Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 901: 165794, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37527719

RESUMO

Elevated environmental levels of elements originating from anthropogenic activities threaten natural communities and public health, as these elements can persist and bioaccumulate in the environment. However, their environmental risks and bioaccumulation patterns are often habitat-, species- and element-specific. We studied the bioaccumulation patterns of 11 elements in seven freshwater taxa in post-mining habitats in the Czech Republic, ranging from less polluted mining ponds to highly polluted fly ash lagoons. We found nonlinear, power-law relationships between the environmental and tissue concentrations of the elements, which may explain differences in bioaccumulation factors (BAF) reported in the literature. Tissue concentrations were driven by the environmental concentrations in non-essential elements (Al, As, Co, Cr, Ni, Pb and V), but this dependence was limited in essential elements (Cu, Mn, Se and Zn). Tissue concentrations of most elements were also more closely related to substrate than to water concentrations. Bioaccumulation was habitat specific in eight elements: stronger in mining ponds for Al and Pb, and stronger in fly ash lagoons for As, Cu, Mn, Pb, Se, V and Zn, although the differences were often minor. Bioaccumulation of some elements further increased in mineral-rich localities. Proximity to substrate, rather than trophic level, drove increased bioaccumulation levels across taxa. This highlights the importance of substrate as a pollutant reservoir in standing freshwaters and suggests that benthic taxa, such as molluscs (e.g., Physella) and other macroinvertebrates (e.g., Nepa), constitute good bioindicators. Despite the higher environmental risks in fly ash lagoons than in mining ponds, the observed ability of freshwater biota to sustain pollution supports the conservation potential of post-industrial sites. The power law approach used here to quantify and disentangle the effects of various bioaccumulation drivers may be helpful in additional contexts, increasing our ability to predict the effects of other contaminants and environmental hazards on biota.

2.
Environ Sci Technol ; 57(5): 1855-1869, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36693217

RESUMO

On-site solid-waste impoundments, landfills, and receiving water bodies have served as long-term disposal sites for coal combustion residuals (CCRs) across the United States for decades and collectively contain billions of tons of CCR material. CCR components include fine particulate material, minerals, and trace elements such as mercury, arsenic, selenium, lead, etc., which can have deleterious effects on ecosystem functioning and public health. Effects on communities can occur through consumption of drinking water, fish, and other aquatic organisms. The structural failure of impoundments, water infiltration, leakage from impoundments due to poor construction and monitoring, and CCR effluent discharges to water bodies have in the past resulted in harmful environmental impacts. Moreover, the risks posed by CCRs are present to this day, as coal continues to account for 11% of the energy production in the United States. In this Critical Review, the legacy of CCR disposal and the concomitant risks posed to public health and ecosystems are assessed. The resiliency of CCR disposal sites in the context of increased frequency and intensity of storm events and other hazards, such as floods and earthquakes, is also evaluated. We discuss the current state of knowledge on the environmental fate of CCR-derived elements, as well as advances in and limitations of analytical tools, which can improve the current understanding of CCR environmental impacts in order to mitigate the associated risks. An assessment of the 2015 Coal Ash Final Rule is also presented, along with needs to improve monitoring of CCR disposal sites and regulatory enforcement.


Assuntos
Selênio , Oligoelementos , Animais , Estados Unidos , Ecossistema , Carvão Mineral/análise , Monitoramento Ambiental , Oligoelementos/análise , Cinza de Carvão
3.
Environ Sci Technol ; 56(3): 1864-1874, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35049288

RESUMO

The high volume of coal used for combustion usually leads to a large amount of coal combustion residues (CCRs), which contain the naturally occurring radioactive materials (NORMs) decayed from U and Th in coals. The high radioactivity of NORMs can cause potential harm to humans if the CCRs are used as building materials. The activities of CCRs not only depend on the concentrations of radionuclides but also largely depend on the variations of ash yields of coal. On the other hand, ash yields significantly vary in coal from less than 1-50%. This indicates that similar concentrations of radionuclides in coal with different ash yields generally do not result in similar activities in CCRs. Therefore, it is significant to build a threshold of U in coals with different ash yield levels. In this research, based on the data of 945 coal samples from China and the selected optimal model using the classification and regression tree algorithm, the threshold of U for the radiation hazard is determined to be 7.98 mg/kg for coals with ash yields higher than 20%, while the threshold of U for the radiation hazard is 5.28 mg/kg for coals with ash yields lower than 20%.


Assuntos
Algoritmos , Carvão Mineral , China , Cinza de Carvão , Materiais de Construção , Humanos , Centrais Elétricas
4.
J Environ Manage ; 251: 109572, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31561139

RESUMO

Flue gas desulfurization gypsum (FGDG) is an industrial by-product generated during the flue gas desulfurization process in coal-fired power plants. Due to its abundance, chemical and physical properties, FGDG has been used in several beneficial applications. However, during the past decade, the rate of beneficially used FGDG has gradually decreased, while its production has drastically increased. The presence of hazardous elements such as arsenic, mercury, cadmium, lead, and selenium in FGDG has reduced its beneficial value. Nevertheless, due to the recent developments in flue gas desulfurization processes, the "modern" FGDG contains lesser amounts of these elements, thus increasing its beneficial value and appeal to be included in other products. Hence, there are novel and traditional FGDG applications in different reuse scenarios investigated recently that have been deemed to pose minimal environmental concern - these need to be better understood. This review summarizes beneficial FGDG applications that have been deemed to pose minimal environmental concern, emphasizing their principles, research gaps, and potential developments, with the aim of increasing the reuse rate of FGDG.


Assuntos
Sulfato de Cálcio , Mercúrio , Carvão Mineral , Conservação dos Recursos Naturais , Gases , Centrais Elétricas
5.
Waste Manag Res ; 36(4): 351-360, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29595099

RESUMO

Though the majority of research on fly ash has proved its worth as a construction material, the utility of bottom ash is yet questionable due to its generation during the pulverized combustion process. The bottom ash produced during the fluidized bed combustion (FBC) process is attracting more attention due to the novelty of coal combustion technology. But, to establish its suitability as construction material, it is necessary to characterize it thoroughly with respect to the geotechnical as well as mineralogical points of view. For fulfilling these objectives, the present study mainly aims at characterizing the FBC bottom ash and its comparison with pulverized coal combustion (PCC) bottom ash, collected from the same origin of coal. Suitability of FBC bottom ash as a dike filter material in contrast to PCC bottom ash in replacing traditional filter material such as sand was also studied. The suitability criteria for utilization of both bottom ash and river sand as filter material on pond ash as a base material were evaluated, and both river sand and FBC bottom ash were found to be satisfactory. The study shows that FBC bottom ash is a better geo-material than PCC bottom ash, and it could be highly recommended as an alternative suitable filter material for constructing ash dikes in place of conventional sand.


Assuntos
Cinza de Carvão , Materiais de Construção , Carvão Mineral , Incineração , Dióxido de Silício
6.
Bull Environ Contam Toxicol ; 99(2): 182-186, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28409193

RESUMO

Larval gray tree frogs (Hyla chrysoscelis) were exposed to inorganic Se (SeO2) added to the diet (10.2 and 86.3 ug/g dw) and monitored for accumulation and effect. Background concentrations of Hg were also measured in food and carcasses to assess possible effects of Se on Hg accumulation. Selenium was accumulated in a dose dependent manner, and life stages did not differ. No effects of Se exposure were observed on survival, growth, or time to metamorphosis. Mercury concentrations in carcasses, resulting from background concentrations in food, were significantly affected by the presence of Se. In the high Se treatment, Hg concentrations were significantly decreased relative to those in the low Se treatment and the control. Our study suggests that exposure to inorganic Se as SeO2 at the concentrations tested do not elicit adverse biological effects, but exposure to relatively high concentrations of Se may reduce accumulation of Hg from food.


Assuntos
Anuros/metabolismo , Mercúrio/metabolismo , Selênio/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Dieta/estatística & dados numéricos , Monitoramento Ambiental , Larva/efeitos dos fármacos , Metamorfose Biológica/efeitos dos fármacos , Selênio/análise , Compostos de Selênio/metabolismo
7.
Environ Pollut ; 224: 810-819, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28284546

RESUMO

Anthropogenic activities such as industrial processes often produce copious amounts of contaminants that have the potential to negatively impact growth, survival, and reproduction of exposed wildlife. Coal combustion residues (CCRs) represent a major source of pollutants globally, resulting in the release of potentially harmful trace elements such as arsenic (As), cadmium (Cd), and selenium (Se) into the environment. In the United States, CCRs are typically stored in aquatic settling basins that may become attractive nuisances to wildlife. Trace element contaminants, such as CCRs, may pose a threat to biota yet little is known about their sublethal effects on reptiles. To assess the effects of CCR exposure in turtles, we sampled 81 yellow-bellied sliders (Trachemys scripta scripta) in 2014-2015 from CCR-contaminated and uncontaminated reference wetlands located on the Savannah River Site (Aiken, SC, USA). Specific aims were to (1) compare the accumulation of trace elements in T. s. scripta claw and blood samples between reference and CCR-contaminated site types, (2) evaluate potential immunological effects of CCRs via bacterial killing assays and phytohaemagglutinin (PHA) assays, and (3) quantify differences in hemogregarine parasite loads between site types. Claw As, Cd, copper (Cu), and Se (all p ≤ 0.001) and blood As, Cu, Se, and strontium (Sr; p ≤ 0.015) were significantly elevated in turtles from CCR-contaminated wetlands compared to turtles from reference wetlands. Turtles from reference wetlands exhibited lower bacterial killing (p = 0.015) abilities than individuals from contaminated sites but neither PHA responses (p = 0.566) nor parasite loads (p = 0.980) differed by site type. Despite relatively high CCR body burdens, sliders did not exhibit apparent impairment of immunological response or parasite load. In addition, the high correlation between claw and blood concentrations within individuals suggests that nonlethal tissue sampling may be useful for monitoring CCR exposure in turtles.


Assuntos
Cinza de Carvão/análise , Carvão Mineral/análise , Poluentes Ambientais/análise , Tartarugas , Animais , Arsênio/análise , Cádmio/análise , Cinza de Carvão/imunologia , Cobre/análise , Poluentes Ambientais/imunologia , Rios , Selênio/análise , Tartarugas/imunologia , Áreas Alagadas
8.
Water Air Soil Pollut ; 0: 228-334, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-30505039

RESUMO

The storage of coal combustion residue (CCR) in surface water impoundments may have an impact on nearby water quality and aquatic ecosystems. CCR contains leachable trace elements that can enter nearby waters through spills and monitored discharge. It is important, therefore, to understand their environmental fate in affected systems. This experiment examined trace element leachability into freshwater from fly ash (FA), the most common form of CCR. The effects on water quality of FA derived from both high and low sulfur coal sources as well as the influences of two different emergent macrophytes, Juncus effusus and Eleocharis quadrangulata, were evaluated in wetland microcosms. FA leachate dosings increased water electric conductivity (EC), altered pH, and, most notably, elevated the concentrations of boron (B), molybdenum (Mo), and manganese (Mn). The presence of either macrophyte species helped reduce elevated EC, and B, Mo, and Mn concentrations over time, relative to microcosms containing no plants. B and Mo appeared to bioaccumulate in the plant tissue from the water when elevated by FA dosing, while Mn was not higher in plants dosed with FA leachates. The results of this study indicate that emergent macrophytes could help ameliorate downstream water contamination from CCR storage facilities and could potentially be utilized in wetland filtration systems to treat CCR wastewater before discharge. Additionally, measuring elevated B and Mo in aquatic plants may have potential as a monitoring tool for downstream CCR contamination.

9.
Environ Technol ; 38(13-14): 1673-1678, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27976992

RESUMO

In this study, solid wastes taken from Seyitomer coal-fired power plant bottom ashes were subjected to experimental research to obtain a carbon-rich fraction. The possible recycling opportunities of remaining inorganic fraction in the cement and concrete industry was also investigated. Flotation technique was used to separate unburned carbon from inorganic bottom ashes. Collector type, collector, dispersant and frother amounts, and pulp density are the most important variables in the flotation technique. A number of flotation collectors were tested in the experiments including new era flotation reactives. Optimum collector, dispersant and frother dosages as well as optimum pulp density were also determined. After experimental work, an inorganic fraction was obtained, which included 5.41% unburned carbon with 81.56% weight yield. These properties meets the industrial specifications for the cement and concrete industry. The carbon content of the concentrate fraction, obtained in the same experiment, was enhanced to 49.82%. This fraction accounts for 18.44% of the total amount and can be mixed to the power plant fuel. Therefore total amount of the solid waste can possibly be recycled according to experimental results.


Assuntos
Cinza de Carvão , Materiais de Construção , Fontes Geradoras de Energia , Carbono/análise , Reciclagem/métodos
10.
Sci Total Environ ; 571: 834-54, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27453136

RESUMO

Two full-scale coal mine reclamation projects using coal combustion residues (CCRs) were recently carried out at highwall pit complexes near the Conesville and Cardinal coal-fired power plants owned by American Electric Power. The environment impacts of the reclamation projects were examined by regularly monitoring the leaching characteristics of the backfilling CCRs and the water quality of the uppermost aquifers underlying the sites. With over five years of field monitoring, it shows that the water quality at both demonstration sites had changed since the reclamation began. By analyzing the change of the hydrogeochemical properties, it was concluded that the water quality impact observed at the Conesville Five Points site was unlikely due to the seepage of FGD material leachates. Reclamation activities, such as logging, grading, and dewatering changed the hydrogeological conditions and resulted in the observed water quality changes. The same hydrogeological effect on water quality was also found at the Cardinal Star Ridge site during the early stage of the reclamation (approximately the first 22months). Subsequent measurements showed the water quality to be strongly influenced by the water in the reclaimed highwall pit. Despite the changes to the water quality, the impacts are insignificant and temporary. None of the constitutes showed concentration levels higher than the regulatory leaching limits set by the Ohio Department of Natural Resources' Division of Mineral Resources Management for utilizing CCRs in mined land reclamation. Compared to the local aquifers, the concentrations of eleven selected constituents remained at comparable levels throughout the study period. There are four constituents (i.e., As, Be, Sb, and Tl) that exceeded their respective MCLs after the reclamation began. These detections were found shortly (i.e., within 2years) after the reclamation began and decreased to the levels either lower than the respective detection limits or similar to the background levels.


Assuntos
Minas de Carvão , Água Subterrânea/análise , Poluição Química da Água/prevenção & controle , Qualidade da Água , Recuperação e Remediação Ambiental , Ohio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA