Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
1.
Molecules ; 29(19)2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39407679

RESUMO

The influence of residual cuts on the deactivation of hierarchical Y zeolite-based catalysts during the co-processing of vacuum gas oil (VGO) with atmospheric residue (ATR) was investigated. The experiments were conducted in a laboratory-scale MAT-type reactor. The conversion of VGO, ATR, and their 70:30 (mass basis) mixture was examined using two composite catalysts: Cat.Y.0.00 and Cat.Y.0.20. The operating conditions closely resembled those of the commercial catalytic cracking process (550 °C and contact times of 10 to 50 s). When ATR was processed individually, the conversion remained below 50 wt%. However, significant improvements in conversion rates were achieved and catalyst deactivation was mitigated when ATR was co-processed with VGO. Notably, the BET surface area and average mesopore volume were adversely impacted by ATR, which also led to the accumulation of high levels of metals and nitrogen on the spent catalyst, detrimentally affecting its acidic and structural properties. Moreover, substantial coke deposition occurred during ATR cracking. The soluble and insoluble coke analysis revealed H/C ratio values of up to 0.36, indicative of polycondensed coke structures with more than ten aromatic rings. The nature of the coke was confirmed through TPO and FTIR analyses. Interestingly, the CatY.0.20 catalyst exhibited less activity loss, retaining superior acid and structural properties. Co-processing Colombian atmospheric residue with ATR loadings of 30 wt% (higher than the typical 20 wt%) in catalysts formulated with hierarchical zeolites presents a promising alternative for commercial applications. This research opens avenues for optimizing catalytic cracking processes.

2.
Heliyon ; 10(18): e37813, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39315141

RESUMO

This study investigated the deactivation and regeneration of hierarchical zeolites in vacuum gas oil conversion, aiming to reach the equilibrium state seen in fluidized bed catalytic cracking (FCC). The research utilized various characterization techniques to analyze the properties of zeolites before and after coking and regeneration. Zeolite Y-0.20-S was found to have the highest gasoline selectivity and quality, mirroring industrial yields, and displayed notable stability across deactivation/regeneration cycles. Higher mesopore concentration in zeolites led to increased coke selectivity and better resistance to deactivation. The study observed a dominance of aromatic coke with a higher degree of condensation in these zeolites. Despite coke deposition affecting acid and textural properties, the regeneration process effectively restored these characteristics, proving its efficiency. The zeolites with greater mesoporosity retained their fundamental properties responsible for activity and selectivity, highlighting the importance of selecting materials that provide high conversions and maintain stability and product selectivity over multiple cycles. The Y-0.20-S zeolite, in particular, was identified as a promising candidate for commercial catalyst development for gasoline production, contributing to the FCC process's energy efficiency.

3.
Int J Biol Macromol ; 280(Pt 2): 135581, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39270892

RESUMO

Crotoxin, a phospholipase A2 (PLA2) complex and the major Crotalus venom component, is responsible for the main symptoms described in crotalic snakebite envenomings and a key target for PLA2 inhibitors (PLIs). PLIs comprise the alpha, beta and gamma families, and, due to a lack of reports on beta-PLIs, this study aimed to heterologously express CdtPLI2 from Crotalus durissus terrificus venom gland to improve the knowledge of the neglected beta-PLI family. Thereby, recombinant CdtPLI2 (rCdtPLI2) was produced in the eukaryotic Pichia pastoris system to keep some native post-translational modifications. rCdtPLI2 (~41 kDa) presents both N- and O-linked glycans. Alpha-mannosidase digested-rCdtPLI2 (1 mol) strongly inhibited (73%) CB-Cdc catalytic activity (5 moles), demonstrating that glycosylations performed by P. pastoris affect rCdtPLI2 action. Digested-rCdtPLI2 also inhibited PLA2s from diverse Brazilian snake venoms. Furthermore, rCdtPLI2 (1 mol) abolished the catalytic activity of Lmr-PLA2 (5 moles) and reduced the CTx-Cdc (5 moles) enzyme activity by 65%, suppressing basic and acidic snake venom PLA2s. Additionally, crotalic antivenom did not recognize rCdtPLI2, suggesting a lack of neutralization by antivenom antibodies. These findings demonstrate that studying snake venom components may reveal interesting novel molecules to be studied in the snakebite treatment and help to understand these underexplored inhibitors.

4.
Environ Sci Pollut Res Int ; 31(44): 55958-55973, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39251534

RESUMO

Advanced oxidation processes (AOP) stood out as an efficient alternative for the treatment of organic contaminants. In this work, there were proposed syntheses of mixed catalysts of pyrite and graphene oxide and pyrite and zinc oxide to treat a mixture of the drugs atenolol and propranolol in aqueous solution through the photo-Fenton process with ultraviolet radiation. The efficiency of the methodologies used in the syntheses was confirmed through different characterization analyses. It was verified that the pyrite and zinc oxide catalyst led to the best contaminant degradation percentages with values equal to 88 and 84% for the groups monitored at the wavelengths (λ) of 217 and 281 nm. The degradation kinetics presented a good fit to the kinetic model proposed by Chan and Chu (2003) with R2 equal to 0.99, indicating a pseudo-first-order degradation profile. Finally, toxicity tests were carried out with two types of seeds, watercress and cabbage, for the solution before and after treatment. The cabbage seeds showed a reduction in germination percentages for the samples after treatments, while no toxicity was observed for watercress ones. This highlights the importance of evaluating the implications caused by products in relation to different organisms representing the biota.


Assuntos
Grafite , Oxirredução , Óxido de Zinco , Grafite/química , Catálise , Óxido de Zinco/química , Sulfetos/química , Poluentes Químicos da Água/química , Ferro/química , Cinética
5.
Sci Rep ; 14(1): 16667, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030252

RESUMO

Monometallic and bimetallic Cu:Ni catalysts with different Cu:Ni molar ratios (3:1, 2:1, 1:1, 1:2, 1:3) were synthesized by wetness impregnation on activated carbon and characterized by TPR (temperature programmed reduction), XRD (X-ray diffraction) and XPS (X-ray photoelectron spectroscopy). The synthesized catalysts were evaluated in the gas phase production of diethyl carbonate from ethanol and carbon dioxide. The largest catalytic activity was obtained over the bimetallic catalyst with a Cu:Ni molar ratio of 3:1. Its improved activity was attributed to the formation of a Cu-Ni alloy on the surface of the catalyst, evidenced by XPS and in agreement with a previous assignment based on Vegard law and TPR analysis. During the reaction rate experiments, it observed the presence of a maximum of the reaction rate as a function of temperature, a tendency also reported for other carbon dioxide-alcohol reactions. It showed that the reaction rate-temperature data can be adjusted with a reversible rate equation. The initial rate as a function of reactant partial pressure data was satisfactorily adjusted using the forward power law rate equation and it was found that the reaction rate is first order in CO2 and second order in ethanol.

6.
Polymers (Basel) ; 16(14)2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39065396

RESUMO

In this study, the impact of ethylene oxide, propylene oxide, 1,2-butene oxide, and 1,2-pentene oxide on the polymerization of propylene at an industrial level was investigated, focusing on their influence on the catalytic efficiency and the properties of polypropylene (PP) without additives. The results show that concentrations between 0 and 1.24 ppm of these epoxides negatively affect the reaction's productivity, the PP's mechanical properties, the polymer's fluidity index, and the PP's thermal properties. Fourier transform infrared spectroscopy (FTIR) revealed bands for the Ti-O bond and the Cl-Ti-O-CH2 bonds at 430 to 475 cm-1 and 957 to 1037 cm-1, respectively, indicating the interaction between the epoxides and the Ziegler-Natta catalyst. The thermal degradation of PP in the presence of these epoxides showed a similar trend, varying in magnitude depending on the concentration of the inhibitor. Sample M7, with 0.021 ppm propylene oxide, exhibited significant mass loss at both 540 °C and 600 °C, suggesting that even small concentrations of this epoxide can markedly increase the thermal degradation of PP. This pattern is repeated in samples with 1,2-butene oxide and 1,2-pentene oxide. These results highlight the need to strictly control the presence of impurities in PP production to optimize both the final product's quality and the polymerization process's efficiency.

7.
Materials (Basel) ; 17(14)2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39063770

RESUMO

The increase in the world population and the intensification of agricultural practices have resulted in the release of several contaminants into the environment, especially pesticides and heavy metals. This article reviews recent advances in using adsorbent and catalytic materials for environmental decontamination. Different materials, including clays, carbonaceous, metallic, polymeric, and hybrid materials, are evaluated for their effectiveness in pollutant removal. Adsorption is an effective technique due to its low cost, operational simplicity, and possibility of adsorbent regeneration. Catalytic processes, especially those using metallic nanoparticles, offer high efficiency in degrading complex pesticides. Combining these technologies can enhance the efficiency of remediation processes, promoting a more sustainable and practical approach to mitigate the impacts of pesticides and other agricultural pollutants on the environment. Therefore, this review article aims to present several types of materials used as adsorbents and catalysts for decontaminating ecosystems affected by agricultural pollutants. It discusses recent works in literature and future perspectives on using these materials in environmental remediation. Additionally, it explores the possibilities of using green chemistry principles in producing sustainable materials and using agro-industrial waste as precursors of new materials to remove contaminants from the environment.

8.
Nat Prod Bioprospect ; 14(1): 29, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38740677

RESUMO

A catalytic diastereoselective Prins reaction for hydroxymethylation and hydroxylation of 1,3-diarylpropene was successfully utilized to prepare various 1,3-dioxanes 7 in 14-88% yields. Take advantage of the synthetic intermediate 7h, the key B/C rings in brazilin core could be constructed by the sequential of Friedel-Crafts/Ullmann-Ma rather than Ullmann-Ma/Friedel-Crafts reactions.

9.
Methods Enzymol ; 697: 269-291, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38816126

RESUMO

The design of small peptides that assemble into catalytically active intermolecular structures has proven to be a successful strategy towards developing minimalistic catalysts that exhibit some of the unique functional features of enzymes. Among these, catalytic amyloids have emerged as a fruitful source to unravel many different activities. These assemblies can potentially have broad applications that range from biotechnology to prebiotic chemistry. Although many peptides that assemble into catalytic amyloids have been developed in recent years, the elucidation of convergent mechanistic aspects of the catalysis and the structure/function relationship is still a challenge. Novel catalytic activities are necessary to better address these issues and expand the current repertoire of applicability. In this chapter, we described a methodology to produce catalytic amyloids that are specifically active towards the hydrolysis of phosphoanhydride bonds of nucleotides. The design of potentially active amyloid-prone peptide sequences is explored using as template the active site of enzymes with nucleotidyltransferase activity. The procedures include an approach for sequence design, in vitro aggregation assays, morphological characterization of the amyloid state and a comprehensive methodology to measure activity in vitro using nucleoside and deoxynucleosides triphosphates as model substrates. The proposed strategy can also be implemented to explore different types of activities for the design of future catalytic amyloids.


Assuntos
Amiloide , Nucleotídeos , Hidrólise , Amiloide/química , Amiloide/metabolismo , Nucleotídeos/química , Nucleotídeos/metabolismo , Domínio Catalítico , Sequência de Aminoácidos , Catálise , Biocatálise
10.
Artigo em Inglês | MEDLINE | ID: mdl-38561623

RESUMO

BACKGROUND: Glioblastoma multiforme (GBM), the most prevalent form of central nervous system (CNS) cancer, stands as a highly aggressive glioma deemed virtually incurable according to the World Health Organization (WHO) standards, with survival rates typically falling between 6 to 18 months. Despite concerted efforts, advancements in survival rates have been elusive. Recent cutting-edge research has unveiled bionanocatalysts with 1% Pt, demonstrating unparalleled selectivity in cleaving C-C, C-N, and C-O bonds within DNA in malignant cells. The application of these nanoparticles has yielded promising outcomes. OBJECTIVE: The objective of this study is to employ bionanocatalysts for the treatment of Glioblastoma Multiforme (GBM) in a patient, followed by the evaluation of obtained tissues through electronic microscopy. METHODS: Bionanocatalysts were synthesized using established protocols. These catalysts were then surgically implanted into the GBM tissue through stereotaxic procedures. Subsequently, tissue samples were extracted from the patient and meticulously examined using Scanning Electron Microscopy (SEM). RESULTS AND DISCUSSION: Detailed examination of biopsies via SEM unveiled a complex network of small capillaries branching from a central vessel, accompanied by a significant presence of solid carbonate formations. Remarkably, the patient subjected to this innovative approach exhibited a three-year extension in survival, highlighting the potential efficacy of bionanocatalysts in combating GBM and its metastases. CONCLUSION: Bionanocatalysts demonstrate promise as a viable treatment option for severe cases of GBM. Additionally, the identification of solid calcium carbonate formations may serve as a diagnostic marker not only for GBM but also for other CNS pathologies.

11.
Biotechnol Bioeng ; 121(3): 915-930, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38178617

RESUMO

Genome-scale metabolic models provide a valuable resource to study metabolism and cell physiology. These models are employed with approaches from the constraint-based modeling framework to predict metabolic and physiological phenotypes. The prediction performance of genome-scale metabolic models can be improved by including protein constraints. The resulting protein-constrained models consider data on turnover numbers (kcat ) and facilitate the integration of protein abundances. In this systematic review, we present and discuss the current state-of-the-art regarding the estimation of kinetic parameters used in protein-constrained models. We also highlight how data-driven and constraint-based approaches can aid the estimation of turnover numbers and their usage in improving predictions of cellular phenotypes. Finally, we identify standing challenges in protein-constrained metabolic models and provide a perspective regarding future approaches to improve the predictive performance.


Assuntos
Modelos Biológicos , Fenótipo , Proteínas/metabolismo , Proteínas/genética
12.
FEBS J ; 291(4): 778-794, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37985387

RESUMO

We have studied the reduction reactions of two cytosolic human peroxiredoxins (Prx) in their disulfide form by three thioredoxins (Trx; two human and one bacterial), with the aim of better understanding the rate and mechanism of those reactions, and their relevance in the context of the catalytic cycle of Prx. We have developed a new methodology based on stopped-flow and intrinsic fluorescence to study the bimolecular reactions, and found rate constants in the range of 105 -106 m-1 s-1 in all cases, showing that there is no marked kinetic preference for the expected Trx partner. By combining experimental findings and molecular dynamics studies, we found that the reactivity of the nucleophilic cysteine (CN ) in the Trx is greatly affected by the formation of the Prx-Trx complex. The protein-protein interaction forces the CN thiolate into an unfavorable hydrophobic microenvironment that reduces its hydration and results in a remarkable acceleration of the thiol-disulfide exchange reactions by more than three orders of magnitude and also produces a measurable shift in the pKa of the CN . This mechanism of activation of the thiol disulfide exchange may help understand the reduction of Prx by alternative reductants involved in redox signaling.


Assuntos
Peroxirredoxinas , Tiorredoxinas , Humanos , Tiorredoxinas/química , Peroxirredoxinas/química , Peroxirredoxinas/metabolismo , Oxirredução , Compostos de Sulfidrila/química , Dissulfetos/química
13.
Biochem Biophys Res Commun ; 687: 149185, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-37951047

RESUMO

Metacaspases are cysteine proteases belonging to the CD clan of the C14 family. They possess important characteristics, such as specificity for cleavage after basic residues (Arg/Lys) and dependence on calcium ions to exert their catalytic activity. They are defined by the presence of a large subunit (p20) and a small subunit (p10) and are classified into types I, II, and III. Type I metacaspases have a characteristic pro-domain at the N-terminal of the enzyme, preceding a region rich in glutamine and asparagine. In the yeast Saccharomyces cerevisiae, a type I metacaspase is found. This organism encodes a single metacaspase that participates in the process of programmed cell death by apoptosis. The study focuses on cloning, expressing, and mutating Saccharomyces cerevisiae metacaspase (ScMCA-Ia). Mutations in Cys155 and Cys276 were introduced to investigate autoprocessing mechanisms. Results revealed that Cys155 plays a crucial role in autoprocessing, initiating a conformational change that activates ScMCA-Ia. Comparative analysis with TbMCA-IIa highlighted the significance of the N-terminal region in substrate access to the active site. The study proposes a two-step processing mechanism for type I metacaspases, where an initial processing step generates the active form, followed by a distinct intermolecular processing step. This provides new insights into ScMCA-Ia's activation and function. The findings hold potential implications for understanding cellular processes regulated by metacaspases. Overall, this research significantly advances knowledge in metacaspase biology.


Assuntos
Caspases , Saccharomyces cerevisiae , Caspases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Cisteína/genética , Apoptose , Domínio Catalítico
14.
Amino Acids ; 55(12): 1991-1997, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37904049

RESUMO

Alzheimer's disease is characterized by the presence of senile plaques composed of ß-amyloid peptide (Aß) aggregates with toxic effects that are still not fully understood. Recently, it was discovered that Aß(1-42) fibrils possess catalytic activity on acetylcholine hydrolysis. Catalytic amyloids are an emerging and exciting field of research. In this study, we examined the catalytic activity of the fibrils formed by Aß(1-40), the most abundant Aß variant, on acetylcholine hydrolysis. Our findings reveal that Aß(1-40) fibrils exhibit moderate enzymatic activity, indicating that natural peptide aggregates could serve as biocatalysts and provide new insights into the potential role of Aß in neurological disorders.


Assuntos
Acetilcolina , Doença de Alzheimer , Humanos , Hidrólise , Peptídeos beta-Amiloides , Fragmentos de Peptídeos/química , Amiloide
15.
Environ Sci Pollut Res Int ; 30(47): 104640-104651, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37707724

RESUMO

Remediation of water contaminated with oxyanions is of great importance due to the toxicity and environmental persistence of these chemical species. The present work describes the elimination of different oxyanions in water using catalysts supported on active carbon obtained from an agricultural residue (peanut shells, CPeanut) and active commercial carbon (CCom) in order to compare their structural and catalytic properties. The synthesized CPeanut and CCom were fully characterized by surface analysis, TGA, TPR, SEM-EDX, FT-IR, and TEM. It was observed that CPeanut presented similar superficial characteristics to CCom, being an adequate support to synthesize catalysts. With both carbons, catalysts based on Cu, Pd, and PdCu were prepared and evaluated in the elimination of NO3-, NO2-, and BrO3- from water using H2 as a reducing agent. The bimetallic catalysts prepared on both supports were active in the oxyanions reduction, obtaining good selectivities to the products of interest. In this sense, this work presents a potential re-use of agricultural wastes by preparing activated carbon from peanut shell residues in order to reduce the waste volume generated. In addition, the material synthetized is low cost due to its large-scale production and great availability in Argentina. The carbon obtained from the peanut shells provides a potential application in the environmental remediation of water contaminated with oxyanions.


Assuntos
Poluentes Químicos da Água , Água , Espectroscopia de Infravermelho com Transformada de Fourier , Argentina
16.
J Environ Manage ; 345: 118822, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37597369

RESUMO

The reverse water gas shift (RWGS) reaction converts carbon dioxide (CO2) and hydrogen (H2) to syngas, which is used to produce various high-added-value chemicals. This process has attracted great interest from researchers as a way of mitigating the potential environmental impacts of this greenhouse gas, with emphasis on global warming. This work aims to model and simulate an industrial catalytic reactor using kinetic data for the RWGS reaction. The simulation was carried out in Aspen Plus® v10. The thermodynamic analysis showed that the appropriate conditions for the reaction are feed molar ratio (H2/CO2) of 0.8:1, 750 °C, and 20 bar. The RWGS process proceeds in a multi-tubular fixed bed reactor with 36.26% CO2 conversion and 96.41% CO selectivity, at residence times in the order of 2.7 s. These results are at near-equilibrium CO2 conversion with higher CO selectivity.


Assuntos
Dióxido de Carbono , Água , Hidrogênio , Termodinâmica , Simulação por Computador
17.
Molecules ; 28(12)2023 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-37375393

RESUMO

Nanotechnology is an innovative field of study that has made significant progress due to its potential versatility and wide range of applications, precisely because of the development of metal nanoparticles such as copper. Nanoparticles are bodies composed of a nanometric cluster of atoms (1-100 nm). Biogenic alternatives have replaced their chemical synthesis due to their environmental friendliness, dependability, sustainability, and low energy demand. This ecofriendly option has medical, pharmaceutical, food, and agricultural applications. When compared to their chemical counterparts, using biological agents, such as micro-organisms and plant extracts, as reducing and stabilizing agents has shown viability and acceptance. Therefore, it is a feasible alternative for rapid synthesis and scaling-up processes. Several research articles on the biogenic synthesis of copper nanoparticles have been published over the past decade. Still, none provided an organized, comprehensive overview of their properties and potential applications. Thus, this systematic review aims to assess research articles published over the past decade regarding the antioxidant, antitumor, antimicrobial, dye removal, and catalytic activities of biogenically synthesized copper nanoparticles using the scientific methodology of big data analytics. Plant extract and micro-organisms (bacteria and fungi) are addressed as biological agents. We intend to assist the scientific community in comprehending and locating helpful information for future research or application development.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Cobre/química , Nanopartículas Metálicas/química , Bactérias , Anti-Infecciosos/farmacologia , Extratos Vegetais/química , Antioxidantes/química , Antibacterianos/química
18.
Nanomaterials (Basel) ; 13(9)2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37177086

RESUMO

Glioblastoma multiforme (GBM) is the most aggressive primary malignant tumor of the brain. Although there are currently a wide variety of therapeutic approaches focused on tumor elimination, such as radiotherapy, chemotherapy, and tumor field therapy, among others, the main approach involves surgery to remove the GBM. However, since tumor growth occurs in normal brain tissue, complete removal is impossible, and patients end up requiring additional treatments after surgery. In this line, Catalytic Nanomedicine has achieved important advances in developing bionanocatalysts, brain-tissue-biocompatible catalytic nanostructures capable of destabilizing the genetic material of malignant cells, causing their apoptosis. Previous work has demonstrated the efficacy of bionanocatalysts and their selectivity for cancer cells without affecting surrounding healthy tissue cells. The present review provides a detailed description of these nanoparticles and their potential mechanisms of action as antineoplastic agents, covering the most recent research and hypotheses from their incorporation into the tumor bed, internalization via endocytosis, specific chemotaxis by mitochondrial and nuclear genetic material, and activation of programmed cell death. In addition, a case report of a patient with GBM treated with the bionanocatalysts following tumor removal surgery is described. Finally, the gaps in knowledge that must be bridged before the clinical translation of these compounds with such a promising future are detailed.

19.
Molecules ; 28(8)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37110613

RESUMO

The propargyl group is a highly versatile moiety whose introduction into small-molecule building blocks opens up new synthetic pathways for further elaboration. The last decade has witnessed remarkable progress in both the synthesis of propargylation agents and their application in the synthesis and functionalization of more elaborate/complex building blocks and intermediates. The goal of this review is to highlight these exciting advances and to underscore their impact.

20.
Polymers (Basel) ; 15(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36771826

RESUMO

Public health, production and preservation of food, development of environmentally friendly (cosmeto-)textiles and plastics, synthesis processes using green technology, and improvement of water quality, among other domains, can be controlled with the help of chitosan. It has been demonstrated that this biopolymer exhibits advantageous properties, such as biocompatibility, biodegradability, antimicrobial effect, mucoadhesive properties, film-forming capacity, elicitor of plant defenses, coagulant-flocculant ability, synergistic effect and adjuvant along with other substances and materials. In part, its versatility is attributed to the presence of ionizable and reactive primary amino groups that provide strong chemical interactions with small inorganic and organic substances, macromolecules, ions, and cell membranes/walls. Hence, chitosan has been used either to create new materials or to modify the properties of conventional materials applied on an industrial scale. Considering the relevance of strategic topics around the world, this review integrates recent studies and key background information constructed by different researchers designing chitosan-based materials with potential applications in the aforementioned concerns.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA