Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 303
Filtrar
2.
J Formos Med Assoc ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39095282

RESUMO

BACKGROUND: Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a rare and lethal arrhythmia. Ryanodine receptor 2 (RYR2) mutation accounts for ∼60% of CPVT patients which is inherited in an autosomal dominant pattern. OBJECTIVE: This study aimed to identify CPVT-related mutations and clinical characteristics among Taiwanese CPVT patients and compare to other cohorts worldwide. METHODS: Clinical and genetic data were obtained from the Sudden Arrhythmia Death Syndrome Registry in Taiwan (SADS-TW). Forty clinically diagnosed Taiwanese CPVT patients were included. RESULTS: This is the first nationwide CPVT cohort in Taiwan. Among the 29 Taiwanese patients with CPVT-related gene mutations, 55% had RYR2 mutations, a rate similar to other ethnicities. Three out of 12 RYR2 variants were unreported. Exercise-induced symptoms including syncope and cardiac arrest were more frequent in East Asian cohorts (Taiwanese 79%, Japanese 91%), compared to Caucasian cohorts (59%) (p = 0.002). CONCLUSION: The discovery of diverse RYR2 mutations in the Taiwanese CVPT population demonstrates the importance of genetic testing in different ethnicities.

3.
Eur Heart J Case Rep ; 8(8): ytae340, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39104518

RESUMO

Background: Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a primary arrhythmia disorder characterized by syncope or sudden cardiac death and typically caused by a gain-of-function of the Ryanodine Receptor Type 2 (RyR2) mutation. Calmodulin is a calcium-binding protein responsible for many intracellular signalling pathways and disruptions in function or regulation may lead to potentially fatal arrhythmias. We present a case of a young patient with CPVT found to have an unusual, potentially causative, Calmodulin 2-a protein coding gene (CALM2) mutation. Case summary: A 21-year-old female with autism was brought to the ED following cardiac arrest. Bidirectional ventricular tachycardia was captured on electrocardiogram. Propranolol was initiated, and patient had no further episodes of ventricular arrhythmia. A subcutaneous implantable cardioverter defibrillator (ICD) was implanted, and further genetics testing was done. Rapid Whole Genome Sequencing (PGnome®-RAPID) resulted heterozygous variant of uncertain significance in CALM2 gene NM_001743.5 for variant c.136G>A. Discussion: To the authors' knowledge, this is the third known record of such mutation in accordance with the International Calmodulin Registry (n = 74). Identification of CALM mutations can help advance the understanding of genetic underpinnings of arrhythmias and underscore necessity of genetic screening and personalized treatment strategies. Subcutaneous ICDs offer a promising therapeutic option while minimizing risks associated with traditional transvenous ICDs.

4.
J Arrhythm ; 40(4): 1005-1009, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39139908

RESUMO

Progress of treadmill exercise testing in Case 1 Each electrocardiogram shows the maximum load. Before left cardiac sympathetic denervation, polymorphic ventricular tachycardias were observed. After left cardiac sympathetic denervation, no ventricular arrhythmias were induced during exercise.

5.
Artigo em Inglês | MEDLINE | ID: mdl-39164998

RESUMO

INTRODUCTION: We report the case of a 37-year-old male athlete, who developed during exercise atrial and ventricular arrhythmias. No structural heart disease. RESULTS: Invasive programmed ventricular stimulation induced ventricular fibrillation. A heterozygous mutation in the CASQ2 gene (c.775G>T, p.E259X) was found. CONCLUSIONS: The findings in our patient may suggest some increased ventricular excitability using programmed ventricular stimulation in CASQ2 polymorphic ventricular tachycardia patients.

6.
Inn Med (Heidelb) ; 65(8): 787-797, 2024 Aug.
Artigo em Alemão | MEDLINE | ID: mdl-38977442

RESUMO

Genetic arrhythmia disorders are rare diseases; however, they are a common cause of sudden cardiac death in children, adolescents, and young adults. In principle, a distinction can be made between channelopathies and cardiomyopathies in the context of genetic diseases. This paper focuses on the channelopathies long and short QT syndrome, Brugada syndrome, and catecholaminergic polymorphic ventricular tachycardia (CPVT). Early diagnosis of these diseases is essential, as drug therapy, behavioral measures, and if necessary, implantation of a cardioverter defibrillator can significantly improve the prognosis and quality of life of patients. This paper highlights the pathophysiological and genetic basis of these channelopathies, describes their clinical manifestations, and comments on the principles of diagnosis, risk stratification and therapy.


Assuntos
Arritmias Cardíacas , Síndrome de Brugada , Canalopatias , Humanos , Arritmias Cardíacas/genética , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/terapia , Arritmias Cardíacas/fisiopatologia , Canalopatias/genética , Canalopatias/diagnóstico , Canalopatias/terapia , Síndrome de Brugada/genética , Síndrome de Brugada/diagnóstico , Síndrome de Brugada/fisiopatologia , Síndrome de Brugada/terapia , Taquicardia Ventricular/genética , Taquicardia Ventricular/terapia , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/fisiopatologia , Adolescente , Criança , Síndrome do QT Longo/genética , Síndrome do QT Longo/diagnóstico , Síndrome do QT Longo/terapia , Síndrome do QT Longo/fisiopatologia , Morte Súbita Cardíaca/prevenção & controle , Morte Súbita Cardíaca/etiologia , Adulto , Desfibriladores Implantáveis , Eletrocardiografia
7.
Heart Rhythm ; 21(7): 1083-1088, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38842964

RESUMO

BACKGROUND: Energy drinks potentially can trigger life-threatening cardiac arrhythmias. It has been postulated that the highly stimulating and unregulated ingredients alter heart rate, blood pressure, cardiac contractility, and cardiac repolarization in a potentially proarrhythmic manner. OBJECTIVE: The purpose of this study was to describe our experience regarding sudden cardiac arrest (SCA) occurring in proximity to energy drink consumption in patients with underlying genetic heart diseases. METHODS: The electronic medical records of all SCA survivors with proven arrhythmias referred to the Mayo Clinic Windland Smith Rice Genetic Heart Rhythm Clinic for evaluation were reviewed to identify those who consumed an energy drink before their event. Patient demographics, clinical characteristics, documented energy drink consumption, and temporal relationship of energy drink consumption to SCA were obtained. RESULTS: Among 144 SCA survivors, 7 (5%; 6 female; mean age at SCA 29 ± 8 years) experienced an unexplained SCA associated temporally with energy drink consumption. Of these individuals, 2 had long QT syndrome and 2 had catecholaminergic polymorphic ventricular tachycardia; the remaining 3 were diagnosed with idiopathic ventricular fibrillation. Three patients (43%) consumed energy drinks regularly. Six patients (86%) required a rescue shock, and 1 (14%) was resuscitated manually. All SCA survivors have quit consuming energy drinks and have been event-free since. CONCLUSION: Overall, 5% of SCA survivors experienced SCA in proximity to consuming an energy drink. Although larger cohort studies are needed to elucidate the incidence/prevalence and quantify its precise risk, it seems prudent to sound an early warning on this potential risk.


Assuntos
Morte Súbita Cardíaca , Bebidas Energéticas , Humanos , Feminino , Masculino , Bebidas Energéticas/efeitos adversos , Adulto , Morte Súbita Cardíaca/etiologia , Morte Súbita Cardíaca/epidemiologia , Estudos Retrospectivos , Adulto Jovem , Incidência , Eletrocardiografia , Fatores de Risco , Taquicardia Ventricular/etiologia , Taquicardia Ventricular/fisiopatologia , Taquicardia Ventricular/epidemiologia , Síndrome do QT Longo/fisiopatologia , Síndrome do QT Longo/induzido quimicamente
8.
Adv Exp Med Biol ; 1441: 1033-1055, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884768

RESUMO

Inherited forms of cardiac arrhythmias mostly are rare diseases (prevalence <1:2000) and considered to be either "primary electrical heart disorders" due to the absence of structural heart abnormalities or "cardiac ion channel disorders" due to the myocellular structures involved. Precise knowledge of the electrocardiographic features of these diseases and their genetic classification will enable early disease recognition and prevention of cardiac events including sudden cardiac death.The genetic background of these diseases is complex and heterogeneous. In addition to the predominant "private character" of a mutation in each family, locus heterogeneity involving many ion channel genes for the same familial arrhythmia syndrome is typical. Founder pathogenic variants or mutational hot spots are uncommon. Moreover, phenotypes may vary and overlap even within the same family and mutation carriers. For the majority of arrhythmias, the clinical phenotype of an ion channel mutation is restricted to cardiac tissue, and therefore, the disease is nonsyndromic.Recent and innovative methods of parallel DNA analysis (so-called next-generation sequencing, NGS) will enhance further mutation and other variant detection as well as arrhythmia gene identification.


Assuntos
Arritmias Cardíacas , Predisposição Genética para Doença , Mutação , Humanos , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatologia , Predisposição Genética para Doença/genética , Canais Iônicos/genética , Fenótipo , Eletrocardiografia
9.
Adv Exp Med Biol ; 1441: 1057-1090, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884769

RESUMO

Arrhythmias account for over 300,000 annual deaths in the United States, and approximately half of all deaths are associated with heart disease. Mechanisms underlying arrhythmia risk are complex; however, work in humans and animal models over the past 25 years has identified a host of molecular pathways linked with both arrhythmia substrates and triggers. This chapter will focus on select arrhythmia pathways solved by linking human clinical and genetic data with animal models.


Assuntos
Arritmias Cardíacas , Modelos Animais de Doenças , Animais , Humanos , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatologia , Arritmias Cardíacas/metabolismo , Transdução de Sinais/genética
10.
Int Heart J ; 65(3): 580-585, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38825499

RESUMO

Cardiac ryanodine receptor (RyR2) gain-of-function mutations cause catecholaminergic polymorphic ventricular tachycardia (CPVT). Conversely, RyR2 loss-of-function mutations cause a new disease entity, termed calcium release deficiency syndrome (CRDS), which may include RYR2-related long QT syndrome (LQTS). Importantly, unlike CPVT, patients with CRDS do not always exhibit exercise- or epinephrine-induced ventricular arrhythmias, which precludes a diagnosis of CRDS. Here we report a boy and his father, who both experienced exercise-induced cardiac events and harbor the same RYR2 E4107A variant. In the boy, an exercise stress test (EST) and epinephrine provocation test (EPT) did not induce any ventricular arrhythmias. QTc was slightly prolonged (QTc: 474 ms), and an EPT induced QTc prolongation (QTc-baseline: 466 ms, peak: 532 ms, steady-state: 527 ms). In contrast, in his father, QTc was not prolonged (QTc: 417 ms), and neither an EST nor EPT induced QTc prolongation. However, an EST induced multifocal premature ventricular contraction (PVC) bigeminy and bidirectional PVC couplets. Thus, they exhibited distinct clinical phenotypes: the boy exhibited LQTS (or CRDS) phenotype, whereas his father exhibited CPVT phenotype. These findings suggest that, in addition to the altered RyR2 function, other unidentified factors, such as other genetic, epigenetic, and environmental factors, and aging, may be involved in the diverse phenotypic manifestations. Considering that a single RYR2 variant can cause both CPVT and LQTS (or CRDS) phenotypes, in cascade screening of patients with CPVT and CRDS, an EST and EPT are not sufficient and genetic analysis is required to identify individuals who are at increased risk for life-threatening arrhythmias.


Assuntos
Síndrome do QT Longo , Fenótipo , Canal de Liberação de Cálcio do Receptor de Rianodina , Taquicardia Ventricular , Humanos , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Masculino , Síndrome do QT Longo/genética , Síndrome do QT Longo/diagnóstico , Taquicardia Ventricular/genética , Taquicardia Ventricular/diagnóstico , Eletrocardiografia , Linhagem , Adulto , Teste de Esforço , Mutação
11.
Proc Natl Acad Sci U S A ; 121(17): e2218204121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38621141

RESUMO

Inherited arrhythmia syndromes (IASs) can cause life-threatening arrhythmias and are responsible for a significant proportion of sudden cardiac deaths (SCDs). Despite progress in the development of devices to prevent SCDs, the precise molecular mechanisms that induce detrimental arrhythmias remain to be fully investigated, and more effective therapies are desirable. In the present study, we screened a large-scale randomly mutagenized mouse library by electrocardiography to establish a disease model of IASs and consequently found one pedigree that exhibited spontaneous ventricular arrhythmias (VAs) followed by SCD within 1 y after birth. Genetic analysis successfully revealed a missense mutation (p.I4093V) of the ryanodine receptor 2 gene to be a cause of the arrhythmia. We found an age-related increase in arrhythmia frequency accompanied by cardiomegaly and decreased ventricular contractility in the Ryr2I4093V/+ mice. Ca2+ signaling analysis and a ryanodine binding assay indicated that the mutant ryanodine receptor 2 had a gain-of-function phenotype and enhanced Ca2+ sensitivity. Using this model, we detected the significant suppression of VA following flecainide or dantrolene treatment. Collectively, we established an inherited life-threatening arrhythmia mouse model from an electrocardiogram-based screen of randomly mutagenized mice. The present IAS model may prove feasible for use in investigating the mechanisms of SCD and assessing therapies.


Assuntos
Taquicardia Ventricular , Camundongos , Animais , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Arritmias Cardíacas/genética , Flecainida , Mutação de Sentido Incorreto , Morte Súbita Cardíaca , Mutação
12.
Heart Rhythm ; 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38588993

RESUMO

BACKGROUND: Catecholaminergic polymorphic ventricular tachycardia (CPVT) may cause sudden cardiac death (SCD) despite medical therapy. Therefore, implantable cardioverter-defibrillators (ICDs) are commonly advised. However, there is limited data on the outcomes of ICD use in children. OBJECTIVE: The purpose of this study was to compare the risk of arrhythmic events in pediatric patients with CPVT with and without an ICD. METHODS: We compared the risk of SCD in patients with RYR2 (ryanodine receptor 2) variants and phenotype-positive symptomatic CPVT patients with and without an ICD who were younger than 19 years and had no history of sudden cardiac arrest at phenotype diagnosis. The primary outcome was SCD; secondary outcomes were composite end points of SCD, sudden cardiac arrest, or appropriate ICD shocks with or without arrhythmic syncope. RESULTS: The study included 235 patients, 73 with an ICD (31.1%) and 162 without an ICD (68.9%). Over a median follow-up of 8.0 years (interquartile range 4.3-13.4 years), SCD occurred in 7 patients (3.0%), of whom 4 (57.1%) were noncompliant with medications and none had an ICD. Patients with ICD had a higher risk of both secondary composite outcomes (without syncope: hazard ratio 5.85; 95% confidence interval 3.40-10.09; P < .0001; with syncope: hazard ratio 2.55; 95% confidence interval 1.50-4.34; P = .0005). Thirty-one patients with ICD (42.5%) experienced appropriate shocks, 18 (24.7%) inappropriate shocks, and 21 (28.8%) device-related complications. CONCLUSION: SCD events occurred only in patients without an ICD and mostly in those not on optimal medical therapy. Patients with an ICD had a high risk of appropriate and inappropriate shocks, which may be reduced with appropriate device programming. Severe ICD complications were common, and risks vs benefits of ICDs need to be considered.

13.
J Electrocardiol ; 84: 75-80, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38574633

RESUMO

In this case report, we describe a 14-year-old patient with a novel RyR2 gene mutation (c.6577G > T/p.Val2193Leu), identified through a comprehensive review of medical history, examination findings, and follow-up data. The pathogenic potential of this mutation, which results in the loss of some interatomic forces and compromises the closure of the RyR2 protein pore leading to calcium leakage, was analyzed using the I-TASSER Suite to predict the structural changes in the protein. This mutation manifested clinically as co-morbid catecholaminergic polymorphic ventricular tachycardia (CPVT) and benign epilepsy with centrotemporal spikes (BECTS), a combination not previously documented in the same patient. While seizures were successfully managed with levetiracetam, the patient's exercise-induced syncope episodes could not be controlled with metoprolol, highlighting the complexity and challenge in managing CPVT associated with this novel RyR2 variation.


Assuntos
Mutação , Canal de Liberação de Cálcio do Receptor de Rianodina , Taquicardia Ventricular , Humanos , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Taquicardia Ventricular/genética , Taquicardia Ventricular/tratamento farmacológico , Adolescente , Masculino , Epilepsia Rolândica/genética , Epilepsia Rolândica/tratamento farmacológico , Eletrocardiografia
14.
Transl Pediatr ; 13(2): 359-369, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38455755

RESUMO

Background: Ryanodine receptor 2 (RYR2) gene mutation causing catecholaminergic polymorphic ventricular tachycardia (CPVT) is one of the identified causes of sudden death in adults and children. Case Description: We report a case of RYR2 gene mutation presented with cardiac arrest and recurrent syncopal attack with accidental finding of cardiac tumour. For the systematic review, we used four databases (Scopus, PubMed, Ovid and Google Scholar) to search articles with the terms "RYR2 gene mutation" and "catecholaminergic polymorphic ventricular tachycardia (CPVT)". Fourteen studies were chosen and reviewed together with our reported patient. Most of the patients presented initially with syncopal attack and developed cardiac arrest later. Some of them presented with both syncopal attack and seizures precipitated by exercise or stress. We found that 43.8% of patients shared similar variants or coding effects in RYR2 gene mutation. Demographically, the mean age at presentation is 11 years old with 53% of reported cases were male. Conclusions: Refractory arrhythmias cardiac arrest not responding to adrenaline should raise the suspicion towards RYR2 gene mutations. Recognition of this condition is important as it affects the outcome of resuscitation. Untimely diagnosis of RYR2 gene mutations with appropriate use of pharmacological agents during resuscitation is important to ensure a better outcome.

15.
J Clin Med ; 13(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38542006

RESUMO

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a severe hereditary arrhythmia syndrome predominantly affecting children and young adults. It manifests through bidirectional or polymorphic ventricular arrhythmia, often culminating in syncope triggered by physical exertion or emotional stress which can lead to sudden cardiac death. Most cases stem from mutations in the gene responsible for encoding the cardiac ryanodine receptor (RyR2), or in the Calsequestrin 2 gene (CASQ2), disrupting the handling of calcium ions within the cardiac myocyte sarcoplasmic reticulum. Diagnosing CPVT typically involves unmasking the arrhythmia through exercise stress testing. This diagnosis emerges in the absence of structural heart disease by cardiac imaging and with a normal baseline electrocardiogram. Traditional first-line treatment primarily involves ß-blocker therapy, significantly reducing CPVT-associated mortality. Adjunctive therapies such as moderate exercise training, flecainide, left cardiac sympathetic denervation and implantable cardioverter-defibrillators have been utilized with reasonable success. However, the spectrum of options for managing CPVT has expanded over time, demonstrating decreased rates of arrhythmic events. Furthermore, ongoing research into potential new therapies including gene therapies has the potential to further enhance treatment paradigms. This review aims to succinctly encapsulate the contemporary understanding of the clinical characteristics, diagnostic approach, established therapeutic interventions and the promising future directions in managing CPVT.

16.
J Cardiovasc Aging ; 4(1)2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38464671

RESUMO

Introduction: Heterozygous autosomal-dominant single nucleotide variants in RYR2 account for 60% of cases of catecholaminergic polymorphic ventricular tachycardia (CPVT), an inherited arrhythmia disorder associated with high mortality rates. CRISPR/Cas9-mediated genome editing is a promising therapeutic approach that can permanently cure the disease by removing the mutant RYR2 allele. However, the safety and long-term efficacy of this strategy have not been established in a relevant disease model. Aim: The purpose of this study was to assess whether adeno-associated virus type-9 (AAV9)-mediated somatic genome editing could prevent ventricular arrhythmias by removal of the mutant allele in mice that are heterozygous for Ryr2 variant p.Arg176Gln (R176Q/+). Methods and Results: Guide RNA and SaCas9 were delivered using AAV9 vectors injected subcutaneously in 10-day-old mice. At 6 weeks after injection, R176Q/+ mice had a 100% reduction in ventricular arrhythmias compared to controls. When aged to 12 months, injected R176Q/+ mice maintained a 100% reduction in arrhythmia induction. Deep RNA sequencing revealed the formation of insertions/deletions at the target site with minimal off-target editing on the wild-type allele. Consequently, CRISPR/SaCas9 editing resulted in a 45% reduction of total Ryr2 mRNA and a 38% reduction in RyR2 protein. Genome editing was well tolerated based on serial echocardiography, revealing unaltered cardiac function and structure up to 12 months after AAV9 injection. Conclusion: Taken together, AAV9-mediated CRISPR/Cas9 genome editing could efficiently disrupt the mutant Ryr2 allele, preventing lethal arrhythmias while preserving normal cardiac function in the R176Q/+ mouse model of CPVT.

17.
Europace ; 26(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38349347

RESUMO

AIMS: In patients with catecholaminergic polymorphic ventricular tachycardia (CPVT), a rare inherited arrhythmia syndrome, arrhythmic events can be prevented by medication and lifestyle recommendations. In patients who experience breakthrough arrhythmic events, non-adherence plays an essential role. We aimed to investigate the incidence and potential reasons for non-adherence to medication and lifestyle recommendations in a large, international cohort of patients with CPVT. METHODS AND RESULTS: An online multilingual survey was shared with CPVT patients worldwide by their cardiologists, through peer-recruitment, and on social media from November 2022 until July 2023. Self-reported non-adherence was measured using the validated Medication Adherence Rating Scale (MARS) and a newly developed questionnaire about lifestyle. Additionally, validated questionnaires were used to assess potential reasons for medication non-adherence. Two-hundred-and-eighteen patients completed the survey, of whom 200 (92%) were prescribed medication [122 (61%) female; median age 33.5 years (interquartile range: 22-50)]. One-hundred-and-three (52%) were prescribed beta-blocker and flecainide, 85 (43%) beta-blocker, and 11 (6%) flecainide. Thirty-four (17%) patients experienced a syncope, aborted cardiac arrest or appropriate implantable cardioverter defibrillator shock after diagnosis. Nineteen (13.4%) patients were exercising more than recommended. Thirty (15%) patients were non-adherent to medication. Female sex [odds ratio (OR) 3.7, 95% confidence interval (CI) 1.3-12.0, P = 0.019], flecainide monotherapy compared to combination therapy (OR 6.8, 95% CI 1.6-31.0, P = 0.010), and a higher agreement with statements regarding concerns about CPVT medication (OR 1.2, 95% CI 1.1-1.3, P < 0.001) were independently associated with non-adherence. CONCLUSION: The significant rate of non-adherence associated with concerns regarding CPVT-related medication, emphasizes the potential for improving therapy adherence by targeted patient education.


Assuntos
Flecainida , Taquicardia Ventricular , Humanos , Feminino , Adulto , Masculino , Flecainida/efeitos adversos , Antiarrítmicos/uso terapêutico , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/tratamento farmacológico , Taquicardia Ventricular/epidemiologia , Estilo de Vida , Adesão à Medicação , Canal de Liberação de Cálcio do Receptor de Rianodina
18.
Curr Protoc ; 4(2): e994, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38372479

RESUMO

Cardiac arrhythmias are a common cardiac condition that might lead to fatal outcomes. A better understanding of the molecular and cellular basis of arrhythmia mechanisms is necessary for the development of better treatment modalities. To aid these efforts, various mouse models have been developed for studying cardiac arrhythmias. Both genetic and surgical mouse models are commonly used to assess the incidence and mechanisms of arrhythmias. Since spontaneous arrhythmias are uncommon in healthy young mice, intracardiac programmed electrical stimulation (PES) can be performed to assess the susceptibility to pacing-induced arrhythmias and uncover the possible presence of a proarrhythmogenic substrate. This procedure is performed by positioning an octopolar catheter inside the right atrium and ventricle of the heart through the right jugular vein. PES can provide insights into atrial and ventricular electrical activity and reveal whether atrial and/or ventricular arrhythmias are present or can be induced. Here, we explain detailed procedures used to perform this technique, possible troubleshooting scenarios, and methods to interpret the results obtained. © 2024 Wiley Periodicals LLC. Basic Protocol: Programmed electrical stimulation in mice.


Assuntos
Arritmias Cardíacas , Técnicas Eletrofisiológicas Cardíacas , Camundongos , Animais , Arritmias Cardíacas/terapia , Ventrículos do Coração , Átrios do Coração , Estimulação Elétrica
19.
Open Med (Wars) ; 19(1): 20230880, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38283583

RESUMO

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a hereditary heart disease characterized by bidirectional or polymorphic ventricular tachycardia and an increased risk of sudden cardiac death. Although trans-2,3-enoyl-CoA reductase like (TECRL) is a newly reported pathogenic gene leading to CPVT that can influence intracellular calcium regulation, the unidentified mechanism underlying the pathogenesis of TECRL deficiency-mediated CPVT remains mainly elusive. In the present study, Tecrl knockout (KO) mice were established and the differentially expressed genes (DEGs) were investigated by RNA-sequencing from the heart tissues. In addition, 857 DEGs were identified in Tecrl KO mice. Subsequently, a weighted gene co-expression network analysis was conducted to discern the pivotal pathways implicated in the Tecrl-mediated regulatory network. Moreover, pathway mapping analyses demonstrated that essential metabolism-related pathways were significantly enriched, notably the fatty acid metabolic process and calcium regulation. Collectively, the data suggested a synergistic relationship between Tecrl deficiency and cardiometabolic and calcium regulation during the development of CPVT. Therefore, further studies on the potential function of TECRL in cardiac tissues would be beneficial to elucidate the pathogenesis of CPVT.

20.
Cardiovasc Res ; 120(2): 114-131, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38195920

RESUMO

Ventricular arrhythmias in cardiac channelopathies are linked to autonomic triggers, which are sub-optimally targeted in current management strategies. Improved molecular understanding of cardiac channelopathies and cellular autonomic signalling could refine autonomic therapies to target the specific signalling pathways relevant to the specific aetiologies as well as the central nervous system centres involved in the cardiac autonomic regulation. This review summarizes key anatomical and physiological aspects of the cardiac autonomic nervous system and its impact on ventricular arrhythmias in primary inherited arrhythmia syndromes. Proarrhythmogenic autonomic effects and potential therapeutic targets in defined conditions including the Brugada syndrome, early repolarization syndrome, long QT syndrome, and catecholaminergic polymorphic ventricular tachycardia will be examined. Pharmacological and interventional neuromodulation options for these cardiac channelopathies are discussed. Promising new targets for cardiac neuromodulation include inhibitory and excitatory G-protein coupled receptors, neuropeptides, chemorepellents/attractants as well as the vagal and sympathetic nuclei in the central nervous system. Novel therapeutic strategies utilizing invasive and non-invasive deep brain/brain stem stimulation as well as the rapidly growing field of chemo-, opto-, or sonogenetics allowing cell-specific targeting to reduce ventricular arrhythmias are presented.


Assuntos
Síndrome de Brugada , Canalopatias , Síndrome do QT Longo , Taquicardia Ventricular , Humanos , Morte Súbita Cardíaca/etiologia , Arritmias Cardíacas , Sistema Nervoso Autônomo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA