Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
1.
Int J Biol Macromol ; 275(Pt 2): 133743, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38986975

RESUMO

Due to wonderful taste, rich nutrition and biological functions, many marine green algae in the genus Caulerpa have been recently developed as candidates for green caviar. A novel water-soluble sulfated xylogalactomannan CO-0-1 was obtained from the green algae Caulerpa okamurae. CO-0-1 was mainly composed of mannose (Man), galactose (Gal), and xylose (Xyl) at the ratio of 4.4:4.0:1.4 with the molecular weight at 470 kDa and the sulfate content at 12.78 %. The sulfated xylogalactomannan had Man at the backbone with →4)-ß-D-Manp-(1→ and →2)-ß-D-Manp-(1→ as the main chain and branches at O-3 position. The side chains contained →3)-ß-D-Galp-(1→ and minor →2)-ß-D-Xylp(1→. The sulfate groups only distributed at the side chains and at O-6 position of →3)-ß-D-Galp-(1→ and O-4 position of (1→2)-ß-D-Xylp. The anticoagulant activity indicated that CO-0-1 displayed intrinsic anticoagulant and specific anti-thrombin activities. The investigation expanded the utilization and development scene and scope of the green algae Caulerpa okamurae.

2.
Mar Drugs ; 22(6)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38921583

RESUMO

The marine environment provides a rich source of distinct creatures containing potentially revolutionary bioactive chemicals. One of these organisms is Caulerpa racemosa, a type of green algae known as green seaweed, seagrapes, or green caviar. This organism stands out because it has great promise for use in medicine, especially in the study of cancer. Through the utilization of computational modeling (in silico) and cellular laboratory experiments (in vitro), the chemical components included in the green seaweed C. racemosa were effectively analyzed, uncovering its capability to treat non-small cell lung cancer (NSCLC). The study specifically emphasized blocking SRC, STAT3, PIK3CA, MAPK1, EGFR, and JAK1 using molecular docking and in vitro. These proteins play a crucial role in the EGFR Tyrosine Kinase Inhibitor Resistance pathway in NSCLC. The chemical Caulersin (C2) included in C. racemosa extract (CRE) has been identified as a potent and effective agent in fighting against non-small cell lung cancer (NSCLC), both in silico and in vitro. CRE and C2 showed a level of inhibition similar to that of osimertinib (positive control/NSCLC drug).


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Caulerpa , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares , Simulação de Acoplamento Molecular , Farmacologia em Rede , Inibidores de Proteínas Quinases , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Caulerpa/química , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Linhagem Celular Tumoral , Alga Marinha/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Receptores ErbB/antagonistas & inibidores , Acrilamidas/farmacologia , Acrilamidas/química
3.
Foods ; 13(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38731782

RESUMO

In response to a global shift towards health-conscious and environmentally sustainable food choices, seaweed has emerged as a focus for researchers due to its large-scale cultivation potential and the development of bioactive substances. This research explores the potential anticancer properties of seaweed extracts, focusing on analyzing the impact of four common edible seaweeds in Taiwan on prostate cancer (PCa) cells' activity. The study used bioassay-guided fractionation to extract Cl80 from various seaweeds with androgen receptor (AR)-inhibitory activity. Cl80 demonstrated effective suppression of 5α-dihydrotestosterone (DHT)-induced AR activity in 103E cells and attenuated the growth and prostate-specific antigen (PSA) protein expression in LNCaP and 22Rv1 cells. Additionally, Cl80 exhibited differential effects on various PCa cell lines. Concentrations above 5 µg/mL significantly inhibited LNCaP cell proliferation, while 22Rv1 cells were more resistant to Cl80. PC-3 cell proliferation was inhibited at 5 µg/mL but not completely at 50 µg/mL. A clonogenic assay showed that at a concentration of 0.5 µg/mL, the colony formation in LNCaP and PC-3 cells was significantly reduced, with a dose-dependent effect. Cl80 induced apoptosis in all PCa cell types, especially in LNCaP cells, with increased apoptotic cells observed at higher concentrations. Cl80 also decreased the mitochondrial membrane potential (ΔΨm) in a dose-dependent manner in all PCa cell lines. Furthermore, Cl80 suppressed the migration ability of PCa cells, with significant reductions observed in LNCaP, 22Rv1, and PC-3 cells at various concentrations. These compelling findings highlight the promising therapeutic potential of C. lentillifera J.Agardh and its isolated compound Cl80 in the treatment of PCa.

4.
Int J Biol Macromol ; 267(Pt 1): 131574, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615857

RESUMO

Caulerpa lentillifera is rich in polysaccharides, and its polysaccharides show a significant effect in different biological activities including anti-cancer activity. As an edible algae-derived polysaccharide, exploring the role of colon cancer can better develop the application from a dietary therapy perspective. However, more in-depth studies of C. lentillifera polysaccharide on anti-colon cancer activity and mechanism are needed. In this study, we found that Caulerpa lentillifera polysaccharides (CLP) showed potential anti-colon cancer effect on human colon cancer cell HT29 in monolayer (IC50 = 1.954 mg/mL) and spheroid (IC50 = 0.402 mg/mL). Transcriptomics and metabolomics analyses revealed that CLP had an inhibitory effect on HT29 3D spheroid cells by activating aminoacyl-tRNA biosynthesis as well as arginine and proline metabolism pathways. Furthermore, the anti-colon cancer effects of CLP were confirmed through other human colon cancer cell HCT116 and LoVo in monolayer cells (IC50 = 1.890 mg/mL and 1.437 mg/mL, respectively) and 3D spheroid cells (IC50 = 0.344 mg/mL and 0.975 mg/mL, respectively), and three patient-derived organoids with IC50 values of 6.333-8.780 mg/mL. This study provided basic data for the potential application of CLP in adjuvant therapeutic food for colon cancer on multiple levels, while further investigation of detailed mechanism in vivo was still required.


Assuntos
Caulerpa , Neoplasias do Colo , Algas Comestíveis , Polissacarídeos , Esferoides Celulares , Humanos , Polissacarídeos/farmacologia , Polissacarídeos/química , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Caulerpa/química , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Técnicas de Cultura de Células em Três Dimensões/métodos , Proliferação de Células/efeitos dos fármacos , Células HT29 , Linhagem Celular Tumoral , Células HCT116 , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
5.
Open Vet J ; 14(3): 769-778, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38682138

RESUMO

Background: Food poisoning caused by bacterial agents is a worldwide problem, usually accompanied by unpleasant symptoms and may be severe leading to death. Natural compounds from marine algae namely flavonoids may play a role in the remedy of this condition. Aim: This research aims to assess the potency of flavonoids extracted from Enteromorpha intestinalis and Caulerpa prolifera as antibacterial agents. Methods: Enteromorpha intestinalis was collected from Western Libyan Coast and C. prolifera was collected from Farwa Island. The antimicrobial activity and determination of minimum inhibitory concentration of algal flavonoid-containing extracts was performed in vitro against some positive and negative Gram bacteria. Results: Crude extract containing flavonoids from E. intestinalis was more effective than C. prolifera extract against Staphylococcus aureus with antimicrobial essay (25-28 + 1 and 14.5-37.5 + 0.5-1.5), MIC (50 and 50-250 µg/ml), MBC (75 and 75-250 µg/ml). In Bacillus cereus, the antimicrobial assay (19-24.5 + 0.5-1.5: 24 + 1), MIC (50-250 + 100 µg/ml), and MBC (250 and 125 µg/ml). On the other hand, flavonoids containing extract from C. prolifera were more effective than E. intestinalis against Enterohemorrhagic Escherichia coli O157 EHEC O157 (25-28 + 1: 14-18.5 + 0.5-1.5), MIC (100-250:100-500 µg/ml), and MBC (150-250 and 250-500 µg/ml). Salmonella enterica qualitatively combat by flavonoid from E. intestinalis (13.5-14 + 0.5-1: 10.5-13.5 + 0.5-1.5), MIC (100-250: 250 µg/ml), and MBC (100-250: 250 µg/ml). Flavonoids from C. prolifera (4 strains: 2 strains) were effective against S. enterica. Crude flavonoids from both algae were not effective against Bacillus pumilus. Conclusion: Data from this study could conclude that flavonoid extracts from E. intestinalis and C. prolifera could be used against foodborne bacterial agents.


Assuntos
Antibacterianos , Caulerpa , Farmacorresistência Bacteriana Múltipla , Flavonoides , Testes de Sensibilidade Microbiana , Flavonoides/farmacologia , Flavonoides/química , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Caulerpa/química , Ulva/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Doenças Transmitidas por Alimentos/microbiologia , Doenças Transmitidas por Alimentos/prevenção & controle , Doenças Transmitidas por Alimentos/veterinária , Animais
6.
Heliyon ; 10(6): e27635, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38509999

RESUMO

Seaweed has attracted attention as a bioactive source for preventing different chronic diseases, including liver injury and non-alcoholic fatty liver disease, the leading cause of liver-related mortality. Caulerpa lentillifera is characterized as tropical edible seaweed, currently being investigated for health benefits of its extracts and bioactive substances. This study examined the effects of C. lentillifera extract in ethyl acetate fraction (CLEA) on controlling lipid accumulation and lipid metabolism in HepG2 cells induced with oleic acid through the in vitro hepatic steatosis model. Gas chromatography-mass spectrometry (GC-MS) analysis indicated that CLEA contained diverse organic compounds, including hydrocarbons, amino acids, and carboxylic acids. Docked conformation of dl-2-phenyltryptophane and benzoic acid, two major bioactive CLEA components, showed high affinity binding to SIRT1 and AMPK as target molecules of lipid metabolism. CLEA reduced lipid accumulation and intracellular triglyceride levels in HepG2 cells stimulated with oleic acid. The effect of CLEA on regulating expression of lipid metabolism-related molecules was investigated by qPCR and immunoblotting. CLEA promoted expression of the SIRT1 gene in oleic acid-treated HepG2 cells. CLEA also reduced expression levels of SREBF1, FAS, and ACC genes, which might be related to activation of AMPK signaling in lipid-accumulated HepG2 cells. These findings suggest that CLEA contains bioactive compounds potentially reducing triglyceride accumulation in lipid-accumulated HepG2 hepatocytes by controlling lipid metabolism molecules.

7.
Curr Issues Mol Biol ; 46(3): 2701-2712, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38534786

RESUMO

Inflammation and collagen-degrading enzymes' overexpression promote collagen decomposition, which affects the structural integrity of the extracellular matrix. The polysaccharide and peptide extracts of the green alga Caulerpa microphysa (C. microphysa) have been proven to have anti-inflammatory, wound healing, and antioxidant effects in vivo and in vitro. However, the biological properties of the non-water-soluble components of C. microphysa are still unknown. In the present study, we demonstrated the higher effective anti-inflammatory functions of C. microphysa ethyl acetate (EA) extract than water extract up to 16-30% in LPS-induced HaCaT cells, including reducing the production of interleukin (IL)-1ß, IL-6, IL-8, and tumor necrosis factor-α (TNF-α). Furthermore, the excellent collagen homeostasis effects from C. microphysa were proven by suppressing the matrix metalloproteinase-1 (MMP-1) secretion, enhancing type 1 procollagen and collagen expressions dose-dependently in WS1 cells. Moreover, using UHPLC-QTOF-MS analysis, four terpenoids, siphonaxanthin, caulerpenyne, caulerpal A, and caulerpal B, were identified and may be involved in the superior collagen homeostasis and anti-inflammatory effects of the C. microphysa EA extract.

8.
Int J Biol Macromol ; 260(Pt 1): 129435, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38228205

RESUMO

Caulerpa lentillifera polysaccharide (CLP) has been characterized as a sulfated polysaccharide which can effectively inhibit lipid digestion. However, little information was known regarding its inhibitory mechanisms. In the present study, desulfation and degradation were conducted to prepare the derivatives of CLP, and a series of chemical and spectroscopic methods were used to elucidate the structure-activity relationship of CLP on the inhibitory effect of lipid digestion. Results revealed that CLP possessed excellent binding capacities for sodium cholate, sodium glycocholate, and sodium taurocholate. In addition, CLP can effectively inhibit lipase activity by quenching the fluorescence intensity, changing the secondary structure, and decreasing the UV-Vis absorbance. Of note, sulfate groups in CLP took a vital role in inhibiting lipase activity, while the molecular weight of CLP showed a positive correlation with the binding activities of bile acids. Furthermore, adding CLP into the whey protein isolate (WPI) emulsion system also impeded lipid digestion, indicating that CLP can be a potential reduced-fat nutraceutical used in food emulsion systems.


Assuntos
Caulerpa , Algas Comestíveis , Lipídeos , Polissacarídeos , Emulsões , Polissacarídeos/química , Relação Estrutura-Atividade , Digestão , Lipase
9.
Heliyon ; 10(2): e24444, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38293411

RESUMO

The polysaccharides found in Caulerpa lentillifera (sea grape algae) are potentially an important bioactive resource. This study makes use of RSM (response surface methodology) to determine the optimal conditions for the extraction of valuable SGP (sea grape polysaccharides). The findings indicated that a water/raw material ratio of 10:1 mL/g, temperature of 90 °C, and extraction time of 45 min would maximize the yield, with experimentation achieving a yield of 21.576 %. After undergoing purification through DEAE-52 cellulose and Sephacryl S-100 column chromatography, three distinct fractions were obtained, namely SGP11, SGP21, and SGP31, each possessing average molecular weights of 38.24 kDa, 30.13 kDa, and 30.65 kDa, respectively. Following characterization, the fractions were shown to comprise glucose, galacturonic acid, xylose, and mannose, while the sulfate content was in the range of 12.2-21.8 %. Using Fourier transform infrared spectroscopy (FT-IR) it was possible to confirm with absolute certainty the sulfate polysaccharide attributes of SGP11, SGP21, and SGP31. NMR (nuclear magnetic resonance) findings made it clear that SGP11 exhibited α-glycosidic configurations, while the configurations of SGP21 and SGP31 were instead ß-glycosidic. The in vitro antioxidant assays which were conducted revealed that each of the fractions was able to demonstrate detectable scavenging activity against 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical cations. All fractions were also found to exhibit the capacity to scavenge NO radicals in a dose-dependent manner. SGP11, SGP21, and SGP31 were also able to display cellular antioxidant activity (CAA) against the human adenocarcinoma colon (Caco-2) cell line when oxidative damage was induced. The concentration levels were found to govern the extent of such activity. Moreover, purified SGP were found to exert strong inhibitory effects upon glycation, with the responses dependent upon dosage, thus confirming the potential for SGP to find a role as a natural resource for the production of polysaccharide-based antioxidant drugs, or products to promote improved health.

10.
J Anim Physiol Anim Nutr (Berl) ; 108(2): 324-337, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37867426

RESUMO

Nowadays, the use of seaweed derivatives in aquaculture has drawn attention for their potential as an immunostimulant and growth promotor. The sulfated polysaccharide extracted (SPE ) from green (Caulerpa sp.; SPC) and brown (Padina sp.; SPP) seaweeds with two concentrations (0.05% and 0.1%); nominated in four groups: SPC0.05 , SPC0.1 , SPP0.05 , SPP0.1 and control group (free of SPE ) were used for juvenile rainbow trout (Oncorhynchus mykiss) diet. Fish (N: 150; 8.5 ± 0.2 g) were selected aleatory distributed in 15 circular tanks (triplicate for the group) and fed test diets for 56 days. The outcomes revealed that the supplementation of SPE up to 1 g kg-1 failed to show significant differences in the organosomatic indices as compared to the control group. The most inferior protein value of dress-out fish composition was observed in the fish fed the control diet, which was statistically lower than the SCP0.1 group (p < 0.05), while no significant difference was observed in other macronutrient composition among the treatments. Total monounsaturated fatty acid (MUFA) had lower trend in the carcass of fish fed SPE supplemented diets, so that lowest MUFA were observed in SPC0.05 group (p < 0.05; 25.22 ± 4.29%). The lowest value of docosahexaenoic acid was observed in the control diet compared to the SPE -supplemented diets (p < 0.05). The serum alternative complement pathway levels in all treatments tend to promote compared to the control treatment. A similar trend was observed for lysozyme activity. According to the results, the superoxide dismutase (SOD) value were highest in SPC0.05 and SPC0.1 compared to the other treatments (p < 0.05), while a further elevation of the SPE Padina sp. extracted level (SPP0.1 ) leads to a decrease in SOD value. Thiobarbituric acid reactive substances of plasma was indicated not to influence by sulfated polysaccharide extracts in the refrigerated storage. The lowest serum stress indicators were observed in fish fed SPP0.05 group postchallenge test. Taken together, our outcomes revealed that SPE of two species of seaweeds bestows benefits in some of the immunity and antioxidant system. Also, notable elevations in HUFA were observed in juvenile rainbow trout fed supplemented with SPE .


Assuntos
Caulerpa , Oncorhynchus mykiss , Animais , Oncorhynchus mykiss/metabolismo , Amônia/metabolismo , Caulerpa/metabolismo , Sulfatos , Suplementos Nutricionais , Dieta/veterinária , Superóxido Dismutase/metabolismo , Ração Animal/análise
11.
PeerJ ; 11: e16646, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38107563

RESUMO

An increased abundance of macroalgae has been observed in coral reefs damaged by climate change and local environmental stressors. Macroalgae have a sublethal effect on corals that includes the inhibition of their growth, development, and reproduction. Thus, this study explored the effects of the macroalga, Caulerpa taxifolia, on the massive coral, Turbinaria peltata, under thermal stress. We compared the responses of the corals' water-meditated interaction with algae (the co-occurrence group) and those in direct contact with algae at two temperatures. The results show that after co-culturing with C. taxifolia for 28 days, the density content of the dinoflagellate endosymbionts was significantly influenced by the presence of C. taxifolia at ambient temperature (27 °C), from 1.3 × 106 cells cm-2 in control group to 0.95 × 106 cells cm-2 in the co-occurrence group and to 0.89 × 106 cells cm-2 in the direct contact group. The chlorophyll a concentration only differed significantly between the control and the direct contact group at 27 °C. The protein content of T. peltata decreased by 37.2% in the co-occurrence group and 49.0% in the direct contact group compared to the control group. Meanwhile, the growth rate of T. peltata decreased by 57.7% in the co-occurrence group and 65.5% in the direct contact group compared to the control group. The activity of the antioxidant enzymes significantly increased, and there was a stronger effect of direct coral contact with C. taxifolia than the co-occurrence group. At 30 °C, the endosymbiont density, chlorophyll a content, and growth rate of T. peltata significantly decreased compared to the control temperature; the same pattern was seen in the increase in antioxidant enzyme activity. Additionally, when the coral was co-cultured with macroalgae at 30 °C, there was no significant decrease in the density or chlorophyll a content of the endosymbiont compared to the control. However, the interaction of macroalgae and elevated temperature was evident in the feeding rate, protein content, superoxide dismutase (SOD), and catalase (CAT) activity compared to the control group. The direct contact of the coral with macroalga had a greater impact than water-meditated interactions. Hence, the competition between coral and macroalga may be more intense under thermal stress.


Assuntos
Antozoários , Caulerpa , Fenômenos Fisiológicos , Alga Marinha , Animais , Clorofila A , Antioxidantes , Alga Marinha/fisiologia , Água
12.
Mar Drugs ; 21(11)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37999401

RESUMO

Obesity is a multifactorial disease characterized by an excessive accumulation of fat, which in turn poses a significant risk to health. Bioactive compounds obtained from macroalgae have demonstrated their efficacy in combating obesity in various animal models. The green macroalgae Caulerpa lentillifera (CL) contains numerous active constituents. Hence, in the present study, we aimed to elucidate the beneficial anti-obesity effects of extracts derived from C. lentillifera using a Caenorhabditis elegans obesity model. The ethanol (CLET) and ethyl acetate (CLEA) extracts caused a significant decrease in fat consumption, reaching up to approximately 50-60%. Triglyceride levels in 50 mM glucose-fed worms were significantly reduced by approximately 200%. The GFP-labeled dhs-3, a marker for lipid droplets, exhibited a significant reduction in its level to approximately 30%. Furthermore, the level of intracellular ROS displayed a significant decrease of 18.26 to 23.91% in high-glucose-fed worms treated with CL extracts, while their lifespan remained unchanged. Additionally, the mRNA expression of genes associated with lipogenesis, such as sbp-1, showed a significant down-regulation following treatment with CL extracts. This finding was supported by a significant decrease (at 16.22-18.29%) in GFP-labeled sbp-1 gene expression. These results suggest that C. lentillifera extracts may facilitate a reduction in total fat accumulation induced by glucose through sbp-1 pathways. In summary, this study highlights the anti-obesity potential of compounds derived from C. lentillifera extracts in a C. elegans model of obesity, mediated by the suppression of lipogenesis pathways.


Assuntos
Caulerpa , Alga Marinha , Animais , Caenorhabditis elegans/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo , Glucose/metabolismo
13.
Life (Basel) ; 13(11)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-38004252

RESUMO

Caulerpa lentillifera is a type of green macroalga that is commonly consumed as fresh seaweed, particularly in Southeast Asia. The effects of different salt types and concentrations on C. lentillifera during brine processing were investigated using table, sea and flower salt at 10-30% levels. The colour and texture of C. lentillifera varied across different treatments. After storage in brine for 12 weeks, lightness (L*) decreased, greenness (a*) decreased and yellowness (b*) increased while firmness increased in all treatments compared to fresh algae. The nutritional composition did not change significantly over time. To ensure the safety and quality of seaweed for consumption, the optimal salt level for brine processing should not exceed 30% table salt. The morphology and elements contained in different types of salt were also observed, and the microbiological safety of seaweed was evaluated. The popularity of Caulerpa macroalgae is rapidly increasing among consumers, leading to a growing demand for ready-to-eat Caulerpa products. However, food safety and security standards must be maintained.

14.
Food Res Int ; 174(Pt 1): 113559, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37986437

RESUMO

Seaweeds are widely consumed as natural seafood in various Asian countries. Chemical contaminants, such as pesticide residues (PRs), can contaminate it due to its high bio-accumulation nature. Limited research exists on the presence of PRs in edible seaweeds, their decrease in levels during cooking processes, and the evaluation of hazard indices and associated health risks to humans. This study investigated the effects of different cooking methods on the levels of organochlorine pesticides in Caulerpa racemosa seaweed. It also assessed the potential health risks associated with consuming seaweed by estimating daily intake, hazard quotient, and hazard index. The PRs were reduced after different cooking methods. The impact of thermal cooking on PRs in C. racemosa was found to be notably beneficial. The PRs decreased following MWC, boiling, and steam cooking. Several PRs were analyzed, and endrin, DDT, endosulfan, and cypermethrin were found to be the most prevalent. The HQ and HI values for raw and cooked seaweeds were found to be below one, suggesting that the PRs in C. racemosa pose no risk to consumers of seaweed. In summary, thermal cooking proves to be an efficient method for minimizing PRs, while the cooking of seaweeds ensures a high level of safety during consumption.


Assuntos
Caulerpa , Hidrocarbonetos Clorados , Resíduos de Praguicidas , Praguicidas , Alga Marinha , Humanos , Resíduos de Praguicidas/análise , Praguicidas/análise , Hidrocarbonetos Clorados/análise , Medição de Risco
15.
Fish Shellfish Immunol ; 142: 109134, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37802263

RESUMO

In this study, the immunomodulatory and antioxidant activity of fermented Caulerpa microphysa byproduct (FCMB) by Bacillus subtilis was evaluated, and its potential as a feed additive for white shrimp (Litopenaeus vannamei) was explored. In vitro experiments showed that the FCMB supernatant contained polysaccharides, polyphenols and flavonoids, and exhibited antioxidant properties as assessed by various antioxidant assays. Additionally, the FCMB supernatant was found to increase the production rate of reactive oxygen species and the activity of phenoloxidase in hemocytes in vitro. Furthermore, the results of the in vivo feeding trial showed that dietary 5 g kg-1 FCMB significantly improved the weight gain and specific growth rate of white shrimp after 56 days of feeding. Although there were no significant differences in total hemocyte count, phagocytosis, superoxide anion production rate, and phenoloxidase activity among the experimental groups, upregulation of immune-related genes was observed, particularly in the hepatopancreas and hemocytes of shrimps fed with 5 g or 50 g FCMB per kg feed, respectively. In the pathogen challenge assay, white shrimp fed with 5 % FCMB exhibited a higher survival rate compared to the control group following Vibrio parahaemolyticus challenge. Therefore, it is concluded that the fermented byproduct of C. microphysa, FCMB, holds potential as a feed additive for enhancing the growth performance and disease resistance against V. parahaemolyticus in white shrimp.


Assuntos
Caulerpa , Penaeidae , Vibrio parahaemolyticus , Animais , Bacillus subtilis , Resistência à Doença , Antioxidantes , Monofenol Mono-Oxigenase , Dieta/veterinária , Imunidade Inata
16.
Biology (Basel) ; 12(9)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37759558

RESUMO

The management of biological invasions is among the most urgent of global challenges and requires a significant monitoring effort to obtain the information needed to take the appropriate decisions. To complement standard monitoring, citizen science is increasingly being used. Within citizen science, the approach of collecting and investigating Local Ecological Knowledge (LEK) proved to be useful in the monitoring of non-native species. A LEK survey was carried out in 10 Sicilian and Maltese Natura 2000 sites in order to help in the early detection of non-native species. The survey was addressed to local fishers and SCUBA divers in order to investigate the occurrence of 24 selected marine non-native species and to identify potential hotspot areas of invasion through the use of six indicators: the occurrence of newly introduced nonindigenous species, the cumulative impacts of invasive alien species (CIMPAL) and the relative importance of species on the cumulative impacts (D1, D2, D3, and D4). The respondents confirmed the presence of 22 species since the year 2000 and reported 10 new ones registered in the investigated areas. The highest CIMPAL value was observed in two Sicilian Natura 2000 sites (ITA090028 and ITA040014) and the lowest on the western coast of Malta (MT0000101, MT0000102, MT0000103, and MT0000104) The four top-priority species according to indicators D1-D4 were Caulerpa cylindracea, C. taxifolia, Siganus luridus and S. rivulatus. The study produced a valid and useful scientific output to suggest and address management strategies to monitor the establishment of the non-native species.

17.
Heliyon ; 9(8): e19239, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37664755

RESUMO

The most prevalent natural source of hydrocolloids, cosmetics, medications, and nutraceuticals is marine seaweed (macroalgae). Numerous bioactivities, including antiviral, anticancer, anti-inflammatory, and immunomodulatory characteristics, have been found in bioactive substances such as polyphenols and sulfated and non-sulfated polysaccharides. As a result, new start-up projects and industries based on seaweed are emerging in all regions of the world with abundant marine biodiversity. In this current investigation, the anti-inflammatory activity of two different marine macroalgae Caulerpa racemosa (CR) and Caulerpa sertularioides (CS) was evaluated. Consequently, CS demonstrated more anti-inflammatory and antioxidant effects at a lower dose than CR. The IC50 value for DPPH inhibition was 456.1 µg/mL, and 180.9 µg/mL for CS and CR respectively. A similar result was obtained in the case of protein denaturation (PD), membrane stabilization (MS), and protease inhibition (PI) anti-inflammatory assays with 127.2 µg/mL, 135.5 µg/mL, and 71.88 µg/mL for CR, and 66.78 µg/mL, 88.96 µg/mL, and 59.54 µg/mL for CS respectively. Based on the SDS-PAGE, the molecular weight of lectin responsible for the anti-inflammatory activity was determined as 17 kDa. Protein mass fingerprinting was performed for the particular lectin by in-gel trypsin digestion, MALDI-MS analysis, and Mascot peptide mass fingerprinting. Because of this, the unidentified lectin protein was discovered to be a remorin-like protein that shared 65% of its sequence with the remorin-like protein of Aegilops tauschii subsp. tauschii. Therefore, it is the hitherto report on the presence of remorin-like protein from the green macroalga Caulerpa sertularioides.

18.
Antioxidants (Basel) ; 12(8)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37627550

RESUMO

Our investigation intended to analyze the effects of sulfated polysaccharides from Caulerpa racemosa (SPCr) in attenuating obesity-induced cardiometabolic syndrome via regulating the protein arginine N-methyltransferase 1-asymmetric dimethylarginine-dimethylarginine dimethylamino-hydrolase (PRMT1-DDAH-ADMA) with the mammalian target of rapamycin-Sirtuin 1-5' AMP-activated protein kinase (mTOR-SIRT1-AMPK) pathways and gut microbiota modulation. This is a follow-up study that used SPs from previous in vitro studies, consisting of 2,3-di-O-methyl-1,4,5-tri-O-acetylarabinitol, 2,3,4,6-tetra-O-methyl-D-mannopyranose, and type B ulvanobiuronicacid 3-sulfate. A total of forty rats were randomly divided into four treatment groups: Group A received a standard diet; Group B was provided with a diet enriched in cholesterol and fat (CFED); and Groups C and D were given the CFED along with ad libitum water, and daily oral supplementation of 65 or 130 mg/kg of body weight (BW) of SPCr, respectively. Group D showed the lowest low-density lipoprotein, triglyceride, total cholesterol, and blood glucose levels, and the highest HDL level compared to the other groups in this study. These results in the group fed high-dose SPCr demonstrated a significant effect compared to the group fed low-dose SPCr (p < 0.0001), as well as in total cholesterol and blood glucose (p < 0.05). Supplementation with SPCr was also observed to have an upregulation effect on peroxisome proliferator-activated receptor gamma coactivator (PGC)-1alpha, interleukin 10, Sirtuin 1, DDAH-II, superoxide dismutase (SOD) cardio, and AMPK, which was also followed by a downregulation of PRMT-1, TNF-α, 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, and mTOR. Interestingly, gut microbiota modulation was also observed; feeding the rats with a cholesterol-enriched diet shifted the gut microbiota composition toward the Firmicutes level, lowered the Bacteroidetes level, and increased the Firmicutes level. A dose of 130 mg/kg BW of SPCr is the recommended dose, and investigation still needs to be continued in clinical trials with humans to see its efficacy at an advanced level.

19.
Gels ; 9(7)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37504409

RESUMO

This study introduced a D-optimal design mixture to assess the physicochemical properties of a hydrocolloid-based functional food fortified with C. lentillifera. The combination incorporated vital jelly constituents, including extract (10-15%), sweeteners (20-29%), gelling agents (k-carrageenan and locust bean gum (LBG)), and preservatives (0-0.05%). The dependent variables were pH, Total Soluble Solid (TSS) value, and moisture content (MS). By employing the D-optimal design approach, a quadratic polynomial model was developed, demonstrating strong correlations with the experimental data with coefficient determinations (R2) of 0.9941, 0.9907, and 0.9989 for pH, TSS, and MS, respectively. Based on the D-optimal design, the study identified the optimum combination of significant factors with a desirability of 0.917, comprising 14.35% extract, 23.00% sucrose, 21.70% fructose, 26.00% k-carrageenan, 13.00% LBG, 1.95% CaCl2, and 0% methylparaben. The percentage of residual standard error (RSE) was less than 5%, indicating the reliability of the developed model. Furthermore, color analysis revealed significant differences among the jellies (p < 0.05). HPLC analysis demonstrated that the total sugar content in the fortified jellies was 28% lower compared to commercial jelly. Meanwhile, the bitterness level according to e-tongue showed a reduction of up to 90.5% when compared to the extract. These findings provide a valuable benchmark for the development of functional food products, ensuring their quality, safety, and extended shelf-life.

20.
Plants (Basel) ; 12(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37447068

RESUMO

Anthropic diesel-derived contamination of Mediterranean coastal waters is of great concern. Nature-based solutions such as phytoremediation are considered promising technologies to remove contaminants from marine environments. The aim of this work was to investigate the tolerance of the Mediterranean autochthonous seaweed Caulerpa prolifera (Forsskal) Lamouroux to diesel fuel and its hydrocarbon degradation potential. Changes in C. prolifera traits, including its associated bacterial community abundance and structure, were determined by fluorescence microscopy and next-generation sequencing techniques. Thalli of C. prolifera artificially exposed to increasing concentration of diesel fuel for 30 days and thalli collected from three natural sites with different levels of seawater diesel-derived hydrocarbons were analysed. Gas chromatography was applied to determine the seaweed hydrocarbon degradation potential. Overall, in controlled conditions the lower concentration of diesel (0.01%) did not affect C. prolifera survival and growth, whereas the higher concentration (1%) resulted in high mortality and blade damages. Similarly, only natural thalli, collected at the most polluted marine site (750 mg L-1), were damaged. A higher abundance of epiphytic bacteria, with a higher relative abundance of Vibrio bacteria, was positively correlated to the health status of the seaweed as well as to its diesel-degradation ability. In conclusion, C. prolifera tolerated and degraded moderate concentrations of seawater diesel-derived compounds, especially changing the abundance and community structure of its bacterial coating. The protection and exploitation of this autochthonous natural seaweed-bacteria symbiosis represents a useful strategy to mitigate the hydrocarbon contamination in moderate polluted Mediterranean costal environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA