Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.314
Filtrar
1.
Mol Biol Rep ; 51(1): 882, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39088099

RESUMO

BACKGROUND: Macrophomina phaseolina is a pathogen that causes an opportunistic disease that spreads by soil and seeds and affects more than 500 different plant species, like fruits, trees, and row crops. Mycotoxins, such as phaseolinic acid, and phaseolinone, are produced by M. phaseolina isolates in previous investigations; however, the production of these mycotoxins seems to vary depending on the host and the region. METHODS AND RESULTS: In this study, Macrophomina phaseolina strain 3 A was isolated from rotten cassava tuber and identified using the analysis of the sequences of the internal transcribed spacer region. The isolate was inoculated on a fresh healthy cassava tuber at 25 °C and tuber-rotting potential was monitored for 4 weeks. Virulence genes MPH_06603, MPH_06955, and MPH_01521 were determined with designed primers, and secondary metabolites were characterized by FTIR and GCMS. The rotten tuber effect was observed from the 2nd week of the experiment with severe tuber rot and weight reduction. The PCR showed the presence of MPH_06603 virulence gene. The GCMS showed N-Methylpivalamide (115.0 m/z), Butane, 1,4-dimethoxy- (119.0 m/z), and 5-Hydroxymethylfurfural (126.0 m/z) were the predominant metabolites produced by the pathogen. The compounds in the metabolites inhibit CYP3A4 enzymes, cause eye irritation, and Human Ether-a-go-go-related gene inhibition. CONCLUSION: This study revealed that M. phaseolina was responsible for the cassava tuber rot which leads to a lower yield of farm produce. The metabolites produced are toxic and unsafe for human consumption. It is suggested that farmers should destroy any cassava affected by this pathogen to prevent its toxic effects on humans and animals.


Assuntos
Ascomicetos , Manihot , Doenças das Plantas , Tubérculos , Manihot/microbiologia , Manihot/genética , Nigéria , Tubérculos/microbiologia , Virulência/genética , Ascomicetos/patogenicidade , Ascomicetos/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Fazendas , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Filogenia
2.
Artigo em Inglês | MEDLINE | ID: mdl-39107649

RESUMO

Energy plays a significant role in attaining the sustainable growth of the industrial sector of any nation. The resources for getting energy are limited and cannot fulfill the huge demand for energy supply in the near future. Generating fuels from various waste materials and biomass is widely viewed as a sustainable energy source and a viable option for the future. Currently, researchers are particularly interested in synthesizing hydrogen (H2) without emitting CO2 and other greenhouse gases (GHGs). Hydrogen is recognized as a pristine and environmentally friendly energy source, presenting an optimal substitute for fossil fuels due to its high energy content of 122 kJg-1. The traditional methods for the production of H2 are cost-intensive and heavy input requirements are needed. Thus, the synthesis of H2 through biological approaches is cost-effective and eco-friendly alternating with easy operational requirements with ambient reaction conditions. The most common drawback of the biological production of H2 is the low yield and production rates of gas during scale-up conditions. This review is focused on different processes used to convert the wastes into H2 energy along with their pattern of utilization and the effect on the environment.

3.
J Food Sci ; 2024 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-39098813

RESUMO

Glutaraldehyde is the conventionally used cross-linker for the activation and cross-linking of support matrices used in enzyme immobilization. However, the toxic nature of glutaraldehyde makes it unsafe for food applications, propelling the need for nontoxic cross-linkers. Genipin reacts with the primary and secondary amines generating a dark-blue colored pigment and is an attractive alternative to glutaraldehyde as a cross-linker for enzyme immobilization. Apart from its excellent cross-linking properties, genipin possesses added advantages over glutaraldehyde such as proven health benefits, biocompatibility, and biodegradability. The present study explores the application of chitosan beads cross-linked with the natural and nontoxic agent, genipin, for immobilizing l-asparaginase, aimed at its subsequent use in mitigating acrylamide formation in food products. The immobilized l-asparaginase exhibited improved functionalities such as stability, reusability, and reduction in acrylamide formation in deep-fried cassava chips. One of the limitations observed during application in the food process was the mechanical fragility of the chitosan beads during speedy stirring. This can be overcome by increasing the concentration and time of contact of the coagulant bath during the formation of chitosan beads. The drying of the enzyme-bound chitosan beads will also lead to shrinkage and prevent breakage during stirring. This study conclusively demonstrated the applicability of immobilizing l-asparaginase on genipin cross-linked chitosan beads in food-related processes.

4.
Int J Biol Macromol ; 277(Pt 2): 134336, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39094887

RESUMO

Porous starch materials are environmentally friendly and renewable and exhibit high adsorption performances. Ultrasound and compound enzyme (α-amylase and glucoamylase) treatments were applied to prepare modified cassava starch. The granules, crystal morphology, crystal structure, and molecular structure of starch were investigated. The hydrolysis degree, solubility, swelling, and adsorption properties of cassava starch were analyzed. After the cassava starch was modified by ultrasound and enzyme treatments, the granule size of the starch decreased, and the surfaces were eroded to form pits, grooves and cavity structure. The starch spherulites weakened or even disappeared. The functional groups of starch did not change significantly, but the degree of crystal order decreased. The double-helix structure was reduced, and the crystal structure was composed of A + V-type crystals, with a decrease in crystallinity. The gelatinization temperature and thermal degradation temperatures enhanced. The enzymatic hydrolysis degree and solubility of the modified cassava starch increased. The swelling degree decreased, and oil adsorption, water adsorption improved. MB adsorption behavior of modified cassava starch closely followed a pseudo-second-order kinetics model and the Langmuir isotherm equation. These findings could help to understand the relationship between the structure and properties of modified starch, and guide its application in the field of adsorption.

5.
Sci Rep ; 14(1): 18139, 2024 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103398

RESUMO

In Southeast Asia (SEA) fastidious fungi of the Ceratobasidium genus are associated with proliferation of sprouts and vascular necrosis in cacao and cassava, crops that were introduced from the tropical Americas to this region. Here, we report the isolation and in vitro culture of a Ceratobasidium sp. isolated from cassava with symptoms of witches' broom disease (CWBD), a devastating disease of this crop in SEA. The genome characterization using a hybrid assembly strategy identifies the fungus as an isolate of the species C. theobromae, the causal agent of vascular streak dieback of cacao in SEA. Both fungi have a genome size > 31 Mb (G+C content 49%), share > 98% nucleotide identity of the Internal Transcribed Spacer (ITS) and > 94% in genes used for species-level identification. Using RNAscope® we traced the pathogen and confirmed its irregular distribution in the xylem and epidermis along the cassava stem, which explains the obtention of healthy planting material from symptom-free parts of a diseased plant. These results are essential for understanding the epidemiology of CWBD, as a basis for disease management including measures to prevent further spread and minimize the risk of introducing C. theobromae via long-distance movement of cassava materials to Africa and the Americas.


Assuntos
Genoma Fúngico , Manihot , Doenças das Plantas , Manihot/microbiologia , Doenças das Plantas/microbiologia , Sudeste Asiático , Filogenia , Basidiomycota/genética , Basidiomycota/isolamento & purificação
6.
J Food Prot ; 87(9): 100340, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39117180

RESUMO

Cassava is the second most important staple food crop for Uganda and is prone to contamination with mycotoxins. This study aimed at understanding the current agricultural practices, their potential influence on mycotoxin occurrence, as well as assessing mycotoxin knowledge among key cassava value chain actors, including farmers, wholesalers, and processors. Data were collected through individual interviews (210), key informant interviews (34), and 4 focus group discussions. The findings revealed that 51% of farmers peeled cassava directly on bare ground, resulting in direct contact with soil that potentially harbors mycotoxin-producing fungi, such as Aspergillus section Flavi. During postharvest handling, 51.6% of farmers dried cassava chips directly on bare ground. Nearly, all (95.2%) of wholesalers packed cassava chips in local gunny bags and placed them on ground instead of pallets. In the processing of cassava chips into flour, only one of the 14 processing machines was certified by the Uganda National Bureau of Standards. Additionally, there was only one processing machine available for every 180 (1:180) consumers bringing their cassava for processing. 50.8% of cassava consumers interviewed admitted to consuming cassava flour regardless of quality, while 73% blended cassava flour with flour from mycotoxin-susceptible crops mainly maize, millet, and sorghum. Most (96.2%) of the people along the cassava value chain did not understand what the term mycotoxins meant. However, 56% of interviewed respondents were familiar with the term aflatoxins. Of the cassava value chain actors aware of mycotoxins, 82.9% knew of methods for reducing aflatoxin contamination, but only 40.9% were putting such methods into practice. More farmers (47.9%) managed aflatoxins compared to wholesalers (33.3%) and processors (21.4%). Knowledge on aflatoxins was significantly associated with value chain actor (P = 0.026), head of household (P = 0.004), region (P = 0.033), age (P = 0.001), and experience (P = 0.001). This study highlights the critical areas of mycotoxin contamination within the cassava value chain in Uganda and underscores the need to improve the knowledge among value chain actors especially farmers.

7.
Int J Mol Sci ; 25(15)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39126018

RESUMO

Cassava starch solid biopolymer electrolyte (SBPE) films were prepared by a thermochemical method with different concentrations of lithium triflate (LiTFT) as a dopant salt. The process began with dispersing cassava starch in water, followed by heating to facilitate gelatinization; subsequently, plasticizers and LiTFT were added at differing concentrations. The infrared spectroscopy analysis (FTIR-ATR) showed variations in the wavenumber of some characteristic bands of starch, thus evidencing the interaction between the LiTFT salt and biopolymeric matrix. The short-range crystallinity index, determined by the ratio of COH to COC bands, exhibited the highest crystallinity in the salt-free SBPEs and the lowest in the SBPEs with a concentration ratio (Xm) of 0.17. The thermogravimetric analysis demonstrated that the salt addition increased the dehydration process temperature by 5 °C. Additionally, the thermal decomposition processes were shown at lower temperatures after the addition of the LiTFT salt into the SBPEs. The differential scanning calorimetry showed that the addition of the salt affected the endothermic process related to the degradation of the packing of the starch molecules, which occurred at 70 °C in the salt-free SBPEs and at lower temperatures (2 or 3 °C less) in the films that contained the LiTFT salt at different concentrations. The cyclic voltammetry analysis of the SBPE films identified the redox processes of the glucose units in all the samples, with observed differences in peak potentials (Ep) and peak currents (Ip) across various salt concentrations. Electrochemical impedance spectroscopy was used to establish the equivalent circuit model Rf-(Cdl/(Rct-(CPE/Rre))) and determine the electrochemical parameters, revealing a higher conduction value of 2.72 × 10-3 S cm-1 for the SBPEs with Xm = 17 and a lower conduction of 5.80 × 10-4 S cm-1 in the salt-free SBPEs. It was concluded that the concentration of LiTFT salt in the cassava starch SBPE films influences their morphology and slightly reduces their thermal stability. Furthermore, the electrochemical behavior is affected in terms of variations in the redox potentials of the glucose units of the biopolymer and in their ionic conductivity.


Assuntos
Condutividade Elétrica , Eletrólitos , Manihot , Amido , Amido/química , Manihot/química , Eletrólitos/química , Termogravimetria , Biopolímeros/química , Mesilatos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Varredura Diferencial de Calorimetria
8.
Artigo em Inglês | MEDLINE | ID: mdl-39150530

RESUMO

ε-Poly-L-lysine (ε-PL) is a natural and wide-spectrum antimicrobial additive. In this study, the production of ε-PL by Streptomyces albulus FQF-24 using cassava starch (CS) as carbon source and the effects of different feeding methods were investigated in a fermenter. The initial shake flask experiments demonstrated the efficient production of ε-PL with CS, achieving the ε-PL production of 1.18 g/L. Subsequent investigations in the fermenter identified that the ideal pH was 3.8 during the ε-PL synthesis phase. Under this condition, the production of ε-PL reached 1.35 g/L. When the pH was maintained at 3.8, the investigation of improvement of feeding composition was carried out in a 5 L fermenter. The intermittent feeding containing CS, inorganic and organic nitrogen sources resulted in the maximum ε-PL production and dry cell weight (DCW) reaching 17.17 g/L and 42.73 g/L. Additionally, continuous feeding with the composition of CS, organic and inorganic nitrogen sources, and inorganic salts further increased ε-PL production and DCW to 27.56 g/L and 38.5 g/L. Summarily, the above results indicate that the fermentation using low-cost CS and continuous feeding strategy with whole medium composition can provide a beneficial reference for the efficient production of ε-PL.

9.
J Exp Bot ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39139055

RESUMO

Starch biosynthesis involves numerous enzymes and is a crucial metabolic activity in plant storage organs. Sucrose non-fermenting related protein kinase 2 (SnRK2) is an abscisic acid (ABA)-dependent kinase and a significant regulatory enzyme in the ABA signaling pathway. However, whether SnRK2 kinases regulate starch biosynthesis is unclear. In this study, we identified that MeSnRK2.3, an ABA-dependent kinase, was highly expressed in the storage roots of cassava and was induced by ABA. Overexpression of MeSnRK2.3 in cassava significantly increased the starch content in the storage roots and promoted plant growth. MeSnRK2.3 was further found to interact with the cassava basic helix-loop-helix 68 (MebHLH68) transcription factor in vivo and in vitro. MebHLH68 directly bound to the promoters of sucrose synthase 1 (MeSUS1), granule-bound starch synthase I a (MeGBSSIa), and starch-branching enzyme 2.4 (MeSBE2.4), thereby upregulating their transcriptional activities. Additionally, MebHLH68 negatively regulated the transcriptional activity of sucrose phosphate synthase B (MeSPSB). Moreover, phosphorylated MebHLH68 by MeSnRK2.3 up-regulated the transcription activity of MeSBE2.4. These findings demonstrated that the MeSnRK2.3-MebHLH68 module connects the ABA signaling pathway and starch biosynthesis in cassava, thereby providing direct evidence of ABA-mediated participation in the sucrose metabolism and starch biosynthesis pathway.

10.
BMC Genomics ; 25(1): 699, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020298

RESUMO

BACKGROUND: Cassava is one of three major potato crops and the sixth most important food crop globally. Improving yield remains a primary aim in cassava breeding. Notably, plant height significantly impacts the yield and quality of crops; however, the mechanisms underlying cassava plant height development are yet to be elucidated. RESULTS: In this study, we investigated the mechanisms responsible for cassava plant height development using phenotypic, anatomical, and transcriptomic analyses. Phenotypic and anatomical analysis revealed that compared to the high-stem cassava cultivar, the dwarf-stem cassava cultivar exhibited a significant reduction in plant height and a notable increase in internode tissue xylem area. Meanwhile, physiological analysis demonstrated that the lignin content of dwarf cassava was significantly higher than that of high cassava. Notably, transcriptome analysis of internode tissues identified several differentially expressed genes involved in cell wall synthesis and expansion, plant hormone signal transduction, phenylpropanoid biosynthesis, and flavonoid biosynthesis between the two cassava cultivars. CONCLUSIONS: Our findings suggest that internode tissue cell division, secondary wall lignification, and hormone-related gene expression play important roles in cassava plant height development. Ultimately, this study provides new insights into the mechanisms of plant height morphogenesis in cassava and identifies candidate regulatory genes associated with plant height that can serve as valuable genetic resources for future crop dwarfing breeding.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Manihot , Manihot/genética , Manihot/crescimento & desenvolvimento , Manihot/metabolismo , Fenótipo , Transcriptoma , Lignina/metabolismo , Lignina/biossíntese
11.
Gels ; 10(7)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39057454

RESUMO

Phosphorous (P) is one the most important elements in several biological cycles, and is a fundamental component of soil, plants and living organisms. P has a low mobility and is quickly adsorbed on clayey soils, limiting its availability and absorption by plants. Here, biodegradable hydrogels based on Cassava starch crosslinked with citric acid (CA) were made and loaded with KH2PO4 and phosphorite to promote the slow release of phosphorus, the storing of water, and the reduction in P requirements during fertilization operations. Crosslinking as a function of CA concentrations was investigated by ATR-FTIR and TGA. The water absorption capacity (WAC) and P release, under different humic acid concentration regimens, were studied by in vitro tests. It is concluded that hydrogel formed from 10% w/w of CA showed the lowest WAC because of a high crosslinking degree. Hydrogel containing 10% w/w of phosphorite was shown to be useful to encouraging the slow release of P, its release behavior being fitted to the Higuchi kinetics model. In addition, P release increased as humic acid contents were increased. These findings suggest that these hydrogels could be used for encouraging P slow release during crop production.

12.
Gels ; 10(7)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39057457

RESUMO

Fertilizers with enhanced efficiency or high-efficiency fertilizers increase the nutrient availability, minimize losses, and reduce costs, thereby increasing crop yields and food production while mitigating environmental impacts. This research evaluates the synthesis of biodegradable hydrogels from cassava starch and citric acid for agrochemical applications. Hydrogels were synthesized using water as the solvent and applied for the controlled release of macronutrients (N and K). Four concentrations of nutrient-containing salts were tested (0.5 to 10.0% w/w). Materials were analyzed using ATR-FTIR spectroscopy and swelling studies. The presence of nutrients reduced both the crosslinking efficacy and the water absorption capacity, with the latter dropping from 183.4 ± 0.6% to 117.9 ± 3.7% and 157.4 ± 25.0% for hydrogels loaded with NH4Cl and KCl, respectively. The cumulative release of K and N from the hydrogel was monitored for 144 h and examined using kinetics models, revealing that the releases follow Fickian's diffusion and anomalous diffusion, respectively. Additionally, the material was formed using cassava with peel previously milled to reduce the production costs, and its potential for nutrient-controlled delivery was evaluated, with the finding that this hydrogel decreases the release rate of nitrogen. The results suggest that these biomaterials may have promising applications in the agrochemical industry in the making of high-efficiency fertilizers.

13.
Plants (Basel) ; 13(14)2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39065426

RESUMO

Cassava (Manihot esculenta Crantz) was introduced to Southeast Asia in the 16th-17th centuries and has since flourished as an industrial crop. Since the 1980s, Thailand has emerged as the leading producer and exporter of cassava products. This growth coincided with the initiation of cassava breeding programs in collaboration with the International Center for Tropical Agriculture (CIAT), focusing on root yield and starch production. The success of Thai cassava breeding programs can be attributed to the incorporation of valuable genetic diversity from international germplasm resources to cross with the local landraces, which has become the genetic foundation of many Thai commercial varieties. Effective evaluation under diverse environmental conditions has led to the release of varieties with high yield stability. A notable success is the development of Kasetsart 50. However, extreme climate change poses significant challenges, including abiotic and biotic stresses that threaten cassava root yield and starch content, leading to a potential decline in starch-based industries. Future directions for cassava breeding must include hybrid development, marker-assisted recurrent breeding, and gene editing, along with high-throughput phenotyping and flower induction. These strategies are essential to achieve breeding objectives focused on drought tolerance and disease resistance, especially for CMD and CBSD.

14.
Data Brief ; 55: 110600, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39022689

RESUMO

Dewatering is a critical step in cassava flours processing. Compression dewatering kinetics are useful to understand and design a dewatering operation. The dataset presents dewatering kinetics measured in a filtration-consolidation cell at constant pressure between 4 and 21 bar, on several cassava mashes (three batches fragmented at two particle size distributions (PSDs)). The dataset comprises, for each dewatering kinetic measurement, filtrate mass, cake height, data to estimate the pressure applied on the product (i.e. air pressure, compression force) as a function of time; and the moisture content measurements of the fresh and dewatered cassava and of the filtrate. A commented python script is included to read the dewatering experimental files and plot the kinetics Furthermore, the dataset extends its utility by including particle size distributions (PSDs) obtained from six cassava batches, subjected to several protocol variants. These data are useful for understanding the phenomena involved in cassava dewatering. They also serve as a valuable resource for researchers, designers, and operators to design cassava dewatering.

15.
Int J Mol Sci ; 25(14)2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39062957

RESUMO

The AT-hook motif nuclear-localized (AHL) family is pivotal for the abiotic stress response in plants. However, the function of the cassava AHL genes has not been elucidated. Promoters, as important regulatory elements of gene expression, play a crucial role in stress resistance. In this study, the promoter of the cassava MeAHL31 gene was cloned. The MeAHL31 protein was localized to the cytoplasm and the nucleus. qRT-PCR analysis revealed that the MeAHL31 gene was expressed in almost all tissues tested, and the expression in tuber roots was 321.3 times higher than that in petioles. Promoter analysis showed that the MeAHL31 promoter contains drought, methyl jasmonate (MeJA), abscisic acid (ABA), and gibberellin (GA) cis-acting elements. Expression analysis indicated that the MeAHL31 gene is dramatically affected by treatments with salt, drought, MeJA, ABA, and GA3. Histochemical staining in the proMeAHL31-GUS transgenic Arabidopsis corroborated that the GUS staining was found in most tissues and organs, excluding seeds. Beta-glucuronidase (GUS) activity assays showed that the activities in the proMeAHL31-GUS transgenic Arabidopsis were enhanced by different concentrations of NaCl, mannitol (for simulating drought), and MeJA treatments. The integrated findings suggest that the MeAHL31 promoter responds to the abiotic stresses of salt and drought, and its activity is regulated by the MeJA hormone signal.


Assuntos
Arabidopsis , Regulação da Expressão Gênica de Plantas , Manihot , Reguladores de Crescimento de Plantas , Proteínas de Plantas , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Estresse Fisiológico , Arabidopsis/genética , Arabidopsis/metabolismo , Plantas Geneticamente Modificadas/genética , Estresse Fisiológico/genética , Manihot/genética , Manihot/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Secas , Ciclopentanos/farmacologia , Ciclopentanos/metabolismo , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Oxilipinas/farmacologia , Oxilipinas/metabolismo , Acetatos/farmacologia
16.
Front Plant Sci ; 15: 1391452, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38988637

RESUMO

Early cassava storage root formation and bulking is a medium of escape that farmers and processors tend to adopt in cases of abiotic and biotic stresses like drought, flood, and destruction by domestic animals. In this study, 220 cassava genotypes from the International Institute of Tropical Agriculture (IITA), National Root Crops Research Institute (NRCRI), International Center for Tropical Agriculture (CIAT), local farmers (from farmer's field), and NextGen project were evaluated in three locations (Umudike, Benue, and Ikenne). The trials were laid out using a split plot in a randomized incomplete block design (alpha lattice) with two replications in 2 years. The storage roots for each plant genotype were sampled or harvested at 3, 6, 9, and 12 month after planting (MAP). All data collected were analyzed using the R-statistical package. The result showed moderate to high heritability among the traits, and there were significant differences (p< 0.05) among the performances of the genotypes. The genome-wide association mapping using the BLINK model detected 45 single-nucleotide polymorphism (SNP) markers significantly associated with the four early storage root bulking and formation traits on Chromosomes 1, 2, 3, 4, 5, 6, 8, 9, 10, 13, 14, 17, and 18. A total of 199 putative candidate genes were found to be directly linked to early storage root bulking and formation. The functions of these candidate genes were further characterized to regulate i) phytohormone biosynthesis, ii) cellular growth and development, and iii) biosynthesis of secondary metabolites for accumulation of starch and defense. Genome-wide association study (GWAS) also revealed the presence of four pleiotropic SNPs, which control starch content, dry matter content, dry yield, and bulking and formation index. The information on the GWAS could be used to develop improved cassava cultivars by breeders. Five genotypes (W940006, NR090146, TMS982123, TMS13F1060P0014, and NR010161) were selected as the best early storage root bulking and formation genotypes across the plant age. These selected cultivars should be used as sources of early storage root bulking and formation in future breeding programs.

17.
Food Chem ; 458: 140252, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38964113

RESUMO

Ethylene plays diverse roles in post-harvest processes of horticultural crops. However, its impact and regulation mechanism on the postharvest physiological deterioration (PPD) of cassava storage roots is unknown. In this study, a notable delay in PPD of cassava storage roots was observed when ethephon was utilized as an ethylene source. Physiological analyses and quantitative acetylproteomes were employed to investigate the regulation mechanism regulating cassava PPD under ethephon treatment. Ethephon was found to enhance the reactive oxygen species (ROS) scavenging system, resulting in a significant decrease in H2O2 and malondialdehyde (MDA) content. The comprehensive acetylome analysis identified 12,095 acetylation sites on 4403 proteins. Subsequent analysis demonstrated that ethephon can regulate the acetylation levels of antioxidant enzymes and members of the energy metabolism pathways. In summary, ethephon could enhance the antioxidant properties and regulate energy metabolism pathways, leading to the delayed PPD of cassava.

18.
Artigo em Inglês | MEDLINE | ID: mdl-38970656

RESUMO

This work aimed to define strategies to increase the bioproduction of 6 pentyl-α-pyrone (bioaroma). As first strategy, fermentations were carried out in the solid state, with agro-industrial residues: Mauritia flexuosa Liliopsida. and Manihot esculenta Crantz in isolation, conducting them with different nutrient solutions having Trichoderma harzianum as a fermenting fungus. Physicochemical characterizations, centesimal composition, lignocellulosic and mineral content and antimicrobial activity were required. Fermentations were conducted under different humidification conditions (water, nutrient solution without additives and nutrient solutions with glucose or sucrose) for 9 days. Bioaroma was quantified by gas chromatography, assisted by solid-phase microextraction. The results showed the low production of this compound in fermentations conducted with sweet cassava (around 6 ppm (w/w)). The low bioproduction with sweet cassava residues can probably be related to its starch-rich composition, homogeneous substrate, and low concentration of nutrients. Already using buriti, the absence of aroma production was detected. Probably the presence of silicon and high lignin content in buriti minimized the fungal activity, making it difficult to obtain the aroma of interest. Given the characteristics presented by the waste, a new strategy was chosen: mixing waste in a 1:1 ratio. This fermentation resulted in the production of 156.24 ppm (w/w) of aroma using the nutrient solution added with glucose. This combination, therefore, promoted more favorable environment for the process, possibly due to the presence of fermentable sugars from sweet cassava and fatty acids from the buriti peel, thus proving the possibility of an increase of around 2500% in the bioproduction of coconut aroma.

19.
Foods ; 13(13)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38998632

RESUMO

The objective of this study was to explore the preservation of food products through the co-fermentation of whole-plant cassava and Piper sarmentosum (PS) without additives. We assessed fermentation quality, antioxidant activity, bacterial community structure, function profile, and microbial ecological network features. Our results demonstrate that co-fermentation of whole-plant cassava with 10% PS significantly improves food quality. The co-fermented samples exhibited enhanced lactic acid concentrations and increased antioxidant activity, with reduced pH values and concentrations of acetic acid, butyric acid, and ammonia-N(NH3-N) compared to whole-plant cassava fermented alone. In addition, PS addition also optimized microbial community structure by elevating the total abundance of lactic acid bacteria and influenced bacterial predicted functions. Furthermore, our analysis of co-occurrence networks reveals that co-fermentation impacts microbial network features, including module numbers and bacterial relative abundances, leading to altered complexity and stability of the networks. Moreover, out study also highlights the impact of ferment undesirable bacteria like Pseudomonas aeruginosa and unclassified_Muribaculaceae playing crucial roles in microbial network complexity and stability. These findings provide valuable insights into the anaerobic fermentation process and offers strategies for regulating food fermentation quality.

20.
BMC Plant Biol ; 24(1): 631, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38965467

RESUMO

BACKGROUND: DNA methylation contributes to the epigenetic regulation of nuclear gene expression, and is associated with plant growth, development, and stress responses. Compelling evidence has emerged that long non-coding RNA (lncRNA) regulates DNA methylation. Previous genetic and physiological evidence indicates that lncRNA-CRIR1 plays a positive role in the responses of cassava plants to cold stress. However, it is unclear whether global DNA methylation changes with CRIR1-promoted cold tolerance. RESULTS: In this study, a comprehensive comparative analysis of DNA methylation and transcriptome profiles was performed to reveal the gene expression and epigenetic dynamics after CRIR1 overexpression. Compared with the wild-type plants, CRIR1-overexpressing plants present gained DNA methylation in over 37,000 genomic regions and lost DNA methylation in about 16,000 genomic regions, indicating a global decrease in DNA methylation after CRIR1 overexpression. Declining DNA methylation is not correlated with decreased/increased expression of the DNA methylase/demethylase genes, but is associated with increased transcripts of a few transcription factors, chlorophyll metabolism and photosynthesis-related genes, which could contribute to the CRIR1-promoted cold tolerance. CONCLUSIONS: In summary, a first set of transcriptome and epigenome data was integrated in this study to reveal the gene expression and epigenetic dynamics after CRIR1 overexpression, with the identification of several TFs, chlorophyll metabolism and photosynthesis-related genes that may be involved in CRIR1-promoted cold tolerance. Therefore, our study has provided valuable data for the systematic study of molecular insights for plant cold stress response.


Assuntos
Metilação de DNA , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Transcriptoma , RNA Longo não Codificante/genética , Epigenoma , Resposta ao Choque Frio/genética , Temperatura Baixa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA