Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.443
Filtrar
1.
Rev. esp. patol ; 57(2): 111-115, Abr-Jun, 2024. tab, ilus
Artigo em Inglês | IBECS | ID: ibc-232414

RESUMO

Russell bodies (RBs) are round eosinophilic intracytoplasmic inclusions formed by condensed immunoglobulins in mature plasma cells, which are called Mott cells. These cells are rarely found in the gastric tract, with even less cases reported in the colorectal region. There are still many questions about this event, as it is still unknown the relationship between the agents reported of increasing the probability of appearance of these cells and the generation of RBs. In this case report we describe the fifth patient presenting an infiltration of Mott cells in a colorectal polyp, being the second case with a monoclonal origin without a neoplastic cause, and the first one monoclonal for lambda. A comparison with previously similar reported cases is also done, and a possible etiopathogenic hypothesis proposed. (AU)


Los cuerpos de Russell (RB) son inclusiones intracitoplasmáticas eosinofílicas redondas formadas por inmunoglobulinas condensadas en las células plasmáticas maduras, que se denominan células de Mott. Estas células rara vez se encuentran en el tracto gástrico, y son aún más infrecuentes en la región colorrectal. Actualmente hay muchas dudas sobre este evento, ya que se desconoce la relación entre los agentes causantes de aumentar la probabilidad de aparición tanto de estas células como de la de RB. En este caso describimos al quinto paciente con un pólipo colorrectal, localizado en el tracto colorrectal e infiltrado por células de Mott, siendo el segundo caso de origen monoclonal sin causa neoplásica y el primero monoclonal para lambda. También se hace una comparación con casos similares previamente reportados y se propone una hipótesis etiopatogénica. (AU)


Assuntos
Humanos , Siphoviridae , Pólipos do Colo , Plasmócitos , Corpos de Lewy , Imunoglobulinas
2.
Cells ; 13(9)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38727313

RESUMO

CD133, a cancer stem cell (CSC) marker in tumors, including melanoma, is associated with tumor recurrence, chemoresistance, and metastasis. Patient-derived melanoma cell lines were transduced with a Tet-on vector expressing CD133, generating doxycycline (Dox)-inducible cell lines. Cells were exposed to Dox for 24 h to induce CD133 expression, followed by RNA-seq and bioinformatic analyses, revealing genes and pathways that are significantly up- or downregulated by CD133. The most significantly upregulated gene after CD133 was amphiregulin (AREG), validated by qRT-PCR and immunoblot analyses. Induced CD133 expression significantly increased cell growth, percentage of cells in S-phase, BrdU incorporation into nascent DNA, and PCNA levels, indicating that CD133 stimulates cell proliferation. CD133 induction also activated EGFR and the MAPK pathway. Potential mechanisms highlighting the role(s) of CD133 and AREG in melanoma CSC were further delineated using AREG/EGFR inhibitors or siRNA knockdown of AREG mRNA. Treatment with the EGFR inhibitor gefitinib blocked CD133-induced cell growth increase and MAPK pathway activation. Importantly, siRNA knockdown of AREG reversed the stimulatory effects of CD133 on cell growth, indicating that AREG mediates the effects of CD133 on cell proliferation, thus serving as an attractive target for novel combinatorial therapeutics in melanoma and cancers with overexpression of both CD133 and AREG.


Assuntos
Antígeno AC133 , Anfirregulina , Proliferação de Células , Melanoma , Regulação para Cima , Anfirregulina/metabolismo , Anfirregulina/genética , Humanos , Antígeno AC133/metabolismo , Antígeno AC133/genética , Melanoma/patologia , Melanoma/metabolismo , Melanoma/genética , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação para Cima/genética , Regulação para Cima/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Receptores ErbB/metabolismo
3.
Dev Genes Evol ; 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38733410

RESUMO

AF4/FMR2 family member (AFF) proteins are a group of transcriptional regulators that can regulate gene transcription and play an important role in cellular physiological processes such as proliferation and differentiation. The transcriptome data of the lamprey spinal cord injury were analyzed in previous research. We then identified a hub gene, Lr-AFF3, from this dataset. Phylogenetic tree analysis determined the evolutionary relationships of the AFF gene family across different species. In addition, analysis of motifs, domains, and 3D structures further confirmed the conservatism of the AFF gene family. In particular, the gene structure of the AFF3 gene was not conserved, possibly because of intron insertion. It was also found that the neighboring genes of the Lr-AFF3 gene had a higher diversity than that in jawed vertebrates through synteny analysis. The results of the MTT and EdU experiments showed that the C-terminal homology domain (CHD) and N-terminal homology domain (NHD) of Lr-AFF3 promoted cell proliferation. In summary, our research will not only provide new insights into the origin and evolution of the AFF gene family in different species, but also provide new clues for the functions of Lr_AFF3.

4.
J Transl Med ; 22(1): 442, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730286

RESUMO

INTRODUCTION: Lung cancer is a prevalent malignancy globally, and immunotherapy has revolutionized its treatment. However, resistance to immunotherapy remains a challenge. Abnormal cholinesterase (ChE) activity and choline metabolism are associated with tumor oncogenesis, progression, and poor prognosis in multiple cancers. Yet, the precise mechanism underlying the relationship between ChE, choline metabolism and tumor immune microenvironment in lung cancer, and the response and resistance of immunotherapy still unclear. METHODS: Firstly, 277 advanced non-small cell lung cancer (NSCLC) patients receiving first-line immunotherapy in Sun Yat-sen University Cancer Center were enrolled in the study. Pretreatment and the alteration of ChE after 2 courses of immunotherapy and survival outcomes were collected. Kaplan-Meier survival and cox regression analysis were performed, and nomogram was conducted to identify the prognostic and predicted values. Secondly, choline metabolism-related genes were screened using Cox regression, and a prognostic model was constructed. Functional enrichment analysis and immune microenvironment analysis were also conducted. Lastly, to gain further insights into potential mechanisms, single-cell analysis was performed. RESULTS: Firstly, baseline high level ChE and the elevation of ChE after immunotherapy were significantly associated with better survival outcomes for advanced NSCLC. Constructed nomogram based on the significant variables from the multivariate Cox analysis performed well in discrimination and calibration. Secondly, 4 choline metabolism-related genes (MTHFD1, PDGFB, PIK3R3, CHKB) were screened and developed a risk signature that was found to be related to a poorer prognosis. Further analysis revealed that the choline metabolism-related genes signature was associated with immunosuppressive tumor microenvironment, immune escape and metabolic reprogramming. scRNA-seq showed that MTHFD1 was specifically distributed in tumor-associated macrophages (TAMs), mediating the differentiation and immunosuppressive functions of macrophages, which may potentially impact endothelial cell proliferation and tumor angiogenesis. CONCLUSION: Our study highlights the discovery of ChE as a prognostic marker in advanced NSCLC, suggesting its potential for identifying patients who may benefit from immunotherapy. Additionally, we developed a prognostic signature based on choline metabolism-related genes, revealing the correlation with the immunosuppressive microenvironment and uncovering the role of MTHFD1 in macrophage differentiation and endothelial cell proliferation, providing insights into the intricate workings of choline metabolism in NSCLC pathogenesis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Proliferação de Células , Colina , Células Endoteliais , Neoplasias Pulmonares , Microambiente Tumoral , Macrófagos Associados a Tumor , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Colina/metabolismo , Masculino , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Feminino , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/patologia , Pessoa de Meia-Idade , Prognóstico , Imunoterapia , Terapia de Imunossupressão , Estimativa de Kaplan-Meier , Nomogramas , Reprogramação Metabólica
5.
Metabolism ; : 155933, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38729601

RESUMO

AIMS/HYPOTHESIS: cGAS (cyclic GMP-AMP synthase) has been implicated in various cellular processes, but its role in ß-cell proliferation and diabetes is not fully understood. This study investigates the impact of cGAS on ß-cell proliferation, particularly in the context of diabetes. METHODS: Utilizing mouse models, including cGAS and STING (stimulator of interferon genes) knockout mice, we explored the role of cGAS in ß-cell function. This involved ß-cell-specific cGAS knockout (cGASßKO) mice, created by breeding cGAS floxed mice with transgenic mice expressing Cre recombinase under the insulin II promoter. We analyzed cGAS expression in diabetic mouse models, evaluated the effects of cGAS deficiency on glucose tolerance, and investigated the molecular mechanisms underlying these effects through RNA sequencing. RESULTS: cGAS expression is upregulated in the islets of diabetic mice and by high glucose treatment in MIN6 cells. Both global cGAS deficiency and ß-cell-specific cGAS knockout mice lead to improved glucose tolerance by promoting ß-cell mass. Interestingly, STING knockout did not affect pancreatic ß-cell mass, suggesting a STING-independent mechanism for cGAS's role in ß-cells. Further analyses revealed that cGAS- but not STING-deficiency leads to reduced expression of CEBPß, a known suppressor of ß-cell proliferation, concurrently with increased ß-cell proliferation. Moreover, overexpression of CEBPß reverses the upregulation of Cyclin D1 and D2 induced by cGAS deficiency, thereby regulating ß-cell proliferation. These results confirm that cGAS regulation of ß-cell proliferation via a CEBPß-dependent but STING-independent mechanism. CONCLUSIONS/INTERPRETATION: Our findings highlight the pivotal role of cGAS in promoting ß-cell proliferation and maintaining glucose homeostasis, potentially by regulating CEBPß expression in a STING-independent manner. This study uncovers the significance of cGAS in controlling ß-cell mass and identifies a potential therapeutic target for enhancing ß-cell proliferation in the treatment of diabetes.

6.
Mol Cancer ; 23(1): 101, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38745269

RESUMO

BACKGROUND: Long noncoding RNAs (lncRNAs) have surpassed the number of protein-coding genes, yet the majority have no known function. We previously discovered 844 lncRNAs that were genetically linked to breast cancer through genome-wide association studies (GWAS). Here, we show that a subset of these lncRNAs alter breast cancer risk by modulating cell proliferation, and provide evidence that a reduced expression on one lncRNA increases breast cancer risk through aberrant DNA replication and repair. METHODS: We performed pooled CRISPR-Cas13d-based knockdown screens in breast cells to identify which of the 844 breast cancer-associated lncRNAs alter cell proliferation. We selected one of the lncRNAs that increased cell proliferation, KILR, for follow-up functional studies. KILR pull-down followed by mass spectrometry was used to identify binding proteins. Knockdown and overexpression studies were performed to assess the mechanism by which KILR regulates proliferation. RESULTS: We show that KILR functions as a tumor suppressor, safeguarding breast cells against uncontrolled proliferation. The half-life of KILR is significantly reduced by the risk haplotype, revealing an alternative mechanism by which variants alter cancer risk. Mechanistically, KILR sequesters RPA1, a subunit of the RPA complex required for DNA replication and repair. Reduced KILR expression promotes breast cancer cell proliferation by increasing the available pool of RPA1 and speed of DNA replication. Conversely, KILR overexpression promotes apoptosis in breast cancer cells, but not normal breast cells. CONCLUSIONS: Our results confirm lncRNAs as mediators of breast cancer risk, emphasize the need to annotate noncoding transcripts in relevant cell types when investigating GWAS variants and provide a scalable platform for mapping phenotypes associated with lncRNAs.


Assuntos
Neoplasias da Mama , Sistemas CRISPR-Cas , Proliferação de Células , Reparo do DNA , Replicação do DNA , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Feminino , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla
7.
Obes Rev ; : e13766, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745386

RESUMO

Obesity stands as a formidable global health challenge, predisposing individuals to a plethora of chronic illnesses such as cardiovascular disease, diabetes, and cancer. A confluence of genetic polymorphisms, suboptimal dietary choices, and sedentary lifestyles significantly contribute to the elevated incidence of obesity. This multifaceted health issue profoundly disrupts homeostatic equilibrium at both organismal and cellular levels, with marked alterations in gut permeability as a salient consequence. The intricate mechanisms underlying these alterations have yet to be fully elucidated. Still, evidence suggests that heightened inflammatory cytokine levels and the remodeling of tight junction (TJ) proteins, particularly claudins, play a pivotal role in the manifestation of epithelial barrier dysfunction in obesity. Strategic targeting of proteins implicated in these pathways and metabolites such as short-chain fatty acids presents a promising intervention for restoring barrier functionality among individuals with obesity. Nonetheless, recognizing the heterogeneity among affected individuals is paramount; personalized medical interventions or dietary regimens tailored to specific genetic backgrounds and allergy profiles may prove indispensable. This comprehensive review delves into the nexus of obesity, tight junction remodeling, and barrier dysfunction, offering a critical appraisal of potential therapeutic interventions.

8.
Eur J Obstet Gynecol Reprod Biol ; 298: 66-73, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38733775

RESUMO

BACKGROUND: Combination antiretroviral therapy (cART) has been reported to reduce perinatal transmission of human immunodeficiency virus (HIV) and improve maternal survival outcomes. Recent studies have associated in-utero exposure to cART drugs with adverse outcomes such as pre-eclampsia, preterm delivery, low birth weight and small-for-gestational-age births. However, the exact molecular mechanisms underlying cART-induced adverse pregnancy outcomes remain poorly defined. OBJECTIVES: To investigate the effects of cART drugs on trophoblast proliferation in the HTR-8/SVneo cell line. STUDY DESIGN: HTR-8/SVneo cells were exposed to tenofovir (0.983-9.83 µM), emtricitabine (0.809-8.09 µM) and efavirenz (0.19-1.09 µM), the individual drugs of the first-line single tablet cART regimen termed 'Atripla', and zidovudine (1.12-1.12 µM), lamivudine (0.65-6.5 µM), lopinavir (0.32-3.2 µM) and ritonavir (0.69-6.9 µM), the individual drugs of the second-line single tablet cART regimen termed 'Aluvia'. The cells were treated for 24, 48, 72 and 96 h, and trophoblast proliferation was assessed using a colorimetric 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltretrazolium bromide assay. RESULTS: Two-way analysis of variance showed a significant dose-dependent decrease (p < 0.05) in trophoblast proliferation in response to individual and combined drug components of first- and second-line antiretroviral therapy. CONCLUSIONS: First- and second-line cART drugs inhibit trophoblast proliferation, and may contribute to placenta-mediated adverse pregnancy outcomes in patients with HIV.

9.
Heliyon ; 10(9): e29933, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38707417

RESUMO

FAM83B, as one of the FAM83 family members, has been closely involved in cell transformation, and a growing number of scholars have been studied its role in tumours over the years. Whereas the effect and potential mechanism of FAM83B in laryngeal squamous cell carcinoma (LSCC) have not been investigated. In this research, we discovered that the expression quantity of FAM83B was remarkably higher in LSCC tissues (79.65 ± 35.98) than in matched adjacent tissues (59.34 ± 32.59) by tissue microarrays and immunohistochemistry. Furthermore, expression of FAM83B was knocked down in HEP-2 and TU177 cell lines via lentivirus, and in the course of intracorporal and extracorporeal experiments, FAM83B knockdown showed the inhibition of tumour growth, migration, and invasion ability. Moreover, cell cycle assay showed that FAM83B knockdown leads to an apparent accumulation of cells in the G1 phase, indicating that FAM83B knockdown can inhibit cell proliferation. Meanwhile, western blotting (WB) demonstrated that FAM83B knockdown led to a significant reduction in CDK4/CDK6/CCND1 protein expression, which may have decelerated cell cycle progression. Collectively, this study demonstrates that FAM83B serves as an oncogene in LSCC, promoting cell proliferation by controlling the protein expression of CDK4, CDK6, and CCND1, thus inducing a transference of the G1 stage to S stage in cell-cycle of LSCC cells. These results provide an academic foundation for elucidating the mechanism of LSCC occurrence and evolution and for developing treatment strategies for LSCC.

10.
Heliyon ; 10(9): e29904, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38707440

RESUMO

The role of human cell division cycle 73 (CDC73) in human cancers has sparked controversy; however, its significance in oesophageal cancer remains elusive. This study aimed to elucidate CDC73 expression and its biological implications in human oesophageal cancer. Our findings unveiled a notable upregulation of CDC73 in both oesophageal cancer cell lines and tissues. Importantly, elevated CDC73 levels in patients with oesophageal cancer correlated with an unfavourable prognosis. Functional investigations revealed that CDC73 knockdown effectively curtailed the proliferation and growth of oesophageal cancer cells both in vitro and in vivo. Mechanistically, RRP15 emerged as a potential downstream target of CDC73 through a screening process involving identification of the top co-expressed genes, subsequent knockdown experiments, and observation of significant inhibition of cell proliferation, with RRP15 showing the most pronounced effect. This finding was further supported by the positive correlation observed between CDC73 and RRP15 in ESCA samples analysed using the ENCORI Pan-Cancer Analysis Platform. Notably, depletion of RRP15 in CDC73-overexpressing cells led to a shift from augmented to diminished tumour growth. Collectively, our findings underscore the pivotal role of CDC73 in oesophageal cancer through the modulation of RRP15 expression, suggesting CDC73 as a potential therapeutic target for treating oesophageal cancer.

11.
World J Stem Cells ; 16(4): 410-433, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38690517

RESUMO

BACKGROUND: Stem cells are undifferentiated cells that possess the potential for self-renewal with the capacity to differentiate into multiple lineages. In humans, their limited numbers pose a challenge in fulfilling the necessary demands for the regeneration and repair of damaged tissues or organs. Studies suggested that mesenchymal stem cells (MSCs), necessary for repair and regeneration via transplantation, require doses ranging from 10 to 400 million cells. Furthermore, the limited expansion of MSCs restricts their therapeutic application. AIM: To optimize a novel protocol to achieve qualitative and quantitative expansion of MSCs to reach the targeted number of cells for cellular transplantation and minimize the limitations in stem cell therapy protocols. METHODS: Human umbilical cord (hUC) tissue derived MSCs were obtained and re-cultured. These cultured cells were subjected to the following evaluation procedures: Immunophenotyping, immunocytochemical staining, trilineage differentiation, population doubling time and number, gene expression markers for proliferation, cell cycle progression, senescence-associated ß-galactosidase assay, human telomerase reverse transcriptase (hTERT) expression, mycoplasma, cytomegalovirus and endotoxin detection. RESULTS: Analysis of pluripotent gene markers Oct4, Sox2, and Nanog in recultured hUC-MSC revealed no significant differences. The immunophenotypic markers CD90, CD73, CD105, CD44, vimentin, CD29, Stro-1, and Lin28 were positively expressed by these recultured expanded MSCs, and were found negative for CD34, CD11b, CD19, CD45, and HLA-DR. The recultured hUC-MSC population continued to expand through passage 15. Proliferative gene expression of Pax6, BMP2, and TGFb1 showed no significant variation between recultured hUC-MSC groups. Nevertheless, a significant increase (P < 0.001) in the mitotic phase of the cell cycle was observed in recultured hUC-MSCs. Cellular senescence markers (hTERT expression and ß-galactosidase activity) did not show any negative effect on recultured hUC-MSCs. Additionally, quality control assessments consistently confirmed the absence of mycoplasma, cytomegalovirus, and endotoxin contamination. CONCLUSION: This study proposes the development of a novel protocol for efficiently expanding stem cell population. This would address the growing demand for larger stem cell doses needed for cellular transplantation and will significantly improve the feasibility of stem cell based therapies.

12.
Circ Res ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747146

RESUMO

RATIONALE: Hypoxia and oxidative stress contribute to the development of pulmonary hypertension (PH). tRNA-derived fragments play important roles in RNA interference and cell proliferation, but their epitranscriptional roles in PH development have not been investigated. OBJECTIVE: We aimed to gain insight into the mechanistic contribution of oxidative stress-induced 8-oxoguanine in pulmonary vascular remodeling. METHODS AND RESULTS: Through small RNA modification array analysis and quantitative polymerase chain reaction, a significant upregulation of the 8-oxoguanine-modified tRF-1-AspGTC was found in the lung tissues and the serum of patients with PH. This modification occurs at the fifth 8-oxoguanine (5o8G) tRF in the seed region of the tRNA-derived fragments. Inhibition of the 5o8G tRF reversed hypoxia-induced proliferation and apoptosis resistance in pulmonary artery smooth muscle cells. Further investigation unveiled that the 5o8G tRF retargeted mRNA of WNT5A and CASP3 and inhibited their expression. Ultimately, BMPR2 (bone morphogenetic protein receptor 2)-reactive oxygen species/5o8G tRF/WNT5A signaling pathway exacerbated the progression of PH. CONCLUSIONS: Our study highlights the role of site-specific 8-oxoguanine-modified tRF in promoting the development of PH. Our findings present a promising therapeutic avenue for managing PH and propose 5o8G tRF as a potential innovative marker for diagnosing this disease.

13.
Circ Res ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747151

RESUMO

BACKGROUND: Coronary artery disease (CAD), the leading cause of death worldwide, is influenced by both environmental and genetic factors. Although over 250 genetic risk loci have been identified through genome-wide association studies, the specific causal variants and their regulatory mechanisms are still largely unknown, particularly in disease-relevant cell types like macrophages. METHODS: We utilized single-cell RNA-seq and single-cell multiomics approaches in primary human monocyte-derived macrophages to explore the transcriptional regulatory network involved in a critical pathogenic event of coronary atherosclerosis-the formation of lipid-laden foam cells. The relative genetic contribution to CAD was assessed by partitioning disease heritability across different macrophage subpopulations. Meta-analysis of single-cell RNA-seq data sets from 38 human atherosclerotic samples was conducted to provide high-resolution cross-referencing to macrophage subpopulations in vivo. RESULTS: We identified 18 782 cis-regulatory elements by jointly profiling the gene expression and chromatin accessibility of >5000 macrophages. Integration with CAD genome-wide association study data prioritized 121 CAD-related genetic variants and 56 candidate causal genes. We showed that CAD heritability was not uniformly distributed and was particularly enriched in the gene programs of a novel CD52-hi lipid-handling macrophage subpopulation. These CD52-hi macrophages displayed significantly less lipoprotein accumulation and were also found in human atherosclerotic plaques. We investigated the cis-regulatory effect of a risk variant rs10488763 on FDX1, implicating the recruitment of AP-1 and C/EBP-ß in the causal mechanisms at this locus. CONCLUSIONS: Our results provide genetic evidence of the divergent roles of macrophage subsets in atherogenesis and highlight lipid-handling macrophages as a key subpopulation through which genetic variants operate to influence disease. These findings provide an unbiased framework for functional fine-mapping of genome-wide association study results using single-cell multiomics and offer new insights into the genotype-environment interactions underlying atherosclerotic disease.

14.
J Cell Physiol ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747637

RESUMO

Critical reprogramming factors resided predominantly in the oocyte or male pronucleus can enhance the efficiency or the quality of induced pluripotent stem cells (iPSCs) induction. However, few reprogramming factors exist in the male pronucleus had been verified. Here, we demonstrated that granulin (Grn), a factor enriched specifically in male pronucleus, can significantly improve the generation of iPSCs from mouse fibroblasts. Grn is highly expressed on Day 1, Day 3, Day 14 of reprogramming induced by four Yamanaka factors and functions at the initial stage of reprogramming. Transcriptome analysis indicates that Grn can promote the expression of lysosome-related genes, while inhibit the expression of genes involved in DNA replication and cell cycle at the early reprogramming stage. Further verification determined that Grn suppressed cell proliferation due to the arrest of cell cycle at G2/M phase. Moreover, ectopic Grn can enhance the lysosomes abundance and rescue the efficiency reduction of reprogramming resulted from lysosomal protease inhibition. Taken together, we conclude that Grn serves as an activator for somatic cell reprogramming through mitigating cell hyperproliferation and promoting the function of lysosomes.

15.
Med Oncol ; 41(6): 153, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743323

RESUMO

The mechanism by which DNMT3B facilitates esophageal cancer (ESCA) progression is currently unknown, despite its association with adverse prognoses in several cancer types. To investigate the potential therapeutic effects of the Chinese herbal medicine rhubarb on esophageal cancer (ESCA), we adopted an integrated bioinformatics approach. Gene Set Enrichment Analysis (GSEA) was first utilized to screen active anti-ESCA components in rhubarb. We then employed Weighted Gene Co-expression Network Analysis (WGCNA) to identify key molecular modules and targets related to the active components and ESCA pathogenesis. This system-level strategy integrating multi-omics data provides a powerful means to unravel the molecular mechanisms underlying the anticancer activities of natural products, like rhubarb. To investigate module gene functional enrichment, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted. In addition, we evaluated the predictive impact of DNMT3B expression on ESCA patients utilizing the Kaplan-Meier method. Finally, we conducted experiments on cell proliferation and the cell cycle to explore the biological roles of DNMT3B. In this study, we identified Rhein as the main active ingredient of rhubarb that exhibited significant anti-ESCA activity. Rhein markedly suppressed ESCA cell proliferation. Utilizing Weighted Gene Co-expression Network Analysis (WGCNA) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, we determined that the blue module was associated with Rhein target genes and the cell cycle. Additionally, DNMT3B was identified as a Rhein target gene. Analysis of The Cancer Genome Atlas (TCGA) database revealed that higher DNMT3B levels were associated with poor prognosis in ESCA patients. Furthermore, Rhein partially reversed the overexpression of DNMT3B to inhibit ESCA cell proliferation. In vitro studies demonstrated that Rhein and DNMT3B inhibition disrupted the S phase of the cell cycle and affected the production of cell cycle-related proteins. In this study, we found that Rhein exerts its anti-proliferative effects in ESCA cells by targeting DNMT3B and regulating the cell cycle.


Assuntos
Antraquinonas , Ciclo Celular , Proliferação de Células , DNA (Citosina-5-)-Metiltransferases , DNA Metiltransferase 3B , Neoplasias Esofágicas , Humanos , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Antraquinonas/farmacologia , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Ciclo Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Rheum/química , Biologia Computacional
16.
Mol Biotechnol ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744786

RESUMO

Bladder cancer (BLCA) is a prevalent cancer type with an unmet need for new therapeutic strategies. Nucleoporin 93 (Nup93) is implicated in the pathophysiology of several cancers, but its relationship with bladder cancer remains unclear. Nup93 expression was analyzed in TCGA datasets and 88 BLCA patient samples. Survival analysis and Cox regression models evaluated the association between Nup93 levels and patient prognosis. BLCA cells were used to investigate the effects of Nup93 overexpression or knockdown on cell growth, invasion, stemness (sphere formation and ALDH2 + cancer stem cell marker), and Wnt/ß-catenin signaling in vitro. The Wnt activator BML-284 was used to confirm the involvement of Wnt/ß-catenin signaling pathway. A xenograft mouse model validated the in vitro findings. Nup93 was highly expressed in BLCA tissues and cell lines, and high Nup93 expression correlated with poor prognosis in BLCA patients. Nup93 silencing inhibited BLCA cell proliferation, Wnt/ß-catenin activation, and cancer cell stemness. Conversely, Nup93 overexpression promoted these effects. BML-284 partially rescued the reduction in cell growth and stemness markers caused by Nup93 knockdown. Nup93 knockdown also suppressed the tumor formation of BLCA cells in vivo. Nup93 regulates BLCA cell growth and stemness via the Wnt/ß-catenin pathway, suggesting its potential as a prognostic marker and therapeutic target in BLCA.

17.
Biotechnol J ; 19(5): e2300581, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38719587

RESUMO

Human interleukin-3 (IL3) is a multifunctional cytokine essential for both clinical and biomedical research endeavors. However, its production in Escherichia coli has historically been challenging due to its aggregation into inclusion bodies, requiring intricate solubilization and refolding procedures. This study introduces an innovative approach employing two chaperone proteins, maltose binding protein (MBP) and protein disulfide isomerase b'a' domain (PDIb'a'), as N-terminal fusion tags. Histidine tag (H) was added at the beginning of each chaperone protein gene for easy purification. This fusion of chaperone proteins significantly improved IL3 solubility across various E. coli strains and temperature conditions, eliminating the need for laborious refolding procedures. Following expression optimization, H-PDIb'a'-IL3 was purified using two chromatographic methods, and the subsequent removal of the H-PDIb'a' tag yielded high-purity IL3. The identity of the purified protein was confirmed through liquid chromatography coupled with tandem mass spectrometry analysis. Biological activity assays using human erythroleukemia TF-1 cells revealed a unique two-step stimulation pattern for both purified IL3 and the H-PDIb'a'-IL3 fusion protein, underscoring the protein's functional integrity and revealing novel insights into its cellular interactions. This study advances the understanding of IL3 expression and activity while introducing novel considerations for protein fusion strategies.


Assuntos
Escherichia coli , Interleucina-3 , Isomerases de Dissulfetos de Proteínas , Proteínas Recombinantes de Fusão , Humanos , Isomerases de Dissulfetos de Proteínas/metabolismo , Isomerases de Dissulfetos de Proteínas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Interleucina-3/metabolismo , Interleucina-3/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Ligantes de Maltose/genética , Proteínas Ligantes de Maltose/metabolismo , Linhagem Celular Tumoral , Solubilidade
18.
Circ Res ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38712557

RESUMO

BACKGROUND: Inflammation is pathogenically implicated in pulmonary arterial hypertension; however, it has not been adequately targeted therapeutically. We investigated whether neuromodulation of an anti-inflammatory neuroimmune pathway involving the splenic nerve using noninvasive, focused ultrasound stimulation of the spleen (sFUS) can improve experimental pulmonary hypertension. METHODS: Pulmonary hypertension was induced in rats either by Sugen 5416 (20 mg/kg SQ) injection, followed by 21 (or 35) days of hypoxia (sugen/hypoxia model), or by monocrotaline (60 mg/kg IP) injection (monocrotaline model). Animals were randomized to receive either 12-minute-long sessions of sFUS daily or sham stimulation for 14 days. Catheterizations, echocardiography, indices of autonomic function, lung and heart histology and immunohistochemistry, spleen flow cytometry, and lung single-cell RNA sequencing were performed after treatment to assess the effects of sFUS. RESULTS: Splenic denervation right before induction of pulmonary hypertension results in a more severe disease phenotype. In both sugen/hypoxia and monocrotaline models, sFUS treatment reduces right ventricular systolic pressure by 25% to 30% compared with sham treatment, without affecting systemic pressure, and improves right ventricular function and autonomic indices. sFUS reduces wall thickness, apoptosis, and proliferation in small pulmonary arterioles, suppresses CD3+ and CD68+ cell infiltration in lungs and right ventricular fibrosis and hypertrophy and lowers BNP (brain natriuretic peptide). Beneficial effects persist for weeks after sFUS discontinuation and are more robust with early and longer treatment. Splenic denervation abolishes sFUS therapeutic benefits. sFUS partially normalizes CD68+ and CD8+ T-cell counts in the spleen and downregulates several inflammatory genes and pathways in nonclassical and classical monocytes and macrophages in the lung. Differentially expressed genes in those cell types are significantly enriched for human pulmonary arterial hypertension-associated genes. CONCLUSIONS: sFUS causes dose-dependent, sustained improvement of hemodynamic, autonomic, laboratory, and pathological manifestations in 2 models of experimental pulmonary hypertension. Mechanistically, sFUS normalizes immune cell populations in the spleen and downregulates inflammatory genes and pathways in the lung, many of which are relevant in human disease.

19.
Artigo em Inglês | MEDLINE | ID: mdl-38722459

RESUMO

Quercetin, a natural compound, shows promising potential in wound healing by reducing fibrosis, limiting scar formation, and boosting fibroblast proliferation. However, its effectiveness is hindered by poor solubility, resulting in low bioavailability and necessitating high doses for therapeutic efficacy. This study presents a novel approach, fabricating quercetin-loaded microarray patches (MAPs) using widely employed solubility enhancement strategies. Fabricated MAPs exhibited favourable mechanical strength and could be inserted into excised porcine skin to a depth of 650 µm. Furthermore, formulations containing Soluplus® significantly increased the drug loading capacity, achieving up to 2.5 mg per patch and complete dissolution within an hour of application on excised porcine skin. In vitro studies on full-thickness neonatal porcine skin demonstrated that Soluplus®-enhanced MAPs effectively delivered quercetin across various skin layers, achieving a delivery efficiency exceeding 80% over 24 h. Additionally, these prototype MAPs displayed anti-inflammatory properties and demonstrated biocompatibility with human keratinocyte skin cells. Therefore, quercetin-loaded MAPs employing Soluplus® as a solubility enhancer present a promising alternative strategy for wound healing and anti-inflammatory therapy applications.

20.
Int J Biol Macromol ; 269(Pt 1): 131990, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38704067

RESUMO

Animal-derived venom, like snake venom, has been proven to be valuable natural resources for the drug development. Previously, snake venom was mainly investigated in its pharmacological activities in regulating coagulation, vasodilation, and cardiovascular function, and several marketed cardiovascular drugs were successfully developed from snake venom. In recent years, snake venom fractions have been demonstrated with anticancer properties of inducing apoptotic and autophagic cell death, restraining proliferation, suppressing angiogenesis, inhibiting cell adhesion and migration, improving immunity, and so on. A number of active anticancer enzymes and peptides have been identified from snake venom toxins, such as L-amino acid oxidases (LAAOs), phospholipase A2 (PLA2), metalloproteinases (MPs), three-finger toxins (3FTxs), serine proteinases (SPs), disintegrins, C-type lectin-like proteins (CTLPs), cell-penetrating peptides, cysteine-rich secretory proteins (CRISPs). In this review, we focus on summarizing these snake venom-derived anticancer components on their anticancer activities and underlying mechanisms. We will also discuss their potential to be developed as anticancer drugs in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...