Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.826
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39020506

RESUMO

In recent years, ceramic cells based on high proton conductivity have attracted much attention and can be employed for hydrogen production and electricity generation, especially at low temperatures. Nevertheless, attaining a high power output and durability is challenging, especially at low operational temperatures. In this regard, we design semiconductor heterostructure SFT-ZnO (SrFe0.3TiO3-ZnO) materials to function as an electrolyte for fuel cell and electrolysis applications. Using this approach, the functional semiconductor heterostructure can deliver a better power output and high ionic and proton conductivity at low operational temperatures. The prepared cell in fuel cell mode has demonstrated excellent performance of 700 mW cm-2 and proton performance of 540 mW cm-2 at the low temperature of 520 °C, suggesting dominant proton conduction. Further, the prepared cell delivers exceptional current densities of 1.18 and 0.38 A cm-2 (at 1.6 and 1.3 V, respectively) at 520 °C in the electrolysis mode. Our electrochemical cell is stable in fuel and electrolysis mode at a low temperature of 500 °C.

2.
Small ; : e2401925, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39007535

RESUMO

The voluntary introduction of defects can be considered an effective strategy for enhancing the electrochemical properties of metal oxide electrodes. In this study, the enhanced pseudocapacitive properties of an acceptor (Gd) doped cerium oxide nanoparticle-a sustainable metal oxide with low environmental and human toxicity-are investigated in depth using ex situ X-ray photoemission spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). Interestingly, with 15 at% Gd doping (15GDC), the specific capacitance of the nanoparticles measured at 1 A g-1 enhanced to 547.8 F g-1, which is fivefold higher than undoped CeO2 (98.7 F g-1 at 1 A g-1). The rate-dependent capacitance is also improved for 15GDC, which showed a 31.0% decrease in the specific capacitance upon a tenfold increase in the current density, while CeO2 showed a 49.9% decrease. The enhanced electrochemical properties are studied in depth via ex situ XPS and EIS analysis, which revealed that the oxygen vacancies at the surface of the nanoparticles played important roles in enhancing both the specific capacitance and the high-rate performance of 15GDC by acting as the active site for pseudocapacitive redox reaction and allowing fast diffusion of oxygen ions at the surface of 15GDC nanoparticles.

3.
Artigo em Inglês | MEDLINE | ID: mdl-39001811

RESUMO

Composite electrolytes have been accepted as the most promising species for solid-state batteries, exhibiting the synergistic advantages of solid polymer electrolytes (SPEs) and solid ceramic electrolytes (SCEs). Unfortunately, the interrupted Li+ conduction across the SPE and SCE interface hinders the ionic conductivity improvement of composite electrolytes. In our study on a ceramic-rich composite electrolyte (CRCE) membrane composed of borate polyanion-based lithiated poly(vinyl formal) (LiPVFM) and Li1.3Al0.3Ti1.7(PO4)3 (LATP) particles, it is found that the strong interaction between the polyanions in LiPVFM and LATP particles results in a uniform distribution of ceramic particles at a high proportion of 50 wt % and good robustness of the electrolyte membrane with a Young's modulus of 9.20 GPa. More importantly, ab initio molecular dynamics simulation and experimental results demonstrate that Li+ conduction across the SPE and SCE interface is induced by the polyanion-based polymer due to its high lithium-ion transference number and similar Li+ diffusion coefficient with the SCE. Therefore, the unblocked Li+ conduction among ceramic particles dominates in the CRCE membrane with a high ionic conductivity of 6.60 × 10-4 S cm-1 at 25 °C, a lithium-ion transference number of 0.84, and a wide electrochemical stable window of 5.0 V (vs Li/Li+). Consequently, the high nickel ternary cathode LiNi0.8Mn0.1Co0.1O2-based batteries with CRCE deliver a high-rate capability of 135.08 mAh g-1 at 1.0 C and a prolonged cycle life of 100 cycles at 0.2 C between 3.0 and 4.3 V. The polyanion-induced Li+ conduction across the interface sheds new light on solving composite electrolyte problems for solid-state batteries.

4.
Materials (Basel) ; 17(13)2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38998179

RESUMO

Adhesion of zirconia is difficult; thus, etching agents using several different methods are being developed. We investigated the effects of surface treatment with commercially available etching agents on the bond strength between zirconia and resin cement and compared them with those achieved using air abrasion alone. We used 100 zirconia blocks, of which 20 blocks remained untreated, 20 blocks were sandblasted, and 60 blocks were acid-etched using three different zirconia-etching systems: Zircos-E etching (strong-acid etching), smart etching (acid etching after air abrasion), and cloud etching (acid etching under a hot stream). Each group was subjected to a bonding procedure with dual-polymerized resin cement, and then 50 specimens were thermocycled. The shear bond strengths between the resin cement and zirconia before and after the thermocycling were evaluated. We observed that in the groups that did not undergo thermocycling, specimens surface-treated with solution did not show a significant increase in shear bond strength compared to the sandblasted specimens (p > 0.05). Among the thermocycled groups, the smart-etched specimens showed the highest shear bond strength. In the short term, various etching agents did not show a significant increase in bond strength compared to sandblasting alone, but in the long term, smart etching showed stability in bond strength (p < 0.05).

5.
Materials (Basel) ; 17(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38998229

RESUMO

BaTiO3-Bi(Zn,Ti)O3 (BT-BZT) ceramics have been used as capacitors due to their large dielectric permittivity and excellent temperature stability and are good candidates for lead-free materials for electrocaloric and energy storage devices. However, BT-BZT ceramics often suffer from inferior properties and poor reproducibility due to heterogeneous compositional distribution after calcination and sintering. In this work, (1-x)BT-xBZT ceramics (x = 0~0.2) were fabricated with nano-sized BaTiO3 raw materials (nano-BT) by a solid-state reaction method to enhance the chemical homogeneity. The (1-x)BT-xBZT ceramics prepared from the nano-BT showed larger densities and more uniform microstructures at the lower calcination and sintering temperatures than the samples prepared from more frequently used micrometer-sized raw materials BaCO3, TiO2, Bi2O3, and ZnO. The (1-x)BT-xBZT ceramic prepared from the nano-BT displayed a phase transition from a tetragonal ferroelectric to a pseudo-cubic relaxor in a narrower composition range than the sample prepared from micro-sized raw materials. Larger adiabatic temperature changes due to the electro-caloric effect (ΔTECE) and recoverable energy storage density (Urec) were observed in the samples prepared from the nano-BT due to the higher breakdown electric fields, the larger densities, and uniform microstructures. The 0.95BT-0.05BZT sample showed the largest ΔTECE of 1.59 K at 80 °C under an electric field of 16 kV/mm. The 0.82BT-0.18BZT sample displayed a Urec of 1.45 J/cm2, which is much larger than the previously reported value of 0.81 J/cm2 in BT-BZT ceramics. The nano-BT starting material produced homogeneous BT-BZT ceramics with enhanced ECE and energy storage properties and is expected to manufacture other homogeneous solid solutions of BaTiO3 and Bi-based perovskite with high performance.

6.
Materials (Basel) ; 17(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38998318

RESUMO

Mullite fiber felt is a promising material that may fulfill the demands of advanced flexible external thermal insulation blankets. However, research on the fabrication and performance of mullite fiber felt with high-temperature resistance and thermal stability is still lacking. In this work, mullite fibers were selected as raw materials for the fabrication of mullite fibrous porous materials with a three-dimensional net structure. Said materials' high-temperature resistance and thermal stability were investigated by assessing the effects of various heat treatment temperatures (1100 °C, 1300 °C, and 1500 °C) on the phase composition, microstructure, and performance of their products. When the heat treatment temperature was below 1300 °C, both the phase compositions and microstructures of products exhibited stability. The compressive rebound rate of the product before and after 1100 °C reached 92.9% and 84.5%, respectively. The backside temperature of the as-prepared products was 361.6 °C when tested at 1500 °C for 4000 s. The as-prepared mullite fibrous porous materials demonstrated excellent high-temperature resistance, thermal stability, thermal insulation performance, and compressive rebound capacity, thereby indicating the great potential of the as-prepared mullite fibrous porous materials in the form of mullite fiber felt within advanced flexible external thermal insulation blankets.

7.
Materials (Basel) ; 17(13)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38998446

RESUMO

The utilization of 3D printing technology for the fabrication of intricate transparent ceramics overcomes the limitations associated with conventional molding processes, thereby presenting a highly promising solution. In this study, we employed direct ink writing (DIW) to prepare yttrium oxide transparent ceramics using a ceramic slurry with excellent moldability, solid content of 45 vol%, and shear-thinning behavior. A successfully printed transparent yttrium oxide ring measuring 30 mm in diameter, 10 mm in inner diameter, and 0.9 mm in thickness was obtained from the aforementioned slurry. After de-binding and sintering procedures, the printed ceramic exhibited in-line transmittance of 71% at 850 nm. This work not only produced complex yttria transparent ceramics with intricate shapes, but also achieved in-line transmittance that was comparable to that of the CIP method (79%), which can meet certain optical applications.

8.
Nanomaterials (Basel) ; 14(13)2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38998768

RESUMO

The removal of persistent organic micropollutants (OMPs) from secondary effluent in wastewater treatment plants is critical for meeting water reuse standards. Traditional treatment methods often fail to adequately degrade these contaminants. This study explored the efficacy of a hybrid ozonation membrane filtration (HOMF) process using CeO2 and CeTiOx-doped ceramic crossflow ultrafiltration ceramic membranes for the degradation of OMPs. Hollow ceramic membranes (CM) with a 300 kDa molecular weight cut-off (MWCO) were modified to serve as substrates for catalytic nanosized metal oxides in a crossflow and inside-out operational configuration. Three types of depositions were tested: a single layer of CeO2, a single layer of CeTiOx, and a combined layer of CeO2 + CeTiOx. These catalytic nanoparticles were distributed uniformly using a solution-based method supported by vacuum infiltration to ensure high-throughput deposition. The results demonstrated successful infiltration of the metal oxides, although the yield permeability and transmembrane flow varied, following this order: pristine > CeTiOx > CeO2 > CeO2 + CeTiOx. Four OMPs were examined: two easily degraded by ozone (carbamazepine and diclofenac) and two recalcitrant (ibuprofen and pCBA). The highest OMP degradation was observed in demineralized water, particularly with the CeO2 + CeTiOx modification, suggesting O3 decomposition to hydroxyl radicals. The increased resistance in the modified membranes contributed to the adsorption phenomena. The degradation efficiency decreased in secondary effluent due to competition with the organic and inorganic load, highlighting the challenges in complex water matrices.

9.
Small ; : e2404581, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38989685

RESUMO

Printing technology enables the integration of chemically exfoliated perovskite nanosheets into high-performance microcapacitors. Theoretically, the capacitance value can be further enhanced by designing and constructing multilayer structures without increasing the device size. Yet, issues such as interlayer penetration in multilayer heterojunctions constructed using inkjet printing technology further limit the realization of this potential. Herein, a series of multilayer configurations, including Ag/(Ca2NaNb4O13/Ag)n and graphene/(Ca2NaNb4O13/graphene)n (n = 1-3), are successfully inkjet-printed onto diverse rigid and flexible substrates through optimized ink formulations, inkjet printing parameters, thermal treatment conditions, and rational multilayer structural design using high-k perovskite nanosheets, graphene nanosheets and silver. The dielectric performance is optimized by fine-tuning the number of dielectric layers and modifying the electrode/dielectric interface. As a result, the graphene/(Ca2NaNb4O13/graphene)3 multilayer ceramic capacitors exhibit a remarkable capacitance density of 346 ± 12 nF cm-2 and a high dielectric constant of 193 ± 18. Additionally, these devices demonstrate moderate insulation properties, flexibility, thermal stability, and chemical sensitivity. This work shed light on the potential of multilayer structural design in additive manufacturing of high-performance 2D material-based ceramic capacitors.

10.
EFORT Open Rev ; 9(7): 632-645, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949170

RESUMO

Purpose: To assess utility, benefits, and risks of 4th-generation alumina-zirconia ceramic pairings in elective total hip arthroplasty (THA). Methods: A comprehensive mixed-methods best-evidence synthesis using data from systematic reviews, randomized controlled trials (RCTs), prospective and retrospective cohort studies, as well as joint replacement registries, was conducted to estimate overall revision and survival rates, periprosthetic infection, bearing fractures, and noise phenomena with 4th-generation alumina-zirconia ceramic versus other tribological couplings in elective THA. The systematic review part across multiple databases was registered with PROSPERO (CRD42023418076), and individual study data were extracted for statistical re-analysis. Results: Twenty overlapping systematic reviews, 7, 17, and 8 references from RCTs, cohort studies, and joint replacement registries form the basis of this work. According to current best evidence, it is (i) 15-33 times more likely that 4th-generation alumina-zirconia pairings avoid a revision for infection than causing a revision for audible noise, (ii) 38-85 times more likely that 4th-generation alumina-zirconia pairings avoid a revision for infection than causing a revision for ceramic head fractures, and (iii) three to six times more likely that 4th-generation alumina-zirconia pairings avoid a revision for infection than cause a revision for ceramic liner fractures. Conclusion: Fourth-generation alumina-zirconia pairings in THA show a favorable benefit-risk ratio, with rare compound-specific adverse events and complications significantly outbalanced by long-term advantages, such as a markedly lower incidence of revision for infection.

11.
Sci Rep ; 14(1): 15144, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956301

RESUMO

Porous ceramics were synthesized using porcelain tile polishing residue (PTPR) and slaked lime (Ca(OH)2) as a reinforcing agent through a hydrothermal autoclaving method. The process parameters, including the quantity of slaked lime added, the hydrothermal autoclaving temperature, and the reaction duration, were optimized meticulously. The composition, structure, thermal and physical properties of the samples were thoroughly analyzed via Brunauer-Emmett-Teller (BET) measurements, powder X-ray diffraction (PXRD), and scanning electron microscopy (SEM). The results indicated that the incorporation of slaked lime and hydrothermal autoclaving led to the formation of calcium silicate hydrate, which corresponded with an enhancement in the strength of the sample. Notably, when the quantity of slaked lime added was optimized at 30 wt%, the formation of tobermorite (5CaO·6SiO2·5H2O) was detected. At a hydrothermal autoclaving temperature of 150 °C, the formation of only sheet-like calcium silicate hydrate was observed. In contrast, at an elevated temperature of 180 °C and 210 °C, needle-like tobermorite was successfully synthesized. The porous ceramic with the most favorable structure was obtained through autoclaving at 180 °C for 10 h with 30 wt% slaked lime, exhibiting a total pore volume of 0.11 mL/g, a specific surface area of 26.35 m2/g, and a mesoporous volume fraction of 90.40%.

12.
Cureus ; 16(5): e61296, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38947694

RESUMO

The management of teeth with open apices poses unique challenges in endodontics, requiring effective strategies to promote continued root development and maintain pulp vitality. This abstract explores the utilization of bioactive materials in the treatment of open apices, specifically focusing on their role in achieving optimal outcomes. Bioactive materials, such as Biodentine (Septodont, Saint-Maur-des-Fossés, France), have gained prominence for their favourable physiochemical properties, biocompatibility, and ability to stimulate dentinogenesis. The application of a bioactive material as an apical plug not only addresses immediate concerns but also contributes to long-term health and stability. This abstract reviews relevant literature, discusses clinical cases, and emphasizes the importance of tailoring treatment plans to the individual characteristics of open apex cases. The findings underscore the promising role of bioactive materials in reshaping the landscape of endodontic interventions for teeth with open apices, highlighting their potential to enhance both clinical and radiographic success.

13.
Artigo em Inglês | MEDLINE | ID: mdl-38951398

RESUMO

Selection of a suitable alternative material from a pool of alternatives with many conflicting criteria becomes a Multi-Criteria Decision Making (MCDM) problem. In the present study, ternary blended mortars were prepared using ceramic tile dust waste (CTD), fly ash (FA), and ground granulated blast furnace slag (GGBFS) as binder components. Crusher dust (CD) was used as a fine aggregate component. Binder to aggregate ratios of 1:3 and 1:1 were prepared considering suitable flow. A total of 16 mortar mixes were cast. These mortars were tested for various conflicting criteria compressive strength, flexural strength, porosity, water absorption, bulk density, thermal conductivity, specific heat, thermal diffusivity, and thermal effusivity whose weightages obtained were 29.09%, 20.08%, 12.77%, 10.60%, 8.74%, 6.74%, 5.54%, 4.47%, and 1.97%, respectively, as per AHP analysis. Later, considering these different criteria and alternate mortars, it was observed that a 1:1 mortar with 20% CTD, 30% FA, and 50% GGBFS (RC20F30G50) is found to be the suitable mortar with the highest relative closeness coefficient of 0.861 and the highest net outranking flow of 0.316 with respect to MCDM techniques: technique for order of preference by similarity to ideal solution (TOPSIS) and preference ranking organization method for enrichment of evaluations (PROMETHEE-II), respectively. The ranking of the mortar in both methods complies with the relative weightages of the criteria and the performance of the mortars with respect to the above criteria.

14.
Artigo em Inglês | MEDLINE | ID: mdl-38976193

RESUMO

A laboratory-scale mesophilic submerged anaerobic hybrid membrane bioreactor (An-HMBR) was operated for 270 days for the treatment of high-strength synthetic wastewater at different hydraulic retention times (HRTs) (3 days, 2 days, 1 day, and 0.5 days). Chemical oxygen demand (COD) removal efficiency of 92% was obtained with methane yield rate of 0.18 LCH4/g CODremoval at 1-day HRT. The results of lab scale reactor at 1-day HRT were utilized for upscaling and cost analysis. Cost analysis revealed that the total capital cost comprised tank system (48%), membrane cost (32%), screen and PUF sponge (5% each), PLCs (4%), liquid pumps (3%), and others (2%). The operational cost comprised chemical cost (46%), pumping energy (42%), and sludge disposal (12%). The results revealed that the tank and heating costs accounted for the largest fraction of the total life cycle cost for full-scale An-HMBR. The heating cost can be compensated by gas recovery. Sensitivity analysis revealed that the interest rates, influent flow, and membrane flux were the most crucial parameters which affected the total cost of An-HMBR.

15.
Clin Exp Dent Res ; 10(4): e918, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38970231

RESUMO

AIMS AND OBJECTIVES: To evaluate the effect of coffee thermocycling on color stability and translucency of CAD-CAM polychromatic high translucent zirconia compared with lithium disilicate glass ceramic. METHODS: Sixteen rectangular plates (14 × 16 × 1.0 mm) of two ceramic materials (IPS E.max CAD (IEC), IPS E.max ZirCAD Prime [IZP]) were prepared. Each specimen was measured for color coordinates using a spectrophotometer following 30,000 cycles of coffee thermocycling. CIELAB formula was used to determine color and translucency differences (ΔE and ΔTP). The means of ΔE and ΔTP were compared using independent samples t-test and were evaluated using their respective 50%:50% perceptibility and acceptability thresholds (PT and AT). One-way analysis of variance was performed to evaluate the translucency parameter (TP) and surface roughness (Ra) of each material. RESULTS: Mean ΔE values of IEC (4.69) and IZP (4.64) were higher than the AT (ΔE ≤ 2.7) with no significant difference found between the two groups (p = 0.202). Considering the TP, only IEC showed a statistically significant increase in TP value (p < 0.001). However, the mean ΔTP of IEC (3.25) remained within the range of acceptability (1.3 < ΔTP ≤ 4.4). CONCLUSIONS: Within the limitations of this current study, the color stability of all materials was clinically affected by coffee thermocycling. In terms of translucency, only lithium disilicate glass ceramic was influenced by coffee thermocycling. High translucent zirconia had superior translucency stability compared to lithium disilicate glass ceramic.


Assuntos
Cerâmica , Café , Cor , Desenho Assistido por Computador , Porcelana Dentária , Teste de Materiais , Propriedades de Superfície , Zircônio , Cerâmica/química , Porcelana Dentária/química , Zircônio/química , Café/química , Humanos , Espectrofotometria , Materiais Dentários/química
16.
ACS Nano ; 18(29): 19054-19063, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38976394

RESUMO

Ceramic aerogel is an appealing fireproof and heat-insulation material, but synchronously improving its mechanical and thermal properties is a challenge. Moreover, the expensive discontinuous processing techniques inhibit the large-scale fabrication of ceramic aerogels. Here, we propose a water-based electrospinning method, based on the hydrolysis and condensation reactions of ceramic precursor salts themselves, for the continuous and rapid (0.025 m3/min) fabrication of ceramic fiber sponge aerogels with dual micronano fiber networks, which show synchronous enhanced fireproof, thermal insulation, and resilience performance. The elastic ceramic micro/nano fiber sponge aerogels contain robust silica-based microfibers as a firm skeleton and alumina-based nanofibers as elastic thermal insulation filler. The sponges have a high porosity of >99.8%, a low mass density (6.21 mg/cm3), a small thermal conductivity (0.022 W/m·K), and a large compression strength (21.15 kPa at 80% strain). The ceramic fiber sponges can effectively prevent the propagation of thermal runaway when a lithium battery experiences catastrophic thermal shock (>1000 °C) in the power battery packs. The proposed strategy is feasible for low-cost and rapid synthesizing ceramic aerogels toward effective battery thermal management.

17.
Sci Rep ; 14(1): 16424, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39013935

RESUMO

Lately, children's daily consumption of some products, such as cereals and candies, has been rising, which provides a compelling rationale for determining any metallic substances that may be present. Monitoring the concentration of certain metals, like nickel, in these products is necessary due to medical issues in humans when consumed regularly. So, in this work, a novel and highly selective carbon paste as a Ni(II) ion-selective sensor was prepared and investigated using ceramic magnesium aluminum spinel nanoparticles as the ionophore and tritolyl phosphate (TOCP) as a plasticizer. A modified co-precipitation method was used to synthesize the spinel nanoparticles. X-ray diffraction, scanning electron microscope with EDAX, transmission electron microscope, and BET surface area were used to determine the phase composition, microstructure, pores size, particle size, and surface area of the synthesized nanoparticles. The spinel nanoparticle was found to have a nano crystallite size with a cubic crystal system, a particle size ranging from 17.2 to 51.52 nm, mesoporous nature (average pore size = 8.72 nm), and a large surface area (61.75 m2/g). The composition ratio of graphite carbon as a base: TOCP as binder: spinal as ionophore was 67.3:30.0:2.7 (wt%) based on potentiometric detections over concentrations from 5.0 × 10-8 to 1.0 × 10-2 mol L-1 with LOD of 5.0 × 10-8 mol L-1. A measurement of 29.22 ± 0.12 mV decade-1 over pH 2.0-7.0 was made for the Nernstian slope. This sensor demonstrated good repeatability over nine weeks and a rapid response of 8 s. A good selectivity was shown for Ni(II) ions across many interferents, tri-, di-, and monovalent cations. The Ni(II) content in spiked real samples, including cocaine, sweets, coca, chocolate, carbonated drinks, cereals, and packages, were measured. The results obtained indicated no significant difference between the proposed potentiometric method and the officially reported ICP method according to the F- and t-test data. In addition to utilizing ANOVA statistical analysis, validation procedures have been implemented, and the results exceed the ICP-MS methodology.


Assuntos
Níquel , Níquel/análise , Níquel/química , Humanos , Criança , Óxido de Magnésio/química , Técnicas Eletroquímicas/métodos , Óxido de Alumínio/química , Nanopartículas/química , Magnésio/química , Magnésio/análise , Íons/análise , Difração de Raios X , Ionóforos/química
18.
J Esthet Restor Dent ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39016071

RESUMO

OBJECTIVE: To evaluate the in vitro influence of prior silane application on the microshear bond strength (µSBS) of Scotchbond Universal Plus to glass ceramic. MATERIALS AND METHODS: Thirty blocks of lithium disilicate ceramic were etched with hydrofluoric acid for 20 s and distributed into Group 1 (no silane and no adhesive), Group 2 (adhesive), Group 3 (silane + adhesive). Three cylinders of resin cement were made on each ceramic block. Five blocks (n = 15 cylinders) were subjected to the µSBS test after 24 h, and the other five blocks (n = 15 cylinders) were tested after 6 months of water storage. RESULTS: According to two-way ANOVA, followed by Tukey's test, the means of µSBS (MPa), denoted by different letters, show significant differences (p < 0.05): after 24 h-Group 1 (31.7)B, Group 2 (43.3)A, and Group 3 (31.3)B; after 6 months-Group 1 (14.8)B, Group 2 (33.6)A, and Group 3 (30.3)A. After 6 months of storage, there was a significant decrease in µSBS for Groups 1 and 2, along with an increase in adhesive failures across all groups. CONCLUSIONS: Prior application of silane did not increase the µSBS between Scotchbond Universal Plus and ceramic, and there was degradation at the bond interface over time. CLINICAL SIGNIFICANCE: Prior application of a silane agent is not necessary when using Scotchbond Universal Plus for bonding to glass ceramics. Regardless of the prior application of silane, there is degradation at the bond interface over time.

19.
Molecules ; 29(13)2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38999164

RESUMO

Modern consumption patterns have led to a surge in waste glass accumulating in municipal landfills, contributing to environmental pollution, especially in countries that do not have well-established recycling standards. While glass itself is 100% recyclable, the logistics and handling involved present significant challenges. Flint and amber-colored glass, often found in high quantities in municipal waste, can serve as valuable sources of raw materials. We propose an affordable route that requires just a thermal treatment of glass waste to obtain glass-based antimicrobial materials. The thermal treatment induces crystallized nanoregions, which are the primary factor responsible for the bactericidal effect of waste glass. As a result, coarse particles of flint waste glass that undergo thermal treatment at 720 °C show superior antimicrobial activity than amber waste glass. Glass-ceramic materials from flint waste glass, obtained by thermal treatment at 720 °C during 2 h, show antimicrobial activity against Escherichia coli after just 30 min of contact time. Laser-induced breakdown spectroscopy (LIBS) was employed to monitor the elemental composition of the glass waste. The obtained glass-ceramic material was structurally characterized by transmission electron microscopy, enabling the confirmation of the presence of nanocrystals embedded within the glass matrix.

20.
Curr Protoc ; 4(6): e1068, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38837274

RESUMO

Adeno-associated virus (AAV) vectors can efficiently transduce exogenous genes into various tissues in vivo. Owing to their convenience, high efficiency, long-term stable gene expression, and minimal side effects, AAV vectors have become one of the gold standards for investigating gene functions in vivo, especially in non-clinical studies. However, challenges persist in efficiently preparing a substantial quantity of high-quality AAV vectors. Commercial AAV vectors are typically associated with high costs. Further, in-laboratory production is hindered by the lack of specific laboratory equipment, such as ultracentrifuges. Therefore, a simple, quick, and scalable preparation method for AAV vectors is needed for proof-of-concept experiments. Herein, we present an optimized method for producing and purifying high-quality AAV serotype 9 (AAV9) vectors using standard laboratory equipment and chromatography. Using ceramic hydroxyapatite as a mixed-mode chromatography medium can markedly increase the quality of purified AAV vectors. Basic Protocols and optional methods for evaluating purified AAV vectors are also described. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Production of AAV9 vectors in 293EB cells Basic Protocol 2: Concentration and buffer exchange of AAV9 vectors from 293EB cell culture supernatants using tangential flow filtration Basic Protocol 3: Purification of AAV9 vectors from TFF samples using ceramic hydroxyapatite chromatography Basic Protocol 4: Analysis of the purified AAV9 vectors.


Assuntos
Cerâmica , Dependovirus , Durapatita , Vetores Genéticos , Sorogrupo , Dependovirus/genética , Dependovirus/isolamento & purificação , Vetores Genéticos/isolamento & purificação , Vetores Genéticos/genética , Humanos , Cerâmica/química , Durapatita/química , Cromatografia/métodos , Células HEK293
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA