, showed antibacterial effects against S. mutans and E. faecalis in the direct culture test, with Biodentine showing the strongest growth inhibition against both S. mutans and E. faecalis. All the tested materials showed acceptable biocompatibility and mineralization-supporting potential in our experimental conditions. In summary, ProRoot MTA, MTA Angelus, Biodentine, EndoSequence, NeoMTA 2, and NeoPutty demonstrated acceptable in vitro antimicrobial, biocompatible, and mineralization-supporting properties.

7.
J Pharm Bioallied Sci ; 16(Suppl 1): S90-S92, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38595341

RESUMO

Aim: This systematic review was conducted with the purpose of analyzing the effects of root-end sealers in endodontic re-treatment cases and comparing calcium-based sealers with sealers, which were resin-based. Methodology: We conducted this review based on the principles of Cochrane systematic type of studies and also based on guidelines of Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA). An exhaustive search was conducted across PubMed, Medline, and Embase databases for the studies, which were based on root end sealers in cases of endodontic re-treatments. The data were then analyzed statistically with the help of SPSS 25.0. Results: It was seen that when comparing pain levels in post-obturation cases with these sealers after 24 hours and 48 hours, not much of statistically noteworthy differences were evident. Mean difference (MD) values at 24 hours were -0.20 with confidence intervals between -0.44 and 0.07 and P value of 0.15, whereas in case of 48 hours, MD was -0.36, CI- 0.65, and P value was 0.03. However, the results were slightly better with calcium-based sealers. Conclusion: Calcium silicate-based root end obturation sealers had similar performance when compared to resin-based sealers when we compared variables like pain intensity, etc.

8.
Materials (Basel) ; 17(8)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38673289

RESUMO

INTRODUCTION: We compared the effects of heat on the physicochemical properties of recently developed calcium silicate-based sealers (CSBSs), including BioRoot Flow, BioRoot RCS, and AH Plus Bioceramic sealer, with those of the epoxy-resin-based sealer (ERBS) AH Plus. METHODS: The flow, film thickness, setting time, and solubility of sealers were evaluated at 37 °C and 100 °C using ISO 6876/2012. Furthermore, pH and calcium ion release were evaluated at these temperatures. In addition, the mass change in sealers at a high temperature was assessed via thermogravimetric analysis. Then, the chemical composition and components of the sealers were analyzed using a scanning electron microscope and Fourier-transform infrared spectroscopy (FTIR). RESULTS: BioRoot Flow, AH Plus Bioceramic, and AH Plus complied with ISO standards in terms of flow and film thickness, both before and after heat application. However, BioRoot RCS exhibited significantly increased film thickness at 100 °C. The setting times of all sealers were significantly reduced at 100 °C. The solubility of CSBS was >3%, exceeding the ISO 6876/2012 standard, both before and after heat exposure. Conversely, the solubility of AH Plus complied with the standard, regardless of the thermal condition. For 4 weeks, CSBS showed a significantly higher pH than AH Plus at both 37 °C and 100 °C. After heat treatment, calcium release decreased in Bioroot RCS and BioRoot Flow, while AH Plus showed no significant differences before and after treatment. However, CSBS consistently exhibited significantly higher calcium release than AH Plus at both temperatures. An FTIR analysis revealed that the chemical composition of the sealers did not change at the high temperature, whereas a thermogravimetric analysis demonstrated a >5% weight reduction in CSBS and a 0.005% weight reduction in AH Plus at 100 °C. CONCLUSIONS: BioRoot Flow, AH Plus Bioceramic, and AH Plus possess favorable physicochemical properties, which make them suitable for application under thermal conditions. At a high temperature, BioRoot RCS did not exhibit changes in its chemical composition. However, its film thickness was increased, and pH and solubility were reduced. Therefore, caution is needed when it is applied at high temperatures, such as during the warm obturation technique.

9.
Dent J (Basel) ; 12(4)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38667997

RESUMO

This study aimed to review the considerations for choosing a suitable sealer according to various endodontic scenarios. An electronic search of PubMed, Scopus, and the Web of Science was undertaken for the keywords of 'sealer choosing', 'appropriate sealer', 'suitable sealer', 'sealer for clinical scenario', and 'sealer for clinical situations'. However, the literature review revealed a lack of studies with practical clinical recommendations regarding the choice of appropriate endodontic root canal sealers for particular clinical situations of root canal treatment. Therefore, a narrative review was undertaken under the basis of the characteristics of an epoxy resin-based sealer (ERS) versus a calcium silicate-based sealer (CSS). Based on the evidence found through the review, the choice of an appropriate sealer in a variety of clinical scenarios was proposed. An ERS is recommended for one-visit non-vital cases, teeth with periodontal involvement, cracked teeth, and internal root resorption without root perforation. A CSS is recommended for vital or non-vital cases in multiple visits, teeth with internal root resorption with perforation or internal approach for external cervical resorption, teeth with open apices, and teeth with iatrogenic aberrations.

10.
Dent J (Basel) ; 12(4)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38668018

RESUMO

This study aimed to examine how heating affects the physical properties of a newly developed premixed calcium silicate-containing sealer (AH Plus Bioceramic Sealer; AHB), in comparison with EndoSequence BC Sealer (ES), AH Plus Jet (AH), and Pulp Canal Sealer. The setting time, flow, and film thickness were tested with or without heating at 100 °C for 30 or 60 s, in accordance with ISO6876:2012 standards. Ultrastructural and elemental analyses were performed with scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). Data were analyzed using one-way analysis of variance (ANOVA) with a Tukey post hoc test (α = 0.05). All sealers exhibited significantly shorter setting time and flow after heating at 100 °C for 30 and 60 s (p < 0.05). After heating, AHB showed a significantly higher film thickness compared to that of the other materials (p < 0.05). None of the tested properties of heat-applied AHB and ES met ISO standards, except the setting time in ES. The SEM/EDS results for AHB and ES were not affected by heating. The detected changes in physical properties can negatively impact the performance of premixed calcium silicate-containing sealers, particularly AHB, when warm vertical compaction is employed.

11.
J Conserv Dent Endod ; 27(3): 286-292, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38634031

RESUMO

Aim: The aim of this study was to compare the retreatability of NeoSEALER Flo obturated with warm vertical compaction (WVC) and single-cone (SC) techniques using two different retreatment systems. Materials and Methods: Thirty-two root canals were shaped and obturated with NeoSEALER Flo either in an SC obturation technique or a WVC technique. Samples were retreated using ProTaper retreatment or EdgeFile XR retreatment system. The percentage of remaining debris after retreatment was analyzed under a scanning electron microscope using ImageJ software. The time taken to reach full working length (WL) and induce patency was recorded. Statistical Analysis: Statistical analysis was performed using an unpaired t-test and a one-way analysis of variance test. Results: The percentage of remaining debris after retreatment was significantly higher in the SC technique than in the WVC technique, regardless of the retreatment system used. EdgeFile XR system removed more filling material than the ProTaper retreatment system, regardless of the obturation technique. The apical region showed significantly higher remaining debris than other regions in all groups. The WL and patency were achieved faster in the SC group, while in the WVC group, the EdgeFile XR system was faster. Conclusions: The WVC technique showed better retrieval of the filling material; however, a longer time was taken for retreatment. EdgeFile XR system performed better in removing filling materials from inside the canals.

12.
Environ Technol ; : 1-14, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38471045

RESUMO

Arsenic-containing sludge (ABG) is a common hazardous waste in the metallurgical industry and poses a serious threat to environmental safety. However, its instability and mobility have a significant impact on the environment. Traditional curing methods are time-consuming and costly, often resulting in incomplete curing. In this study, we introduce a curing/stabilisation method with a steel slag-fly ash gel material after ABG acid treatment. The toxic leaching of arsenic from ABG was reduced to 220 mg/kg by treating the sludge with acids (H2SO4-H3PO4) at different solid-to-liquid ratios. Afterward, H2O2 was added to oxidise As(III) to As(V). The ABG was cured/stabilised using an alkali-activated steel slag-fly ash gel material. The cured product exhibited optimal arsenic fixation under an ABG/steel slag/fly ash mass ratio of 1:4:2, a curing temperature of 60°C, a curing time of 20 h, and an ambient pH of 12.5. Under these conditions, steel slag-fly ash facilitated Ca-As precipitation, resulting in a hydration reaction that produced C-S-H gel. Additionally, the reaction generated calcium hydroxide, calcium and iron pyroxene, silica, and iron ferrite, which adsorbed part of the free arsenic, completing the curing of the acid-treated ABG and stabilising arsenic leaching toxicity. The leaching of arsenic in the ABG was much lower than the Chinese 'Hazardous Wastes Leaching Toxicity Identification Standard' (GB5085.3-2007) (5 mg/L), with an arsenic curing rate exceeding 99%. The mechanism of arsenic solidification involves the combined effects of chemical precipitation, physical encapsulation, and adsorption. Collectively, our findings demonstrated that the use of steel slag-fly ash gel as a functional material for ABG curing holds considerable environmental and economic benefits. Therefore, this study provides theoretical guidance and provides insights into the experimental feasibility of ABG treatment.

13.
Biomed Mater ; 19(3)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38518361

RESUMO

Rapid bone regeneration in implants is important for successful transplantation. In this regard, we report the development of calcium silicate/zinc silicate (CS/ZS) dual-compound-incorporated calcium phosphate cement (CPC) scaffolds with a three-dimensional poly (lactic-co-glycolic acid) network that synergistically promote bone regeneration.In vitroresults demonstrated that the incorporation of CS/ZS dual compounds into the CPC significantly promoted the osteogenic differentiation of stem cells compared to the addition of CS or ZS alone. Moreover, the bone-regeneration efficacy of the composite scaffolds was validated by filling in femur condyle defects in rabbits, which showed that the scaffolds with CS and ZS possessed a great bone repair effect, as evidenced by more new bone formation and a faster scaffold biodegradation compared to the scaffold with CS alone.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Compostos de Zinco , Animais , Coelhos , Alicerces Teciduais , Zinco/farmacologia , Proliferação de Células , Compostos de Cálcio , Regeneração Óssea , Silicatos , Fosfatos de Cálcio/farmacologia
14.
Dent Mater J ; 43(2): 276-285, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38447980

RESUMO

Premixed calcium silicate cements (pCSCs) contain vehicles which endow fluidity and viscosity to CSCs. This study aimed to investigate the effects of three vehicles, namely, polyethylene glycol (PEG), propylene glycol (PG), and dimethyl sulfoxide (DMSO), on the physicochemical properties and biocompatibility of pCSCs. The setting time, solubility, expansion rate, and mechanical strength of the pCSCs were evaluated, and the formation of calcium phosphate precipitates was assessed in phosphate-buffered saline (PBS). The effects of pCSC extracts on the osteogenic differentiation of mesenchymal stem cells (MSCs) were investigated. Finally, the tissue compatibility of pCSCs in rat femurs was observed. CSC containing PEG (CSC-PEG) exhibited higher solubility and setting time, and CSC-DMSO showed the highest expansion rate and mechanical strength. All pCSCs generated calcium phosphate precipitates. The extract of CSC-PG induced the highest expressions of osteogenic markers along with the greatest calcium deposites. When implanted in rat femurs, CSC-PEG was absorbed considerably, whereas CSC-PG remained relatively unaltered inside the femur.


Assuntos
Dimetil Sulfóxido , Osteogênese , Teste de Materiais , Compostos de Cálcio/farmacologia , Compostos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Fosfatos de Cálcio/química , Silicatos/farmacologia , Silicatos/química , Cálcio , Cimento de Silicato/química , Cimentos Dentários/farmacologia , Cimentos Dentários/química
15.
Materials (Basel) ; 17(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38541505

RESUMO

Hydraulic calcium silicate-based (HCS) sealers have recently gained tremendous popularity due to their unique properties. However, their removal during endodontic retreatment is challenging. The solvent, which could chemically deteriorate the material, would be highly desirable for endodontic retreatment procedures. This preliminary study assessed the interplay and dissolving capability of 10% and 20% citric acid, compared to 17% EDTA, on commonly used HCS sealers (AH Plus Bioceramic Sealer, Bio-C Sealer, BioRoot RCS, TotalFill BC Sealer), and evaluated the potential impact of these solutions on root dentin structure. The interaction between tested sealers and irrigating solutions was photographed, and solubility-related mass changes were determined. The surface morphology of treated filling materials and dentin was evaluated using a scanning electron microscope (SEM). One-way analysis of variance (ANOVA) along with Tukey's test were used to detect the statistically significant differences among groups at the confidence level of 0.95. Intense gas release was observed during the interaction of HCS materials and citric acid, with no evidently visible "bubbling" after the immersion in EDTA. The mass loss of HCS sealers equally confirmed the significantly higher dissolving characteristics of 10% and 20% citric acid solutions compared to EDTA. The surface structural changes, associated with pore and crack formation, were mainly seen for HCS sealers exposed to citric acid. Meanwhile, no severe erosion was detected for dentin after root canal preparation with 10% and 20% citric acid solutions. These findings demonstrate that citric acid has the potential to dissolve HCS sealers with minimal or no negative impact on root dentin, suggesting citric acid as a solvent for HCS sealers in endodontic retreatment procedures.

16.
J Clin Pediatr Dent ; 48(2): 93-101, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38548638

RESUMO

When dental pulp is exposed, it must be covered with a biocompatible material to form reparative dentine. The material used, besides being biocompatible, should have an ideal surface structure for the attachment, proliferation and differentiation of dental pulp stem cells. This study aimed to evaluate the porosity of the microstructures of four pulp capping materials using micro-computed tomography (micro-CT). Biodentine, Bioaggregate, TheraCal and Dycal materials were prepared according to the manufacturer's instructions using 2 × 9 mm Teflon molds. A total of 60 samples, 15 in each group, were scanned using micro-CT. Open and closed pores and the total porosity of the microstructures of the materials were assessed. The findings obtained from the study were analyzed via the Kruskal-Wallis test followed by the Mann-Whitney U test. The porosity of Bioaggregate was significantly higher than that of Biodentine, Dycal and TheraCal in all porosity values. While Biodentine did not show a statistically significant difference in open and total porosity values from either TheraCal or Dycal, closed porosity values of Dycal were significantly higher than those of Biodentine and TheraCal. Because of the affinity of cells to porous surfaces, the pulp capping materials' microstructure may affect the pulp capping treatment's success. From this perspective, the use of Bioaggregate in direct pulp capping may increase the success of treatment.


Assuntos
Hidróxido de Cálcio , Capeamento da Polpa Dentária , Hidroxiapatitas , Minerais , Agentes de Capeamento da Polpa Dentária e Pulpectomia , Humanos , Capeamento da Polpa Dentária/métodos , Microtomografia por Raio-X , Porosidade , Óxidos/química , Agentes de Capeamento da Polpa Dentária e Pulpectomia/uso terapêutico , Silicatos/química , Compostos de Cálcio/química , Combinação de Medicamentos , Compostos de Alumínio/química
17.
Bioengineering (Basel) ; 11(3)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38534487

RESUMO

The present in vitro study focuses on the filling ability of three different bioceramic cements with or without the addition of a bioceramic sealer in an open apex model on the marginal apical adaptation, tubule infiltrations, and void distributions as well as the interface between the cement and the sealer materials. To this end, sixty mandibular premolars were used. MTA-Biorep (BR), Biodentine (BD), and Well-Root Putty (WR) were used to obturate the open apex model with or without the addition of a bioceramic sealer, namely TotalFill® BC sealer™ (TF). A digital optical microscope and scanning electron microscope (SEM) were used to investigate the cement-dentin interface, marginal apical adaptation, and the material infiltration into the dentinal tubules. Micro-computed X-ray tomography and digital optical microscopy were used to investigate the cement-sealer interface. The results were analyzed by using the Kruskal-Wallis test. No significant difference was found between the groups for the marginal apical adaptation quality (p > 0.05). Good adaptation of the dentin-cement interface was found for all tested groups and the sealer was placed between the cement material and dentinal walls. All the groups demonstrated some infiltrations into the dentinal tubules at the coronal part except for the BR group. A good internal interface was found between the cement and the sealer with the presence of voids at the external interface. A larger number of voids were found in the case of the BD-TF group compared to each of the other two groups (p < 0.05). Within the limitations of the present in vitro study, all the groups demonstrated good marginal apical adaptation. The use of a sealer in an open apex does not guarantee good filling and, in addition, creates voids at the external interfaces with the dental walls when the premixed sealer is used with powder-liquid cement systems. The use of a premixed bioceramic cement could offer fewer complications than when a powder-liquid cement system is used.

18.
J Environ Manage ; 355: 120506, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38447514

RESUMO

Plenty of heavy metals (HMs) that are adsorbed on clay minerals (such as kaolinite), in addition to low molecular-weight organic acids (such as oxalic acid (OA)) with high activities, are widespread in the natural environment. In the present study, the effects of OA on the environmental behaviors of Pb2+/Cd2+ adsorbed by kaolinite have been investigated. The effectiveness and mechanisms of calcium silicate (CS) and magnesium silicate (MS) in reducing the environmental risks of the HMs have also been studied. The results showed that the releases of Pb2+/Cd2+ increased with an increasing concentration of OA. When different dosages of CS/MS were added to the aging system, a redistribution of HMs took place and the free form of Pb2+/Cd2+ decreased to very low levels. Also, the unextractable Pb2+/Cd2+ increased to high levels. Furthermore, a series of characterizations showed that the released HMs were re-captured by the CS/MS. In addition, the CS immobilized the OA in the solution during the aging process, which also facilitated an immobilization of the carbon element in the environment. In general, the present study has contributed to a further understanding of the transport behaviors of the HMs in natural environments, and of the interactions between CS (or MS), the environmental media, and the heavy metal contaminants. In addition, this study has also provided an eco-friendly strategy for an effective remediation of heavy metal pollution.


Assuntos
Metais Pesados , Poluentes do Solo , Caulim , Cádmio , Chumbo , Metais Pesados/análise , Poluição Ambiental , Poluentes do Solo/análise , Solo
19.
J Contemp Dent Pract ; 25(1): 15-19, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38514426

RESUMO

AIM: The aim of this present study was to compare the dislodgement resistance of calcium silicate-based sealer, zinc oxide sealer, and a new sealer combining both zinc oxide and calcium silicate-based sealer in vitro. MATERIALS AND METHODS: 60 single-rooted human teeth were instrumented with F3 Protaper Gold. All endodontic canals were filled using gutta percha cones using the cold lateral condensation technique in combination using one of the mentioned sealers (n = 20 per group). The teeth were divided into three groups: group A consisted of Sealite® Ultra, group B consisted of K-Sealer®, and group C consisted of BioRoot® RC. After 2 months of incubation (37°C, 100% humidity) and after cutting out 2 mm from the most apical portion of the root apex, six slices of 1 mm thickness were generated. Mechanical dislodgement resistance was examined using a universal pressure-testing machine and the push-out bond strength (POBS) was calculated. Specimens were examined under 20× magnification to define the bond failure mode. Statistical analysis was executed using ANOVA, post hoc Turkey test for pairwise comparisons and Kruskal-Wallis tests. RESULTS: The POBS of BioRoot® was significantly higher than the POBS of the two other sealers with a mean of 10.54 MPa ± 2.10 and 5.73 MPa ± 2.34, respectively (p < 0.001). Sealite® and K-Sealer® showed similar results in the median and coronal part. K-Sealer® revealed highest POBS compared with Sealite® in the apical part (p < 0.05). CONCLUSION: The POBS of the zinc oxide and calcium silicate-based sealer was significantly lower compared with calcium silicate. Sealite® and K-Sealer® exhibited almost same results. BioRoot showed the highest POBS of all sealers. CLINICAL SIGNIFICANCE: The current study was needed to evaluate the bond strength of three different cements to dentinal walls, by evaluating their respective POBS in vitro. The findings of this study may provide guidance for the clinician in the selection of an adequate endodontic sealer that guarantees an enhanced adhesive seal between the Gutta-percha and the dentinal canal walls. How to cite this article: Makhlouf MP, El Helou JD, Zogheib CE, et al. Comparative Evaluation of Push-out Bond Strength of Three Different Root Canal Sealers: An In Vitro Study. J Contemp Dent Pract 2024;25(1):15-19.


Assuntos
Compostos de Cálcio , Materiais Restauradores do Canal Radicular , Silicatos , Óxido de Zinco , Humanos , Materiais Restauradores do Canal Radicular/química , Resinas Epóxi , Cavidade Pulpar , Guta-Percha
20.
Int Endod J ; 57(6): 713-726, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38467586

RESUMO

AIM: To evaluate the inflammatory reaction and the ability to induce mineralization activity of a new repair material, NeoPUTTY (NPutty; NuSmile, USA), in comparison with Bio-C Repair (BC; Angelus, Brazil) and MTA Repair HP (MTA HP; Angelus, Brazil). METHODOLOGY: Polyethylene tubes were filled with materials or kept empty (control group, CG) and implanted in subcutaneous tissue of rats for 7, 15, 30, and 60 days (n = 6/group). Capsule thickness, number of inflammatory cells (ICs), fibroblasts, collagen content, and von Kossa analysis were performed. Unstained sections were evaluated under polarized light and by immunohistochemistry for osteocalcin (OCN). Data were submitted to two-way anova followed by Tukey's test (p ≤ .05), except for OCN. OCN data were submitted to Kruskal-Wallis and Dunn and Friedman post hoc tests followed by the Nemenyi test at a significance level of 5%. RESULTS: At 7, 15, and 30 days, thick capsules containing numerous ICs were seen around the materials. At 60 days, a moderate inflammatory reaction was observed for NPutty, BC while MTA HP presented thin capsules with moderate inflammatory cells. In all periods, NPutty specimens contained the highest values of ICs (p < .05). From 7 to 60 days, the number of ICs reduced significantly while an increase in the number of fibroblasts and birefringent collagen content was observed. At 7 and 15 days, no significant difference was observed in the immunoexpression of OCN (p > .05). At 30 and 60 days, NPutty showed the lowest values of OCN (p < .05). At 60 days, a similar immunoexpression was observed for BC and MTA HP (p > .05). In all time intervals, capsules around NPutty, BC, and MTA HP showed von Kossa-positive and birefringent structures. CONCLUSIONS: Despite the greater inflammatory reaction promoted by NeoPutty than BC and MTA HP, the reduction in the thickness of capsules, the increase in the number of fibroblasts, and the reduction in the number of ICs indicate that this bioceramic material is biocompatible Furthermore, NeoPutty presents the ability to induce mineralization activity.


Assuntos
Materiais Biocompatíveis , Bismuto , Compostos de Cálcio , Teste de Materiais , Silicatos , Animais , Silicatos/farmacologia , Compostos de Cálcio/farmacologia , Ratos , Materiais Biocompatíveis/farmacologia , Ratos Wistar , Óxidos/farmacologia , Combinação de Medicamentos , Masculino , Compostos de Alumínio/farmacologia , Cimentos Dentários/farmacologia , Fibroblastos/efeitos dos fármacos , Colágeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...