Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 456
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2408028, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39382149

RESUMO

Ovonic threshold switching (OTS) selectors based on amorphous chalcogenides can revolutionize 3D memory technology owing to their self-selecting memory (SSM) behavior. However, the complex mechanism governing the memory writing operation limits compositional and device optimization. This study investigates the mechanism behind the polarity-dependent threshold voltage shift (ΔVTH) through theoretical and experimental analyses. By examining the physical principles of threshold switching and conducting defect state analysis, the ΔVTH as a memory window is confirmed to be attributed to the dynamics of charged defects and their gradient near electrodes, influenced by the nonuniform electric field after threshold switching. This study provides critical insights into the operational mechanism of OTS-based SSM, known as selector-only memory, highlighting its advantages for developing high-density, low-cost, and energy-efficient memory technologies in the artificial intelligence era.

2.
Adv Mater ; : e2410087, 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39390893

RESUMO

Chiral semiconducting nanomaterials offer many potential applications in photodetection, light emission, quantum information, and so on. However, it is difficult to achieve a strong circular dichroism (CD) signal in semiconducting nanocrystals (NCs) due to the complexity of chiral ligand surface engineering and multiple, uncertain mechanisms of chiroptical behavior. Here, a chiral ligand exchange strategy with cysteine on the ternary metal chalcogenide AgBiS2 NCs is developed, and a strong, long-lasting CD signal in the near-UV region is achieved. By carefully optimizing the ligand concentration, the CD peaks are observed at 260 and 320 nm, respectively, giving insight into the different ligand binding mechanisms influencing the CD signal of AgBiS2 NCs. Using density-functional theory, a large degree of crystal distortion by the bidentate mode of ligand chelation, and efficient ligand-NC electron transfer, synergistically resulting in the strongest CD signal (g-factor over 10-2) observed in chiral ligand-exchanged semiconductor NCs to date, is demonstrated. To demonstrate the effective chiral properties of these AgBiS2 NCs, a spin-filter device with over 86% efficiency is fabricated. This work represents a considerable leap in the field of chiral semiconductor NCs and points toward their future applications.

3.
Acta Crystallogr E Crystallogr Commun ; 80(Pt 10): 1087-1096, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39372178

RESUMO

During our studies of the oxidation of gold(I) complexes of tri-alkyl-phosphane chalcogenides, general formula R 1 R 2 R 3PEAuX, (R = tert-butyl or isopropyl, E = S or Se, X = Cl or Br) with PhICl2 or elemental bromine, we have isolated a set of seven mixed-valence by-products, the bis-(tri-alkyl-phosphane chalcogenido)gold(I) tetra-halogenidoaurates(III) [(R 1 R 2 R 3PE)2Au]+[AuX 4]-. These corres-pond to the addition of one halogen atom per gold atom of the AuI precursor. Com-pound 1, bis-(triiso-propyl-phosphane sulfide)-gold(I) tetra-chlorido-aur-ate(III), [Au(C9H21PS)2][AuCl4] or [( i Pr3PS)2Au][AuCl4], crystallizes in space group P21/n with Z = 4; the gold(I) atoms of the two cations lie on twofold rotation axes, and the gold(III) atoms of the two anions lie on inversion centres. Compound 2, bis-(tert-butyl-diiso-propyl-phosphane sulfide)-gold(I) tetra-chlorido-aurate(III), [Au(C10H23PS)2][AuCl4] or [( t Bu i Pr2PS)2Au][AuCl4], crystallizes in space group P1 with Z = 4; the asymmetric unit contains two cations and two anions with no imposed symmetry. A least-squares fit of the two cations gave an r.m.s. deviation of 0.19 Å. Compound 3, bis-(tri-tert-butyl-phosphane sulfide)-gold(I) tetra-chlorido-aurate(III), [Au(C12H27PS)2][AuCl4] or [( t Bu3PS)2Au][AuCl4], crystallizes in space group P1 with Z = 1; both gold atoms lie on inversion centres. Compound 4a, bis-(tert-butyl-diiso-propyl-phosphane sulfide)-gold(I) tetra-bromi-doaurate(III), [Au(C10H23PS)2][AuBr4] or [( t Bu i Pr2PS)2Au][AuBr4], crystallizes in space group P21/c with Z = 4; the cation lies on a general position, whereas the gold(III) atoms of the two anions lie on inversion centres. Compound 4b, bis-(tert-butyl-diiso-propyl-phosphane selenide)gold(I) tetra-bromido-aurate(III), [Au(C10H23PSe)2][AuBr4] or [( t Bu i Pr2PSe)2Au][AuBr4], is isotypic with 4a. Compound 5a, bis-(tri-tert-butyl-phosphane sulfide)-gold(I) tetra-bromido-aurate(III), [Au(C12H27PS)2][AuBr4] or [( t Bu3PS)2Au][AuBr4], is isotypic with compound 4a. Compound 5a, bis-(tri-tert-butyl-phosphane sulfide)-gold(I) tetra-bromido-aurate(III), [Au(C12H27PS)2][AuBr4] or [( t Bu3PS)2Au][AuBr4], crystallizes in space group P1 with Z = 1; both gold atoms lie on inversion centres. Compound 5b, bis-(tri-tert-butyl-phosphane selenide)gold(I) tetra-bromido-aurate(III), [Au(C12H27PSe)2][AuBr4] or [( t Bu3PSe)2Au][AuBr4], is isotypic with 5a. All AuI atoms are linearly coordinated and all AuIII atoms exhibit a square-planar coordination environment. The ligands at the AuI atoms are anti-periplanar to each other across the S⋯S vectors. There are several short intra-molecular H⋯Au and H⋯E contacts. Average bond lengths (Å) are: P-S = 2.0322, P-Se = 2.1933, S-Au = 2.2915, and Se-Au = 2.4037. The complex three-dimensional packing of 1 involves two short C-Hmethine⋯Cl contacts (and some slightly longer contacts). For 2, four C-Hmethine⋯Cl inter-actions combine to produce zigzag chains of residues parallel to the c axis. Additionally, an S⋯Cl contact is observed that might qualify as a 'chalcogen bond'. The packing of 3 is three-dimensional, but can be broken down into two layer structures, each involving an S⋯Cl and an H⋯Cl contact. For the bromido derivatives 4a/b and 5a/b, loose associations of the anions form part of the packing patterns. For all four compounds, these combine with an E⋯Br contact to form layers parallel to the ab plane.

4.
Adv Sci (Weinh) ; : e2409619, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39320343

RESUMO

With burgeoning considerations over energy issues and carbon emissions, energy harvesting devices such as triboelectric nanogenerators (TENGs) are developed to provide renewable and sustainable power. Enhancing electric output and other properties of TENGs during operation is the focus of research. Herein, two species (Nb2S2C and Ta2S2C) of a new family of 2D materials, Transition Metal Carbo-Chalcogenides (TMCCs), are first employed to develop TENGs with doping into Polydimethylsiloxane (PDMS). Compared with control samples, these two TMCC-based TENGs exhibit higher electric properties owing to the enhanced permittivity of PDMS composite, and the best performance is achieved at a concentration of 3 wt. ‰ with open circuit voltage (Voc) of 112 V, short circuit current (Isc) of 8.6 µA and charge transfer (Qsc) of 175 nC for Nb2S2C based TENG, and Voc of 127 V, Isc of 9.6 µA, and Qsc of 230 nC for Ta2S2C based TENGs. These two TENGs show a maximum power density of 1360 and 911 mW m-2 respectively. Moreover, the tribology performance is also evaluated with the same materials, revealing that the Ta2S2C/PDMS composite as the electronegative material presented a lower coefficient of friction (COF) than the Nb2S2C/PDMS composite. Their applications for energy harvesting and self-powered sensing are also demonstrated.

5.
Materials (Basel) ; 17(17)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39274667

RESUMO

Hydrogen peroxide (H2O2) is a high-demand chemical, valued as a powerful and eco-friendly oxidant for various industrial applications. The traditional industrial method for producing H2O2, known as the anthraquinone process, is both costly and environmentally problematic. Electrochemical synthesis, which produces H2O2 using electricity, offers a sustainable alternative, particularly suited for small-scale, continuous on-site H2O2 generation due to the portability of electrocatalytic devices. For efficient H2O2 electrosynthesis, electrocatalysts must exhibit high selectivity, activity, and stability for the two-electron pathway-oxygen reduction reaction (2e- ORR). Transition-metal chalcogenide (TMC)-based materials have emerged as promising candidates for effective 2e- ORR due to their high activity in acidic environments and the abundance of their constituent elements. This review examines the potential of TMC-based catalysts in H2O2 electrosynthesis, categorizing them into noble-metal and non-noble-metal chalcogenides. It underscores the importance of achieving high selectivity, activity, and stability in 2e- ORR. By reviewing recent advancements and identifying key challenges, this review provides valuable insights into the development of TMC-based electrocatalysts for sustainable H2O2 production.

6.
ACS Appl Mater Interfaces ; 16(39): 52682-52691, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39307970

RESUMO

In recent years, rare-earth-based chalcogenides have gained attention promising materials in the field of infrared nonlinear optical (IR-NLO) applications owing to their exceptional physicochemical properties. However, they frequently encounter challenges such as adverse two-photon absorption and low laser-induced damage thresholds (LIDTs) caused by narrow optical band gaps (Eg), which limit their practical utility. In this study, we started with the centrosymmetric (CS) parent compound EuGa2S4 to develop two new noncentrosymmetric (NCS) Eu-based chalcogenides, namely, EuZnSiS4 and EuCdSiS4, employing a rational cross-substitution strategy. Despite having identical stoichiometry, both compounds crystallize in distinct NCS orthorhombic space groups [Fdd2 (no. 43) vs Ama2 (no. 40)], as confirmed by single-crystal structure analysis. Their crystal structures feature highly distorted tetrahedral motifs interconnected via corner-sharing, forming unique two-dimensional layers that host Eu2+ cations. Furthermore, both compounds exhibit robust phase-matching second-harmonic generation (SHG) intensities of 1.5 × AgGaS2 for EuZnSiS4 and 2.8 × AgGaS2 for EuCdSiS4 under 2050 nm excitation. They also demonstrate high LIDTs (approximately 14-17 × AgGaS2), wide Eg (>2.5 eV), and transparency windows extending up to 18.2 µm. Particularly noteworthy, EuCdSiS4 stands out as a pioneering example in the Eu-based IR-NLO system for successfully combining a broad Eg (>2.56 eV, equivalent to that of AgGaS2) with a significant SHG effect (>1.0 × AgGaS2) simultaneously. Structural analyses and theoretical insights underscore that the reasonable combination of asymmetric functional units plays a pivotal role in driving the CS-to-NCS structural transformation and enhancing the NLO and linear optical properties of these Eu-based chalcogenides. This study presents a promising chemical pathway for advancing rare-earth-based functional materials and suggests exciting opportunities for their future applications in IR-NLO technologies.

7.
Small ; : e2404821, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39344560

RESUMO

2D nanomaterials have triggered widespread attention in sensing applications. Especially for 2D layered metal chalcogenides (LMCs), the unique semiconducting properties and high surface area endow them with great potential for gas sensors. The assembly of 2D LMCs with guest species is an effective functionalization method to produce the synergistic effects of hybridization for greatly enhancing the gas-sensing properties. This review starts with the synthetic techniques, sensing properties, and principles, and then comprehensively compiles the advanced achievements of the pristine 2D LMCs gas sensors. Key advances in the development of the functionalization of 2D LMCs for enhancing gas-sensing properties are categorized according to the spatial architectures. It is systematically discussed in three aspects: surface, lattice, and interlayer, to comprehend the benefits of the functionalized 2D LMCs from surface chemical effect, electronic properties, and structure features. The challenges and outlooks for developing high-performance 2D LMCs-based gas sensors are also proposed.

8.
ACS Appl Mater Interfaces ; 16(38): 50587-50601, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39259512

RESUMO

Transition metal chalcogenides (TMX) have attracted energy researchers due to their role as high-performance electrode materials for energy storage devices. A facile one-pot hydrothermal technique was adopted to synthesize a molybdenum disulfide/cadmium sulfide (MoS2/CdS) (MCS) composite. The as-prepared samples were subjected to characterization techniques such as XRD, FT-IR, SEM, TEM, and XPS to assess their structure, morphology, and oxidation states. The MoS2/CdS (MCS) composites were prepared in three different ratios of molybdenum and cadmium metals. Among them, the MCS 1:2 (Mo:Cd) ratio showed better electrochemical performance with a high specific capacitance of 1336 F g-1 (high specific capacity of 185.83 mAh g-1) at a specific current of 1 A g-1 for half-cell studies. Later, a hybrid supercapacitor (HSC) device was fabricated with N-doped graphene (NG) as an anode and MCS (1:2) as a cathode, delivering a high specific energy of 34 Wh kg-1 and a specific power of 7500 W kg-1. The high nitrogen content in the MoS2 structure in MCS composites alters the device's performance, where CdS supports the composite structure through its conductivity and encourages the easy accessibility of ions. The device withstands up to 10 000 cycles with a higher Coulombic efficiency of 97% and a capacitance retention of 90.25%. The high-performance NG//MCS (1:2) HSC may be a potential candidate alternative to the existing conventional material.

9.
Artigo em Inglês | MEDLINE | ID: mdl-39303063

RESUMO

The synthetical methodology for the [Cu(dmp)2]2+/1+ (dmp = 2,9-dimethyl-1,10-phenanthroline; neocuproine) complexes has been systematically investigated by using various copper precursors, including CuCl2, Cu(NO3)2, and Cu(ClO4)2. After an anion exchange to trifluoromethanesulfonimide (TFSI), the tetra-coordinated CuII(dmp)2(TFSI)2-Cu(ClO4)2 (7.43%) outperformed the penta-coordinated CuII(dmp)2(TFSI)(NO3)-Cu(NO3)2 (4.30%) and CuII(dmp)2(TFSI)(Cl)-CuCl2. Polymeric chalcogenides, including a conducting copolymeric electrode of PEDOT-PEDTT [PEDOT = poly(3,4-ethylenedioxythiophene); PEDTT = poly(3,4-ethylenedithiothiophene)] and a coordination polymeric electrode of silver bezeneselenolate ([Ag2(SePh)2]n; mithrene), are introduced as the electrocatalysts for [Cu(dmp)2]2+/1+ for the first time. After optimization, dye-sensitized solar cells (DSSCs) based on carbon cloth (CC)/AgSePh-30 (10.18%) showed superior electrocatalytic ability compared to the benchmark CC/Pt (7.43%) due to numerous active sites provided by electron-donating Se atoms, high film roughness, and bottom-up 2D charge transfer routes. The DSSC based on CC/PEDTT-50 (10.38%) also outperformed CC/Pt due to numerous active sites provided by electron-donating S atoms and proper energy band structure. This work sheds light on the future design and synthesis in Cu-complex mediators and functional polymeric chalcogenides for high-performance DSSCs.

10.
Nano Lett ; 24(32): 9953-9960, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39102284

RESUMO

An interesting question is whether chalcogen atoms can emulate the role of carbon or boron elements stabilized between two transition metal layers, as observed in MXenes or MBenes. Here, we predict a new family of two-dimensional ternary compounds M4XY2 (where M = Pd, Y, Zr, etc.; X = S, Se, Te; and Y = Cl, Br, I), named M-chalcogene. Through first-principles calculations, we reveal diverse physical properties in these compounds, including superconducting, topological, and magnetic characteristics, where the bilayer transition metals play crucial roles. Moreover, the expected helical edge states and superconducting transition temperatures in Pd4SCl2 can be finely tuned by strains. Additionally, the Ti4SCl2 is predicted to be a topological insulator and shows promise as a gas sensor candidate for certain exotic gases. Our findings expand two-dimensional material families and provide promising platforms for diverse physical phenomena with efficient tunability by external stimuli for various applications.

11.
Chemistry ; : e202402319, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39155819

RESUMO

Nanoparticles can offer an alternative approach to fabricate phase-change materials. The chemical synthesis of GeTe nanoparticles using organometallic precursors exploits high-boiling solvents and relatively high temperatures (close or even above crystallization temperatures), as reported in the available literature. The aim of this work is the preparation of GeTe nanoparticles by a low-temperature synthetic method exploiting new organometallic precursors and common organic solvents. Indeed, different preparation methods and characterization of GeTe nanoparticles is discussed. The characterization of the prepared nanomaterial was performed on the basis of X-ray diffraction, transmission electron microscopy, scanning electron microscopy with energy dispersive X-ray spectroscopy, laser ablation time-of-flight mass spectrometry, Raman scattering spectroscopy, and dynamic light scattering. The results show that the low-temperature synthetic route leads to amorphous GeTe nanoparticles. Exploited organometallic precursor is stabilised by neutral ligand which can be isolated after the reaction and repeatedly used for further reactions. Furthermore, GeTe nanoparticle size can be tuned by the conditions of the synthesis.

12.
J Mol Model ; 30(9): 317, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39207575

RESUMO

CONTEXT AND RESULTS: The structure, electronic and optical properties of single-layer transition metallic chalcogenides ZrX3 (X = S, Se, Te) have been studied by density functional theory. The electron energy dispersion curve shows that ZrX3 has semiconductor properties, in which the conduction band is mainly contributed by the correlated states of the Zr-d orbital, and the valence band is mainly contributed by the correlated states of the X-p orbital. It is found that b-axis and biaxial strain have great influence on the bandgap and the shift of density of states is also large. At the same time, the peak value of density of states increases greatly when biaxial strain is applied. It is of guiding significance for selecting suitable substrates to prepare two-dimensional ZrX3 materials to study their electronic properties. The calculation of optical constants confirms that ZrX3 has strong optical anisotropy. In the visible range, the light absorption efficiency of ZrX3 in the direction of electric field polarization [100] is higher than that in the direction of [010]. The reflectance spectral results show that ZrS3 and ZrSe3 in the [100] directions have the highest reflectance, and ZrTe3 in the [010] direction has the highest reflectance, even in the long electromagnetic radiation range (up to 10 eV), which is of great significance for the construction of visible optical devices. COMPUTATIONAL METHOD: All computations have been carried out based on density functional theory (DFT) as implemented in the CASTEP code. The pseudo-potential is adopted by the norm conserving, and the exchange correlation functional is adopted by the Perdew-Burke-Ernzerhof in local generalized gradient approximation (GGA).

13.
Nanomaterials (Basel) ; 14(13)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38998756

RESUMO

Copper selenide nanoparticles (Cu2-x Se NPs) have received a lot of attention in recent decades due to their interesting properties and potential applications in various areas such as electronics, health, solar cells, etc. In this study, details of the synthesis and characterization of copper selenide nanoparticles modified with gum arabic (GA) are reported. Also, through transmission electronic microscopy (TEM) analysis, the transformation of the morphology and particle size of copper selenide nanoparticles in aqueous solution was studied. In addition, we present an antimicrobial study with different microorganisms such as Staphylococcus aureus (S. aureus), Escherichia coli (E. coli) and Candida albiacans (C. albicans). Copper selenide nanoparticles were characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry analysis (DSC) and TEM. XRD confirmed the crystal-line structure of the nanoparticles such as cubic berzelanite with a particle size of 6 nm ± 0.5. FTIR and TGA corroborated the surface modification of copper selenide nanoparticles with gum arabic, and DSC suggested a change in the structural phase from cubic to hexagonal. TEM analysis demonstrated that the surface modification of the Cu2-x Se NPs stabilized the nanostructure of the particles, preventing changes in the morphology and particle size. The antimicrobial susceptibility analysis of copper selenide nanoparticles indicated that they have the ability to inhibit the microbial growth of Staphylococcus aureus, Escherichia coli and Candida albicans.

14.
Small Methods ; : e2400640, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39041431

RESUMO

La3-xTe4 is a very promising high-temperature candidate applied in next-generation Radioisotope Thermoelectric Generators (RTGs). Conventional synthesis of such materials is based on the mechanochemical method, which makes the sample difficult to purify due to the high-energy ball milling. In this report, a novel synthetic method is developed, which utilizes Te-vapor transport and solid-phase diffusion to efficiently produce the RE3-xTe4 phases (RE = La, Ce, Pr, Nd). Notably, this method obviates the requirement for high-energy ball-milling instruments, conventionally indispensable in the mechanochemical syntheses. For as-synthesized La2.74Te4 material, a high figure of merit of 1.5 is achieved at 1073 K, owning to the reduced electronic thermal conductivity with metal impurities well eliminated.

15.
J Phys Condens Matter ; 36(38)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38848722

RESUMO

We report a new compound, Zr2S2C, belonging to the transition metal carbo-chalcogenide (TMCC) family. Through first-principles calculations, our analysis of phonon dispersion spectra indicates that the compound is dynamically stable in both bulk and monolayer forms. We systematically investigated the electronic structure, phonon dispersion, and electron-phonon coupling (EPC) driven superconducting properties in bulk and monolayer Zr2S2C. The results demonstrate the metallic character of bulk Zr2S2C, with a weak EPC strength (λ) of 0.41 and superconducting critical temperature (Tc) of ∼3 K. The monolayer Zr2S2C has an enhancedλof 0.62 andTcof ∼6.4 K. The increasedλvalue in the monolayer results from the softening of the acoustic phonon mode. We found that when biaxial strain is applied, the low energy acoustic phonon mode in monolayer becomes even softer. This softening leads to a transformation of the Zr2S2C monolayer from its initial weak coupling state (λ= 0.62) to a strongly coupled state, resulting in an increasedλvalue of 1.33. Consequently, the superconducting critical temperature experiences a twofold increase. These findings provide a theoretical framework for further exploration of the layered two-dimensional TMCC family, in addition to offering valuable insights.

16.
J Phys Condens Matter ; 36(42)2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38848728

RESUMO

The exploration of the superconducting properties of antiferromagnetic parent compounds containing transition metals under pressure provides a unique idea for finding and designing superconducting materials with better performance. In this paper, the close relationship between the possible superconductivity and structure phase transition of the typical van der Waals layered material 1T-CrSe2induced by pressure is studied by means of electrical transport and x-ray diffraction for the first time. We introduce the possibility of pressure-induced superconductivity at 20 GPa, with a criticalTcof approximately at 4 K. The superconductivity persists up to the highest measured pressure of 70 GPa, with a maximumTc∼ 5 K at 24 GPa. We observed a structure phase transition fromP-3m1 toC2/mspace group in the range of 9.4-11.7 GPa. The results show that the structural phase transition leads to the metallization of 1T-CrSe2and the further pressure effect makes the superconductivity appear in the new structure. The material undergoes a transition from a two-dimensional layered structure to a three-dimensional structure under pressure. This is the first time that possible superconductivity has been observed in 1T-CrSe2.

17.
Small ; 20(40): e2402087, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38845531

RESUMO

The globe is currently dealing with serious issues related to the world economy and population expansion, which has led to a significant increase in the need for energy. One of the most promising energy devices for the next generation of energy technology is the supercapacitor (SC). Among the numerous nanostructured materials examined for SC electrodes, inorganic nanosheets are considered to be the most favorable electrode materials because of their excellent electrochemical performance due to their large surface area, very low layer thickness, and tunable diverse composition. Various inorganic nanosheets (NS) such as metal oxides, metal chalcogenides, metal hydroxides, and MXenes show substantial electrochemical activity. Herein, a comprehensive survey of inorganic NS arrays synthesized through the electrodeposition method is reported with the discussion on detailed growth mechanism and their application in the fabrication of SC electrodes/devices for powering flexible and wearable electronics appliances. To begin with, the first section will feature the various types of electrodeposition working mechanism, SC types and their working mechanisms, importance of nanosheet structure for SCs. This review gives a profound interpretation of supercapacitor electrode materials and their performances in different domains. Finally, a perspective on NS array through electrodeposition method applications in diverse fields is extensively examined.

18.
Molecules ; 29(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38731517

RESUMO

Layered chalcogenides containing 3d transition metals are promising for the development of two-dimensional nanomaterials with interesting magnetic properties. Both mechanical and solution-based exfoliation of atomically thin layers is possible due to the low-energy van der Waals bonds. In this paper, we present the synthesis and crystal structures of the Mn2Ga2S5 and Mn2Al2Se5 layered chalcogenides. For Mn2Ga2S5, we report magnetic properties, as well as the exfoliation of nanofilms and nanoscrolls. The synthesis of both polycrystalline phases and single crystals is described, and their chemical stability in air is studied. Crystal structures are probed via powder X-ray diffraction and high-resolution transmission electron microscopy. The new compound Mn2Al2Se5 is isomorphous with Mn2Ga2S5 crystallizing in the Mg2Al2Se5 structure type. The crystal structure is built by the ABCBCA sequence of hexagonal close-packing layers of chalcogen atoms, where Mn2+ and Al3+/Ga3+ species preferentially occupy octahedral and tetrahedral voids, respectively. Mn2Ga2S5 exhibits an antiferromagnetic-like transition at 13 K accompanied by the ferromagnetic hysteresis of magnetization. Significant frustration of the magnetic system may yield spin-glass behavior at low temperatures. The exfoliation of Mn2Ga2S5 layers was performed in a non-polar solvent. Nanolayers and nanoscrolls were observed using high-resolution transmission electron microscopy. Fragments of micron-sized crystallites with a thickness of 70-100 nanometers were deposited on a glass surface, as evidenced by atomic force microscopy.

19.
J Colloid Interface Sci ; 668: 492-501, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38691959

RESUMO

The improvement of surface reactivity in noble-metal-free cocatalysts is crucial for the development of efficient and cost-effective photocatalytic systems. However, the influence of crystallinity on catalytic efficacy has received limited attention. Herein, we report the utilization of structurally disordered MoSe2 with abundant 1T phase as a versatile cocatalyst for photocatalytic hydrogen evolution. Using MoSe2/carbon nitride (CN) hybrids as a case study, it is demonstrated that amorphous MoSe2 significantly enhances the hydrogen evolution rate of CN, achieving up to 11.37 µmol h-1, surpassing both low crystallinity (8.24 µmol h-1) and high crystallinity MoSe2 (3.86 µmol h-1). Experimental analysis indicates that the disordered structure of amorphous MoSe2, characterized by coordination-unsaturated surface sites and a rich 1T phase with abundant active sites at the basal plane, predominantly facilitates the conversion of surface-bound protons to hydrogen. Conversely, the heightened charge transfer capacity of the highly crystalline counterpart plays a minor role in enhancing practical catalytic performance. This approach is applicable for enhancing the photocatalytic hydrogen evolution performance of various semiconducting photocatalysts, including CdS, TiO2, and ZnIn2S4, thereby offering novel insights into the advancement of high-performance non-precious catalysts through phase engineering.

20.
J Mol Model ; 30(5): 158, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700822

RESUMO

CONTEXT: As new materials, the ternary chalcogenides have recently brought scientists' attention. These materials are a novel class of semiconducting chemical compounds. They allow the increase of the photo-conversion efficiency, the performance, and the cheap energy cost. Such materials also provide a wide range of physical and chemical applications. METHODS: The used investigation employs Density Functional Theory (DFT) implemented in the Wien2k package to systematically characterize the physical properties of ternary chalcogenide compounds XBiSe2 (X = Li, Na and K). Such method emphasizes their applicability to energy conversion technologies. Scrutinizing their electronic, optical, and thermoelectric properties elucidates the effect of alkali metal substitution on performance metrics. The results not only advance knowledge of these materials' physicochemical behaviors but also reveal their potential for tailored functionalization in next-generation energy and optoelectronic systems, marking a significant stride in material science and application-oriented research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA