Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Nat Prod Res ; : 1-10, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38501726

RESUMO

The first investigation of the phytochemical profile of the flowers of Croton krabas led to the isolation of two new clerodane diterpenes, 6S-crotocaudin (1) and crotocaudin B (2), together with two known clerodanes, 6S-crotoeurin C (3) and isoteucvin (4). The structures and absolute configurations of isolated clerodanes were elucidated by extensive analysis of NMR spectroscopic data, mass spectrometry and ECD calculations. Compounds 1-4 demonstrated significant inhibitory activity towards acetylcholinesterase (AChE). Notably, compound 2 exhibited the strongest AChE inhibition (IC50 1.01 µM). Compounds 3 and 4 showed potent butyrylcholinesterase (BChE) inhibitory activity with IC50 values of 1.09 and 1.12 µM, respectively. The molecular docking results revealed that 2 bound to the catalytic anionic site (CAS) and peripheral anionic site (PAS) of AChE, while 3 occupied in the CAS of BChE.

2.
Fitoterapia ; 174: 105878, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417683

RESUMO

Six previously undescribed clerodane diterpenes, cardorubellas A-F (1-6), along with seven known ones (7-13), were isolated from the aerial parts of Callicarpa pseudorubella. Their chemical structures were established by analysis of 1D and 2D NMR, HR-ESI-MS, X-ray diffraction, and electronic circular dichroism (ECD) data. Notably, cardorubella B (2) represented the first examples of naturally occurring succinic anhydride-containing clerodane diterpenes derivatives. The anti-proliferative activities of these compounds were assessed. Remarkably, compound 2 exhibited comparable inhibitory activity against HEL cell lines, surpassing the positive control with an IC50 value of 14.01 ± 0.77 µM, compared to 17.02 ± 4.70 µM for 5-fluorouracil.


Assuntos
Callicarpa , Diterpenos Clerodânicos , Diterpenos , Diterpenos Clerodânicos/farmacologia , Diterpenos Clerodânicos/química , Callicarpa/química , Estrutura Molecular , Linhagem Celular , Espectroscopia de Ressonância Magnética , Diterpenos/farmacologia
3.
Int J Mol Sci ; 25(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38338810

RESUMO

New substances with antimicrobial properties are needed to successfully treat emerging human, animal, or plant pathogens. Seven clerodane diterpenes, previously isolated from giant goldenrod (Solidago gigantea) root, were tested against Gram-positive Bacillus subtilis, Bacillus spizizenii and Rhodococcus fascians by measuring minimal bactericidal concentration (MBC), minimal inhibitory concentration (MIC) and half-maximal inhibitory concentration (IC50). Two of them, Sg3a (a dialdehyde) and Sg6 (solidagoic acid B), were proved to be the most effective and were selected for further study. Bacillus spizizenii was incubated with the two diterpenes for shorter (1 h) or longer (5 h) periods and then subjected to genome-wide transcriptional analyses. Only a limited number of common genes (28 genes) were differentially regulated after each treatment, and these were mainly related to the restoration of cell membrane integrity and to membrane-related transports. Changes in gene activity indicated that, among other things, K+ and Na+ homeostasis, pH and membrane electron transport processes may have been affected. Activated export systems can be involved in the removal of harmful molecules from the bacterial cells. Inhibition of bacterial chemotaxis and flagellar assembly, as well as activation of genes for the biosynthesis of secondary metabolites, were observed as a general response. Depending on the diterpenes and the duration of the treatments, down-regulation of the protein synthesis-related, oxidative phosphorylation, signal transduction and transcription factor genes was found. In other cases, up-regulation of the genes of oxidation-reduction processes, sporulation and cell wall modification could be detected. Comparison of the effect of diterpenes with the changes induced by different environmental and nutritional conditions revealed several overlapping processes with stress responses. For example, the Sg6 treatment seems to have caused a starvation-like condition. In summary, there were both common and diterpene-specific changes in the transcriptome, and these changes were also dependent on the length of treatments. The results also indicated that Sg6 exerted its effect more slowly than Sg3a, but ultimately its effect was greater.


Assuntos
Anti-Infecciosos , Diterpenos Clerodânicos , Diterpenos , Solidago , Animais , Humanos , Diterpenos Clerodânicos/farmacologia , Solidago/química , Diterpenos/farmacologia , Bacillus subtilis , Membrana Celular
4.
Phytochemistry ; 218: 113932, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38056516

RESUMO

Twenty-six clerodane diterpenoids have been isolated from T. sagittata, a plant species of traditional Chinese medicine Radix Tinosporae, also named as "Jin Guo Lan". Among them, there are eight previously undescribed clerodane diterpenoids (tinotanoids A-H: 1-8), and 18 known diterpenoids (9-26). The absolute configurations of compounds 1, 2, 5, 8, 13, 17 and 20 were determined by single-crystal X-ray diffraction. Compound 1 is the first example of rotameric clerodane diterpenoid with a γ-lactone ring which is constructed between C-11 and C-17; meanwhile, compounds 3 and 4 are two pairs of inseparable epimers. Compounds 2, 12 and 17 demonstrated excellent inhibitory activity on NO production against LPS-stimulated BV-2 cells with IC50 values of 9.56 ± 0.69, 9.11 ± 0.53 and 11.12 ± 0.70 µM, respectively. These activities were significantly higher than that of the positive control minocycline (IC50 = 23.57 ± 0.92 µM). Moreover, compounds 2, 12 and 17 dramatically reduced the LPS-induced upregulation of iNOS and COX-2 expression. Compounds 2 and 12 significantly inhibited the levels of pro-inflammatory cytokines TNF-α, IL-1ß and IL-6 that were increased by LPS stimulation.


Assuntos
Diterpenos Clerodânicos , Menispermaceae , Tinospora , Diterpenos Clerodânicos/farmacologia , Diterpenos Clerodânicos/química , Tinospora/química , Lipopolissacarídeos/farmacologia , Raízes de Plantas/química , Estrutura Molecular
5.
Nat Prod Res ; : 1-9, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37929690

RESUMO

In recent years, clerodane diterpenes, a class of bioactive compounds, have come into the spotlight due to their amazing bioactivities. Three novel clerodane diterpene analogues were obtained by synthesising 16-hydroxycleroda-3,13(14)-Z-diene-15,16-olide (Lactone) with primary amines. Anti-tubercular activity was determined using Microplate Alamar Blue Assay. Among all the synthesised compounds from methanolic extract of seeds, results clearly showed that compounds 3 and 5 have significant anti TB activity with an MIC of 1.56 µg/ml against the Mycobacterium tuberculosis MTB H37Rv bacilli strain than the gold standard drugs pyrazinamide (3.13 µg/ml), ciprofloxacin (3.13 µg/ml), streptomycin (6.25 µg/ml) and rifampicin (6.25 µg/ml). Compound 5 exhibited significant antibacterial activity with zone of inhibition of 10.8 mm with Gram + ve and 7.95 mm with Gram -ve bacteria at a conc of 50 µg/ml respectively. In the current investigation, three novel heterocycles (compounds 3-5) of the diterpenoid were prepared, in high yield, using one-pot, efficient approach.

6.
Chem Biodivers ; 20(12): e202301309, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37926685

RESUMO

Chromatographic separation of the leaves of Croton krabas resulted in the isolation of one new clerodane, crotoeurin D (1), along with two known compounds, 6S-crotoeurin C (2) and blumenol A (3). Their structures were determined based on extensive nuclear magnetic resonance spectroscopic data analysis and mass spectrometry. The absolute configuration of the new clerodane was assigned by nuclear overhauser effect spectroscopy correlations and electronic circular dichroism calculations. Compound 1 exhibited significant acetylcholinesterase and butyrylcholinesterase inhibitory activities. Moreover, the binding modes of 1 revealed that its structure formed strong hydrogen bonds and hydrophobic interactions with the active sites of both enzymes.


Assuntos
Croton , Diterpenos Clerodânicos , Diterpenos Clerodânicos/farmacologia , Diterpenos Clerodânicos/química , Croton/química , Acetilcolinesterase , Butirilcolinesterase , Estrutura Molecular
7.
Chem Biodivers ; 20(12): e202301676, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37971960

RESUMO

Three new compounds callicarpenoids A-C (1-3), were isolated from the stems of Callicarpa arborea Roxb together with fifteen known compounds (4-18). The structures of these compounds were elucidated using advanced spectroscopic techniques, including 1D and 2D NMR, UV, IR, HR-ESI-MS, ECD, ORD, and quantum chemical calculations. Compound 3, a rare rearranged diterpenoid with a fused 5/6-ring system demonstrated strong potential as an inhibitor of the NLRP3 inflammasome activation with an IC50 value of 3.153 µM. It effectively reduced GSDMD-NT production, inhibited caspase-1 activation, and suppressed IL-1ß secretion, thereby mitigating NLRP3 inflammasome-induced pyroptosis in J774A.1 cells. These findings suggest that compound 3 warrants further research and development as a promising NLRP3 inflammasome inhibitor.


Assuntos
Callicarpa , Diterpenos Clerodânicos , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Diterpenos Clerodânicos/farmacologia , Callicarpa/química , Espectroscopia de Ressonância Magnética
8.
Phytochemistry ; 216: 113864, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37748701

RESUMO

More than 20 natural products have been reported to modulate PCSK9-mediated cholesterol regulation, and small-molecule-derived proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors continue to be developed and identified. Here, twelve undescribed clerodane-type diterpenes (1-9 and 12-14) and two known compounds were isolated from the chloroform-soluble extract of the dried fruits of Casearia grewiifolia Vent. using a PCSK9 mRNA expression monitoring assay. Among the undescribed compounds, the stereochemistry of two diastereomeric grewiifolins A and B (1 and 2) were extensively elucidated using 2D Nuclear Overhauser Effect Spectroscopy (NOESY) experiments, excitation-sculptured indirect detection experiments (EXSIDE), interproton distance analyses, and computational calculations that included quantum chemical shift calculations combined with DP4+ analysis. All isolates were assessed for their inhibitory activity against PCSK9 and IDOL mRNA expression. Among the compounds tested, compound 3 inhibited PCSK9 and IDOL mRNA expression.


Assuntos
Casearia , Diterpenos Clerodânicos , Pró-Proteína Convertase 9/análise , Diterpenos Clerodânicos/farmacologia , Diterpenos Clerodânicos/química , Casearia/química , Frutas/química , RNA Mensageiro
9.
Fitoterapia ; 171: 105654, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37595644

RESUMO

Nine previously undescribed clerodane-type diterpenoids (1-9), named caseabalanspenes A-I, along with six know compounds (10-15), were isolated from the twigs and leaves of Casearia velutina. Spectroscopic data (1D and 2D NMR) analysis permitted the definition of their structures and then determination of the molecular formula of the compound by high resolution mass spectrometry (HR-ESI-MS). It is worth noting that compound 7 contains N- heterocycle. Compounds 1-8 were tested the anti-inflammasome activity, and compound 3 exhibited potent activity and decreased LDH level in a dose-dependent manner, with IC50 values of 2.90 µM.


Assuntos
Antineoplásicos Fitogênicos , Casearia , Diterpenos Clerodânicos , Casearia/química , Estrutura Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Folhas de Planta/química
10.
Phytochemistry ; 214: 113823, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37579813

RESUMO

Six undescribed clerodane diterpenoids along with five known ones were isolated from the aerial parts of Salvia deserta, a traditional Uygur medicine. Their chemical structures including absolute configurations were elucidated by extensive spectroscopic analysis (including 1D and 2D NMR, HRESIMS, and IR), combined with calculated ECD method and single-crystal X-ray diffraction analysis. All the compounds possessed a terminal α,ß-unsaturated-γ-lactone moiety, and were assayed for their immunosuppressive activity via inhibiting the secretion of cytokines TNF-α and IL-6 in macrophages RAW264.7. Among them, (5R,8R,9S,10R)-18-nor-cleroda-2,13-dien-16,15-olide-4-one obviously suppressed the secretion of TNF-α and IL-6 with IC50 values of 8.55 and 13.65 µM, respectively.


Assuntos
Diterpenos Clerodânicos , Diterpenos , Salvia , Diterpenos Clerodânicos/farmacologia , Diterpenos Clerodânicos/química , Salvia/química , Interleucina-6 , Fator de Necrose Tumoral alfa , Componentes Aéreos da Planta/química , Estrutura Molecular , Diterpenos/química
11.
Bioorg Chem ; 140: 106812, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37651894

RESUMO

A total of 17 structurally diverse clerodane diterpenoids, including ten undescribed clerodane diterpenoids (tinopanoids K-T, 1-10) and seven known compounds (11-17), were isolated from the vines and leaves of Tinospora crispa. Compound 3 has not only bear the dominant substituents of γ-hydroxy-α, ß-unsaturated-γ-lactone with anti-inflammatory activity, but also a ternary epoxy structure at C-3/C-4. The planar structures and relative configurations of the clerodane diterpenoids were elucidated by spectroscopic data interpretation. The absolute configurations of compounds 1, 4, 8 and 13 were determined by single-crystal X-ray crystallographic, while that of compound 3 was determined using computed ECD data and single crystal X-ray diffraction of related p-bromobenzoate ester (3a). Subsequently, all compounds were evaluated for their inhibitory effect on nitric oxide (NO) production of LPS-activated BV-2 cells, and compounds 3 and 8 exhibited better NO inhibitory potency, with IC50 values of 5.6 and 13.8 µM than the positive control minocycline (Mino, IC50 = 22.9 µM). The corresponding results of western blot analysis and qRT-PCR revealed that compound 3 can significantly inhibit the inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2) protein expressions, mRNA levels of pro-inflammatory cytokins of tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6) and interleukin 1ß (IL-1ß). The underlying mechanism by which compound 3 exerted anti-neuroinflammatory effects was investigated by western blot and immunofluorescence assay, which suggested compound 3 inhibited LPS induced neuroinflammation via the suppression of toll-like receptor 4 (TLR4) dependent Signal Transducer and Activator of Transcription 3 (Stat3) and mitogen-activated protein kinase (MAPK) signaling pathways, and the activation of Heme Oxygenase-1 (HO-1) mediated signals.


Assuntos
Diterpenos Clerodânicos , Tinospora , Diterpenos Clerodânicos/farmacologia , Lipopolissacarídeos/farmacologia , Anti-Inflamatórios/farmacologia , Western Blotting
12.
Plant J ; 116(2): 375-388, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37395679

RESUMO

Scutellaria barbata is a traditional Chinese herb medicine and a major source of bioactive clerodane diterpenoids. However, barely clerodanes have been isolated from the closely related S. baicalensis. Here we assembled a chromosome-level genome of S. barbata and identified three class II clerodane diterpene synthases (SbarKPS1, SbarKPS2 and SbaiKPS1) from these two organisms. Using in vitro and in vivo assays, SbarKPS1 was characterized as a monofunctional (-)-kolavenyl diphosphate synthases ((-)-KPS), while SbarKPS2 and SbaiKPS1 produced major neo-cleroda-4(18),13E-dienyl diphosphate with small amount of (-)-KPP. SbarKPS1 and SbarKPS2 shared a high protein sequence identity and formed a tandem gene pair, indicating tandem duplication and sub-functionalization probably led to the evolution of monofunctional (-)-KPS in S. barbata. Additionally, SbarKPS1 and SbarKPS2 were primarily expressed in the leaves and flowers of S. barbata, which was consistent with the distribution of major clerodane diterpenoids scutebarbatine A and B. In contrast, SbaiKPS1 was barely expressed in any tissue of S. baicalensis. We further explored the downstream class I diTPS by functional characterizing of SbarKSL3 and SbarKSL4. Unfortunately, no dephosphorylated product was detected in the coupled assays with SbarKSL3/KSL4 and four class II diTPSs (SbarKPS1, SbarKPS2, SbarCPS2 and SbarCPS4) when a phosphatase inhibitor cocktail was included. Co-expression of SbarKSL3/KSL4 with class II diTPSs in yeast cells did not increase the yield of the corresponding dephosphorylated products, either. Together, these findings elucidated the involvement of two class II diTPSs in clerodane biosynthesis in S. barbata, while the class I diTPS is likely not responsible for the subsequent dephosphorylation step.

13.
Metabolites ; 13(7)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37512573

RESUMO

Salvia semiatrata Zucc. (Lamiaceae) is endemic to Oaxaca, Mexico, and is known for its analgesic properties. Terpenoids and phenolic compounds with antinociceptive potential have been characterised from this species. The aim of this research was to determine the variation in terpenoids and flavonoids in ethyl acetate extracts of S. semiatrata collected from ten different localities, as well as to evaluate the antinociceptive effect between plants with higher and lower contents of these secondary metabolites. Quantification of S. semiatrata compounds was performed via HPLC-DAD, whereas in vivo evaluation of the antinociceptive effect was performed via formalin test. The results showed that the most abundant groups of metabolites are oleanolic acid (89.60-59.20 µg/mg), quercetin (34.81-16.28 µg/mg), catechin (11.30-9.30 µg/mg), and 7-keto-neoclerodan-3,13-dien-18,19:15,16-diolide (7-keto) (8.01-4.76 µg/mg). Principal component and canonical correspondence analysis showed that the most contrasting localities in terms of compound content and climatic variables are Miahuatlán and Santiago Huauclilla. The differences in metabolite content between the two locations did not affect the antinociceptive effects evaluated at a dose of 300 mg/kg, p.o. In conclusion, the results indicate that S. semiatrata is effective in relieving pain, regardless of the site of collection, reinforcing its traditional use as analgesic.

14.
Molecules ; 28(12)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37375299

RESUMO

The secondary metabolites of clerodane diterpenoids have been found in several plant species from various families and in other organisms. In this review, we included articles on clerodanes and neo-clerodanes with cytotoxic or anti-inflammatory activity from 2015 to February 2023. A search was conducted in the following databases: PubMed, Google Scholar and Science Direct, using the keywords clerodanes or neo-clerodanes with cytotoxicity or anti-inflammatory activity. In this work, we present studies on these diterpenes with anti-inflammatory effects from 18 species belonging to 7 families and those with cytotoxic activity from 25 species belonging to 9 families. These plants are mostly from the Lamiaceae, Salicaceae, Menispermaceae and Euphorbiaceae families. In summary, clerodane diterpenes have activity against different cell cancer lines. Specific antiproliferative mechanisms related to the wide range of clerodanes known today have been described, since many of these compounds have been identified, some of which we barely know their properties. It is very possible that there are even more compounds than those described today, in such a way that makes it an open field to discover. Furthermore, some diterpenes presented in this review have already-known therapeutic targets, and therefore, their potential adverse effects can be predicted in some way.


Assuntos
Antineoplásicos , Diterpenos Clerodânicos , Diterpenos , Lamiaceae , Neoplasias , Humanos , Diterpenos Clerodânicos/farmacologia , Estrutura Molecular , Diterpenos/farmacologia
15.
Molecules ; 28(3)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36770864

RESUMO

Casearia coriacea Vent., an endemic plant from the Mascarene Islands, was investigated following its antiplasmodial potentialities highlighted during a previous screening. Three clerodane diterpene compounds were isolated and identified as being responsible for the antiplasmodial activity of the leaves of the plant: caseamembrin T (1), corybulosin I (2), and isocaseamembrin E (3), which exhibited half maximal inhibitory concentrations (IC50) of 0.25 to 0.51 µg/mL. These compounds were tested on two other parasites, Leishmania mexicana mexicana and Trypanosoma brucei brucei, to identify possible selectivity in one of them. Although these products possess both antileishmanial and antitrypanosomal properties, they displayed selectivity for the malaria parasite, with a selectivity index between 6 and 12 regarding antitrypanosomal activity and between 25 and 100 regarding antileishmanial activity. These compounds were tested on three cell lines, breast cancer cells MDA-MB-231, pulmonary adenocarcinoma cells A549, and pancreatic carcinoma cells PANC-1, to evaluate their selectivity towards Plasmodium. This has not enabled us to establish selectivity for Plasmodium, but has revealed the promising activity of compounds 1-3 (IC50 < 2 µg/mL), particularly against pancreatic carcinoma cells (IC50 < 1 µg/mL). The toxicity of the main compound, caseamembrin T (1), was then evaluated on zebrafish embryos to extend our cytotoxicity study to normal, non-cancerous cells. This highlighted the non-negligible toxicity of caseamembrin T (1).


Assuntos
Antimaláricos , Casearia , Diterpenos Clerodânicos , Animais , Diterpenos Clerodânicos/farmacologia , Antimaláricos/farmacologia , Peixe-Zebra , Folhas de Planta , Extratos Vegetais/farmacologia , Neoplasias Pancreáticas
16.
Mol Plant ; 16(3): 549-570, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36639870

RESUMO

The presence of anticancer clerodane diterpenoids is a chemotaxonomic marker for the traditional Chinese medicinal plant Scutellaria barbata, although the molecular mechanisms behind clerodane biosynthesis are unknown. Here, we report a high-quality assembly of the 414.98 Mb genome of S. barbata into 13 pseudochromosomes. Using phylogenomic and biochemical data, we mapped the plastidial metabolism of kaurene (gibberellins), abietane, and clerodane diterpenes in three species of the family Lamiaceae (Scutellaria barbata, Scutellaria baicalensis, and Salvia splendens), facilitating the identification of genes involved in the biosynthesis of the clerodanes, kolavenol, and isokolavenol. We show that clerodane biosynthesis evolved through recruitment and neofunctionalization of genes from gibberellin and abietane metabolism. Despite the assumed monophyletic origin of clerodane biosynthesis, which is widespread in species of the Lamiaceae, our data show distinct evolutionary lineages and suggest polyphyletic origins of clerodane biosynthesis in the family Lamiaceae. Our study not only provides significant insights into the evolution of clerodane biosynthetic pathways in the mint family, Lamiaceae, but also will facilitate the production of anticancer clerodanes through future metabolic engineering efforts.


Assuntos
Diterpenos Clerodânicos , Diterpenos , Plantas Medicinais , Scutellaria , Diterpenos Clerodânicos/química , Diterpenos Clerodânicos/metabolismo , Scutellaria/genética , Scutellaria/química , Scutellaria/metabolismo , Abietanos/metabolismo , Diterpenos/química , Diterpenos/metabolismo , Plantas Medicinais/genética , Plantas Medicinais/metabolismo
17.
Chem Biodivers ; 20(1): e202200985, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36433761

RESUMO

Twelve new clerodane diterpenoids named callicarpanes A-L (1-12), together with eight known compounds (13-20), were isolated from Callicarpa integerrima. Their structures were determined by comprehensive spectroscopic data. The calculated chemical shifts were used to identify relative configurations using DP4+ analysis. The absolute configurations (AC) were assigned based on quantum chemical calculations and X-ray single-crystal diffraction methods. Compounds 1, 3, 5, 9, 10, 12, 15, 16, and 19 showed significant inhibitory activity for NLRP3 inflammasome activation, with the IC50 against lactate dehydrogenase (LDH) release ranging from 0.08 to 4.78 µM. Further study revealed that compound 10 repressed IL-1ß secretion and caspase-1 maturation in J774A.1 cell as well as blocked macrophage pyroptosis.


Assuntos
Callicarpa , Diterpenos Clerodânicos , Diterpenos Clerodânicos/farmacologia , Diterpenos Clerodânicos/química , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Callicarpa/química , Macrófagos
18.
Anticancer Agents Med Chem ; 23(2): 237-244, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35726426

RESUMO

AIMS: The aim of this study is to find the anticancer lead compounds or drug candidates from Chinese Traditional Plant Medicine of Ajuga decumbens Thunb. BACKGROUND: Ajuga decumbens Thunb. has been used in clinical for a long time in China and was selected in "Chinses Pharmacopoeia" (part I in 1977) for its wide spectrum biological activities: such as anticancer, antioxidant, antifeedant, antibacterial, anti-inflammatory, antihyperlipidemic, anti-cholinesterase and cytotoxicity activities. However, there are relatively fewer studies of Ajuga decumbens Thunb. that have been carried out till now. For some years, our research group focused on the discovery of new anticancer agents, so we studied the chemical compositions of Ajuga decumbens Thunb., planted in Pingtan island of Fujian Province, to discover new anticancer lead compounds or candidates from this Chinese Traditional Plant Medicine. METHODS: The dichloromethane (DCM) extract was obtained in this work, and then this extract was used for silica gel column chromatography to obtain different polar fractions. Several similar fractions were combined according to TLC or HPLC analysis. The combined fractions were isolated by preparative TLC or preparative HPLC to obtain the pure compounds and HPLC was used to detect the purity. All isolated compounds were determined by NMR (1HNMR, 13CNMR, DEPT, HMBC, HSQC, 1H-1H COSY and NOESY), HRESIMS and single crystal X-ray diffraction methods. The in vitro anticancer activity was evaluated using CCK8 method. RESULTS: Seven compounds [three new compounds 1-3; and four known compounds (Ajugacumbins A, Ajugacumbin B, Ajugamarin A2 and Ajugamarin A1)] were isolated from Ajuga decumbens Thunb. in this work, and their structures were confirmed. The biological evaluation showed that 3 and Ajugamarin A1 exhibited potent in vitro anticancer activity both against A549 cell lines with IC50s=71.4 µM and 76.7 µM; and against Hela cell lines with IC50s=71.6 mM and 5.39×10-7 µM, respectively. CONCLUSION: Compounds (3 and Ajugamarin A1) can be regarded as the lead compounds for the development of anticancer agents.


Assuntos
Ajuga , Diterpenos Clerodânicos , Humanos , Diterpenos Clerodânicos/química , Ajuga/química , Células HeLa , Estrutura Molecular , Extratos Vegetais/química
19.
Plants (Basel) ; 11(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36432893

RESUMO

Phytochemical screening of an ethanol-water extract (EWE) from the bark of Croton guatemalensis led to the isolation and identification of eight compounds, among them: five ent-clerodane diterpenoids [junceic acid (1), 6(s)-acetoxy-15,16-diepoxy-ent-cleroda-3,13(16),14-trien-20-oic acid (crotoguatenoic acid A) (2), 6(s)-hydroxyoxy-15,16-diepoxy-ent-cleroda-3,13(16),14-trien-20-oic acid (crotoguatenoic acid B) (3), formosin F (4), bartsiifolic acid (5)], and three flavonoids [rutin (6), epicatechin (7), and quercetin (8)]. Of these, 2 and 3 are reported here for the first time. Structures were established through conventional spectroscopy methods and their absolute configurations were determined by optical rotation and comparison of experimental electronic circular dichroism (ECD) and theoretical calculated ECD spectra. A suitable high performance liquid chromatography (HPLC) method for quantifying rutin (6) was developed and validated according to standard protocols. Affinity-directed fractionation was used to identify possible in vitro active compounds on α-glucosidases from Saccharomyces cerevisiae. HPLC-ESI-MS was used to identify the inhibitors as free ligands after being released from the enzymatic complex by denaturing acidic conditions. The affinity studies led to the identification of ent-clerodane diterpenoids as active compounds. In silico analysis allowed us to determine the best conformational rearrangement for the α-glucosidase inhibitors.

20.
Fitoterapia ; 163: 105328, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36208854

RESUMO

A phytochemical investigation to obtain bioactive substances as lead compounds or agents for anti-inflammatory led to the obtainment of eleven previously undescribed clerodane diterpenoids, named caseatardies A-K (1-11), and four known clerodane diterpenoids (12-15) from the twigs and leaves of Casearia tardieuae. The structural elucidation of these clerodane diterpenoids was based on 1D and 2D-NMR spectroscopy (COSY, HSQC, HMBC and ROESY) as well as high resolution mass spectrometry (HR-ESI-MS). The relative configurations were defined by ROESY correlations. The anti-inflammatory activity of all the isolated compounds was screened and compound 15 decreased LDH level in a dose-dependent manner, showing IC50 value of 2.89 µM.


Assuntos
Antineoplásicos Fitogênicos , Casearia , Diterpenos Clerodânicos , Casearia/química , Diterpenos Clerodânicos/farmacologia , Diterpenos Clerodânicos/química , Antineoplásicos Fitogênicos/química , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular , Anti-Inflamatórios/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...