Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2401034, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949312

RESUMO

Creating durable and efficient multifunctional electrocatalysts capable of high current densities at low applied potentials is crucial for widespread industrial use in hydrogen production. Herein, a Co-Ni-Fe-Cu-Mo (oxy)hydroxide electrocatalyst with abundant grain boundaries on nickel foam using a scalable coating method followed by chemical precipitation is synthesized. This technique efficiently organizes hierarchical Co-Ni-Fe-Cu-Mo (oxy)hydroxide nanoparticles within ultrafine crystalline regions (<4 nm), enriched with numerous grain boundaries, enhancing catalytic site density and facilitating charge and mass transfer. The resulting catalyst, structured into nanosheets enriched with grain boundaries, exhibits superior electrocatalytic activity. It achieves a reduced overpotential of 199 mV at 10 mA cm2 current density with a Tafel slope of 48.8 mV dec1 in a 1 m KOH solution, maintaining stability over 72 h. Advanced analytical techniques reveal that incorporating high-valency copper and molybdenum elements significantly enhances lattice oxygen activation, attributed to weakened metal-oxygen bonds facilitating the lattice oxygen mechanism (LOM). Synchrotron radiation studies confirm a synergistic interaction among constituent elements. Furthermore, the developed high-entropy electrode demonstrates exceptional long-term stability under high current density in alkaline environments, showcasing the effectiveness of high-entropy strategies in advancing electrocatalytic materials for energy-related applications.

2.
Nanomicro Lett ; 16(1): 167, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564086

RESUMO

Microwave absorbing materials (MAMs) characterized by high absorption efficiency and good environmental tolerance are highly desirable in practical applications. Both silicon carbide and carbon are considered as stable MAMs under some rigorous conditions, while their composites still fail to produce satisfactory microwave absorption performance regardless of the improvements as compared with the individuals. Herein, we have successfully implemented compositional and structural engineering to fabricate hollow SiC/C microspheres with controllable composition. The simultaneous modulation on dielectric properties and impedance matching can be easily achieved as the change in the composition of these composites. The formation of hollow structure not only favors lightweight feature, but also generates considerable contribution to microwave attenuation capacity. With the synergistic effect of composition and structure, the optimized SiC/C composite exhibits excellent performance, whose the strongest reflection loss intensity and broadest effective absorption reach - 60.8 dB and 5.1 GHz, respectively, and its microwave absorption properties are actually superior to those of most SiC/C composites in previous studies. In addition, the stability tests of microwave absorption capacity after exposure to harsh conditions and Radar Cross Section simulation data demonstrate that hollow SiC/C microspheres from compositional and structural optimization have a bright prospect in practical applications.

3.
Heliyon ; 10(8): e29676, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38665575

RESUMO

Significant progress has been made over the years to improve the stability and efficiency of rapidly evolving tin-based perovskite solar cells (PSCs). One powerful approach to enhance the performance of these PSCs is through compositional engineering techniques, specifically by incorporating a mixed cation system at the A-site and B-site structure of the tin perovskite. These approaches will pave the way for unlocking the full potential of tin-based PSCs. Therefore, in this study, a theoretical investigation of mixed A-cations (FA, MA, EA, Cs) with a tin-germanium-based PSC was presented. The crystal structure distortion and optoelectronic properties were estimated. SCAPS 1-D simulations were employed to predict the photovoltaic performance of the optimized tin-germanium material using different electron transport layers (ETLs), hole transport layers (HTLs), active layer thicknesses, and cell temperatures. Our findings reveal that EA0.5Cs0.5Sn0.5Ge0.5I3 has a nearly cubic structure (t = 0.99) and a theoretical bandgap within the maximum Shockley-Queisser limit (1.34 eV). The overall cell performance is also improved by optimizing the perovskite layer thickness to 1200 nm, and it exhibits remarkable stability as the temperature increases. The short-circuit current density (Jsc) remains consistent around 33.7 mA/cm2, and the open-circuit voltage (Voc) is well-maintained above 1 V by utilizing FTO as the conductive layer, ZnO as the ETL, Cu2O as the HTL, and Au as the metal back contact. This configuration also achieves a high fill factor ranging from 87 % to 88 %, with the highest power conversion efficiency (PCE) of 31.49 % at 293 K. This research contributes to the advancement of tin-germanium perovskite materials for a wide range of optoelectronic applications.

4.
Micromachines (Basel) ; 14(10)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37893276

RESUMO

In contrast to lift-off and shadow mask processes, the back-channel wet etching (BCWE) process is suitable for industrial-scale metallization processes for the large-area and mass production of oxide thin-film transistors (TFTs). However, chemical attacks caused by the corrosive metal etchants used in the BCWE process cause unintended performance degradation of oxide semiconductors, making it difficult to implement oxide TFT circuits through industrial-scale metallization processes. Herein, we propose composition engineering of oxide semiconductors to enhance the chemical durability and electrical stability of oxide semiconductors. The chemical durability of InZnO against Al etchants can be improved by increasing the content of indium oxide, which has a higher chemical resistance than zinc oxide. As a result, A damage-free BCWE-based metallization process was successfully demonstrated for oxide TFTs using In-rich InZnO semiconductors. Furthermore, In-rich InZnO TFTs with wet-etched Al electrodes exhibited electrical performance comparable to that of lift-off Al electrodes, without chemical attack issues.

5.
Adv Mater ; 35(26): e2300091, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36967600

RESUMO

Proton-exchange-membrane water electrolysis (PEMWE) requires an efficient and durable bifunctional electrocatalyst for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Herein, Ir-based electrocatalyst is designed using the high entropy alloy (HEA) platform of ZnNiCoIrX with two elements (X: Fe and Mn). A facile dealloying in the vacuum system enables the construction of a nanoporous structure with high crystallinity using Zn as a sacrificial element. Especially, Mn incorporation into HEAs tailors the electronic structure of the Ir site, resulting in the d-band center being far away from the Fermi level. Downshifting of the d-band center weakens the adsorption energy with reaction intermediates, which is beneficial for catalytic reactions. Despite low Ir content, ZnNiCoIrMn delivers only 50 mV overpotential for HER at -50 mA cm-2 and 237 mV overpotential for the OER at 10 mA cm-2 . Furthermore, ZnNiCoIrMn shows almost constant voltage for the HER and OER for 100 h and a high stability number of 3.4 × 105 nhydrogen nIr -1 and 2.4 × 105 noxygen nIr -1 , demonstrating the exceptional durability of the HEA platform. The compositional engineering of ZnNiCoIrMn limits the diffusion of elements by high entropy effects and simultaneously tailors the electronic structure of active Ir sites, resulting in the modified cohesive and adsorption energies, all of which can suppress the dissolution of elements.

6.
Adv Mater ; 34(51): e2206932, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36210726

RESUMO

A self-powered, color-filter-free blue photodetector (PD) based on halide perovskites is reported. A high external quantum efficiency (EQE) of 84.9%, which is the highest reported EQE in blue PDs, is achieved by engineering the A-site monovalent cations of wide-bandgap perovskites. The optimized composition of formamidinium (FA)/methylammonium (MA) increases the heat of formation, yielding a uniform and smooth film. The incorporation of Cs+ ions into the FA/MA composition suppresses the trap density and increases charge-carrier mobility, yielding the highest average EQE of 77.4%, responsivity of 0.280 A W-1 , and detectivity of 5.08 × 1012 Jones under blue light. Furthermore, Cs+ improves durability under repetitive operations and ambient atmosphere. The proposed device exhibits peak responsivity of 0.307 A W-1 , which is higher than that of the commercial InGaN-based blue PD (0.289 A W-1 ). This study will promote the development of next-generation image sensors with vertically stacked perovskite PDs.

7.
ACS Appl Mater Interfaces ; 14(17): 19469-19479, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35465651

RESUMO

Perovskite solar cells (PSCs) have emerged as a cost-effective solar technology in the past years. PSCs by three-dimensional hybrid inorganic-organic perovskites exhibited decent power conversion efficiencies (PCEs); however, their stabilities were poor. On the other hand, PSCs by all-inorganic perovskites indeed exhibited good stability, but their PCEs were low. Here, the development of novel all-inorganic perovskites CsPbI2Br:xNd3+, where Pb2+ at the B-site is partially heterovalently substituted by Nd3+, is reported. The CsPbI2Br:xNd3+ thin films possess enlarged crystal sizes, enhanced charge carrier mobilities, and superior crystallinity. Thus, the PSCs by the CsPbI2Br:xNd3+ thin films exhibit more than 20% enhanced PCEs and dramatically boosted stability compared to those based on pristine CsPbI2Br thin films. To further boost the device performance of PSCs, solution-processed 4-lithium styrenesulfonic acid/styrene copolymer (LiSPS) is utilized to passivate the surface defect and suppress surface charge carrier recombination. The PSCs based on the CsPbI2Br:xNd3+/LiSPS bilayer thin film possess reduced charge extraction lifetime and suppressed charge carrier recombination, resulting in 14% enhanced PCEs and significantly boosted stability compared to those without incorporation of the LiSPS interface passivation layer. All these results indicate that we developed a facile way to approach high-performance PSCs by all-inorganic perovskites.

8.
Adv Mater ; 34(13): e2108884, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34997633

RESUMO

The realization of efficient on-chip microlasers with scalable fabrication, ultralow threshold, and stable single-frequency operation is always desired for a wide range of miniaturized photonic systems. Herein, an effective way to fabricate nanostructures- whispering-gallery-mode (WGM) lasers by drop-casting CdSe/CdS@Cd1- x Znx S core/buffer-shell@graded-shell nanoplatelets (NPLs) dispersion onto silica microspheres is presented. Benefiting from the excellent gain properties from the interface engineered core/hybrid shell NPLs and high-quality factor WGM resonator from excellent optical field confinement, the proposed room-temperature NPLs-WGM microlasers show a record-low lasing threshold of 3.26 µJ cm-2 under nanosecond laser pumping among all colloidal NPLs-based lasing demonstrations. The presence of sharp discrete transverse electric- and magnetic-mode spikes, the inversely proportional dependence of the free spectra range on microsphere sizes and the polarization anisotropy of laser output represent the first direct experimental evidence for NPLs-WGM lasing nature, which is verified theoretically by the computed electric-field distribution inside the microcavity. Remarkably, a stable single-mode lasing output with an ultralow lasing threshold of 3.84 µJ cm-2 is achieved by the Vernier effect through evanescent field coupling. The results highlight the significance of interface engineering on the optimization of gain properties of heterostructured nanomaterials and shed light on developing future miniaturized tunable coherent light sources.

9.
ACS Appl Mater Interfaces ; 14(1): 1659-1669, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34962751

RESUMO

In this paper, the phase formation mechanism of formamidinium (FA)-based Dion-Jacobson (DJ) perovskites is uncovered for the first time, which includes the formation of the n1 domain (n = 1 perovskite phase) and a trace amount of the large n domain in the spin-coating process and the growth of the n2 domain and the large n domain during the thermal annealing stage. The phase formation mechanism clearly reveals the different phase distributions between FA-based Ruddlesden-Popper (RP) and FA-based DJ perovskite films at different stages of film preparation due to the larger formation energy of the DJ perovskites. According to this phase formation mechanism, we put forward an effective strategy of the small A-site cation compositional engineering. Then, excess perovskitizer cations (FA+) are introduced to increase the crystallinity, modulate the phase distribution and passivate defects without disturbing the structure of DJ perovskites simultaneously. The final green-light DJ PeLED devices show a maximum luminance of 41 520 cd/m2 and a maximum current efficiency of 31.1 cd/A (EQE: 8.5%), which are the record values so far. The final DJ PeLEDs show an improved operational lifetime of ca. 15 min at an initial luminance of ca. 800 cd/m2. Our results suggest that DJ perovskites can be promising for light-emitting applications.

10.
ACS Appl Mater Interfaces ; 11(31): 28005-28012, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31295996

RESUMO

The mixed-cation lead mixed-halide perovskites can combine the advantages of the constituents while avoiding their drawbacks, and they have been widely explored in solar cells. However, there are only few research studies on the mixed-cation lead mixed-halide perovskites for photodetectors. In this work, we fabricate photodetectors based on FA(1-x)CsxPb(BryI(1-y))3 perovskite and reveal the effect of the chemical composition on the crystal phase stability and device performance of mixed-cation mixed-halide perovskite photodetectors. The FA0.7Cs0.3Pb(I0.8Br0.2)3 photodetectors exhibit high specific detectivity, high responsivity, and excellent stability in ambient conditions. Especially, the flexible perovskite photodetectors fabricated on poly(ethylene terephthalate) substrates exhibit extremely high specific detectivity of 2.8 × 1013 Jones, which is the highest value to date for flexible perovskite photodetectors, as well as excellent stability and outstanding flexibility. These results indicate that mixed-cation mixed-halide perovskites are promising to be applied in high-performance photodetectors and other flexible optoelectronic devices.

11.
ACS Appl Mater Interfaces ; 11(6): 6022-6030, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30652851

RESUMO

Solar cells based on organic-inorganic hybrid lead-halide perovskites are very promising because of their high performance and solution process feasibility. Elemental engineering on perovskite composition is a facile path to obtain high-quality crystals for efficient and stable solar cells. It was found that partially substituting I- with Cl- in the perovskite precursor promoted crystal growth, with the grain size larger than the layer thickness, and facilitated the generation of a self-passivation layer of PbI2. Whereas the residual Cl- ions were suspected to diffuse to the hole-transport layer consisting of ubiquitously spiro-OMeTAD, the formation of highly bounded ionic pairing of Cl- with the oxidized state of spiro-OMeTAD led to insufficient charge extraction and severely reversible performance degradation. This issue was effectively alleviated upon Br- doping owing to the generation of Pb-Br bonds in the lattice that strengthened the phase stability by improving the binding energy between each unit. The binary halide (Br-/Cl-)-doped perovskites resulted in a champion power conversion efficiency of 20.2% with improved long-term storage stability.

12.
Adv Mater ; 29(47)2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29134752

RESUMO

Extremely high power conversion efficiencies (PCEs) of ≈20-22% are realized through intensive research and development of 1.5-1.6 eV bandgap perovskite absorbers. However, development of ideal bandgap (1.3-1.4 eV) absorbers is pivotal to further improve PCE of single junction perovskite solar cells (PVSCs) because of a better balance between absorption loss of sub-bandgap photons and thermalization loss of above-bandgap photons as demonstrated by the Shockley-Queisser detailed balanced calculation. Ideal bandgap PVSCs are currently hindered by the poor optoelectronic quality of perovskite absorbers and their PCEs have stagnated at <15%. In this work, through systematic photoluminescence and photovoltaic analysis, a new ideal bandgap (1.35 eV) absorber composition (MAPb0.5 Sn0.5 (I0.8 Br0.2 )3 ) is rationally designed and developed, which possesses lower nonradiative recombination states, band edge disorder, and Urbach energy coupled with a higher absorption coefficient, which yields a reduced Voc,loss (0.45 V) and improved PCE (as high as 17.63%) for the derived PVSCs. This work provides a promising platform for unleashing the complete potential of ideal bandgap PVSCs and prospects for further improvement.

13.
Talanta ; 174: 279-284, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28738579

RESUMO

This research work demonstrates compositional engineering of an organic-inorganic hybrid nano-composites for modifying absolute threshold of humidity sensors. Vanadyl-2,9,16,23-tetraphenoxy-29H,31H-phthalocyanine (VOPcPhO), an organic semiconductor, doped with Titanium-dioxide nanoparticles (TiO2 NPs) has been employed to fabricate humidity sensors. The morphology of the VOPcPhO:TiO2 nano-composite films has been analyzed by atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM). The sensors have been examined over a wide range of relative humidity i.e. 20-99% RH. The sensor with TiO2 (90nm) shows reduced sensitivity-threshold and improved linearity. The VOPcPhO:TiO2 (90nm) nano-composite film is comprised of uniformly distributed voids which makes the surface more favorable for adsorption of moisture content from environment. The VOPcPhO:TiO2 nano-composite based sensor demonstrates remarkable improvement in the sensing parameter when equated with VOPcPhO sensors.

14.
Nano Lett ; 17(3): 2028-2033, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28170276

RESUMO

Thermally unstable nature of hybrid organic-inorganic perovskites has been a major obstacle to fabricating the long-term operational device. A cesium lead halide perovskite has been suggested as an alternative light absorber, due to its superb thermal stability. However, the phase instability and poor performance are hindering the further progress. Here, cesium lead halide perovskite solar cells with enhanced performance and stability are demonstrated via incorporating potassium cations. Based on Cs0.925K0.075PbI2Br, the planar-architecture device achieves a power conversion efficiency of 10.0%, which is a remarkable record in the field of inorganic perovskite solar cells. In addition, the device shows an extended operational lifetime against air. Our research will stimulate the development of cesium lead halide perovskite materials for next-generation photovoltaics.

15.
Adv Mater ; 28(40): 8990-8997, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27545111

RESUMO

A low-bandgap (1.33 eV) Sn-based MA0.5 FA0.5 Pb0.75 Sn0.25 I3 perovskite is developed via combined compositional, process, and interfacial engineering. It can deliver a high power conversion efficiency (PCE) of 14.19%. Finally, a four-terminal all-perovskite tandem solar cell is demonstrated by combining this low-bandgap cell with a semitransparent MAPbI3 cell to achieve a high efficiency of 19.08%.

16.
ACS Appl Mater Interfaces ; 7(16): 8562-71, 2015 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-25849591

RESUMO

Mixed conducting perovskite oxides are promising catalysts for high-temperature oxygen reduction reaction. Pristine SrCoO(3-δ) is a widely used parent oxide for the development of highly active mixed conductors. Doping a small amount of redox-inactive cation into the B site (Co site) of SrCoO(3-δ) has been applied as an effective way to improve physicochemical properties and electrochemical performance. Most findings however are obtained only from experimental observations, and no universal guidelines have been proposed. In this article, combined experimental and theoretical studies are conducted to obtain fundamental understanding of the effect of B-site doping concentration with redox-inactive cation (Sc) on the properties and performance of the perovskite oxides. The phase structure, electronic conductivity, defect chemistry, oxygen reduction kinetics, oxygen ion transport, and electrochemical reactivity are experimentally characterized. In-depth analysis of doping level effect is also undertaken by first-principles calculations. Among the compositions, SrCo0.95Sc0.05O(3-δ) shows the best oxygen kinetics and corresponds to the minimum fraction of Sc for stabilization of the oxygen-vacancy-disordered structure. The results strongly support that B-site doping of SrCoO(3-δ) with a small amount of redox-inactive cation is an effective strategy toward the development of highly active mixed conducting perovskites for efficient solid oxide fuel cells and oxygen transport membranes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA