Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 427
Filtrar
1.
Neural Netw ; 179: 106557, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39106566

RESUMO

Unsupervised semantic segmentation is important for understanding that each pixel belongs to known categories without annotation. Recent studies have demonstrated promising outcomes by employing a vision transformer backbone pre-trained on an image-level dataset in a self-supervised manner. However, those methods always depend on complex architectures or meticulously designed inputs. Naturally, we are attempting to explore the investment with a straightforward approach. To prevent over-complication, we introduce a simple Dense Embedding Contrast network (DECNet) for unsupervised semantic segmentation in this paper. Specifically, we propose a Nearest Neighbor Similarity strategy (NNS) to establish well-defined positive and negative pairs for dense contrastive learning. Meanwhile, we optimize a contrastive objective named Ortho-InfoNCE to alleviate the false negative problem inherent in contrastive learning for further enhancing dense representations. Finally, extensive experiments conducted on COCO-Stuff and Cityscapes datasets demonstrate that our approach outperforms state-of-the-art methods.

2.
Comput Biol Med ; 180: 108946, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39106676

RESUMO

Deep learning-based 3D/2D surgical navigation registration techniques achieved excellent results. However, these methods are limited by the occlusion of surgical equipment resulting in poor accuracy. We designed a contrastive learning method that treats occluded and unoccluded X-rays as positive samples, maximizing the similarity between the positive samples and reducing interference from occlusion. The designed registration model has Transformer's residual connection (ResTrans), which enhances the long-sequence mapping capability, combined with the contrast learning strategy, ResTrans can adaptively retrieve the valid features in the global range to ensure the performance in the case of occlusion. Further, a learning-based region of interest (RoI) fine-tuning method is designed to refine the misalignment. We conducted experiments on occluded X-rays that contained different surgical devices. The experiment results show that the mean target registration error (mTRE) of ResTrans is 3.25 mm and the running time is 1.59 s. Compared with the state-of-the-art (SOTA) 3D/2D registration methods, our method offers better performance on occluded 3D/2D registration tasks.

3.
Med Image Anal ; 97: 103281, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39106764

RESUMO

Imbalanced classification is a common and difficult task in many medical image analysis applications. However, most existing approaches focus on balancing feature distribution and classifier weights between classes, while ignoring the inner-class heterogeneity and the individuality of each sample. In this paper, we proposed a sample-specific fine-grained prototype learning (SFPL) method to learn the fine-grained representation of the majority class and learn a cosine classifier specifically for each sample such that the classification model is highly tuned to the individual's characteristic. SFPL first builds multiple prototypes to represent the majority class, and then updates the prototypes through a mixture weighting strategy. Moreover, we proposed a uniform loss based on set representations to make the fine-grained prototypes distribute uniformly. To establish associations between fine-grained prototypes and cosine classifier, we propose a selective attention aggregation module to select the effective fine-grained prototypes for final classification. Extensive experiments on three different tasks demonstrate that SFPL outperforms the state-of-the-art (SOTA) methods. Importantly, as the imbalance ratio increases from 10 to 100, the improvement of SFPL over SOTA methods increases from 2.2% to 2.4%; as the training data decreases from 800 to 100, the improvement of SFPL over SOTA methods increases from 2.2% to 3.8%.

4.
Phys Med Biol ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39116910

RESUMO

The implementation of deep learning in Magnetic Resonance Imaging (MRI) has significantly advanced the reduction of data acquisition times. However, these techniques face substantial limitations in scenarios where acquiring fully sampled datasets is unfeasible or costly. To tackle this problem, we propose a Fusion enhanced Contrastive Self-Supervised Learning (FCSSL) method for parallel MRI reconstruction, eliminating the need for fully sampled k-space training dataset and coil sensitivity maps. First, we introduce a strategy based on two pairs of re-undersampling masks within a contrastive learning framework, aimed at enhancing the representational capacity to achieve higher quality reconstruction. Subsequently, a novel adaptive fusion network, trained in a self-supervised learning manner, is designed to integrate the reconstruction results of the framework. Experimental results on knee datasets under different sampling masks demonstrate that the proposed FCSSL achieves superior reconstruction performance compared to other self-supervised learning methods. Moreover, the performance of FCSSL approaches that of the supervised methods, especially under the 2DRU and RADU masks. The proposed FCSSL, trained under the 3× 1DRU and 2DRU masks, can effectively generalize to unseen 1D and 2D undersampling masks, respectively. For target domain data that exhibit significant differences from source domain data, the proposed model, fine-tuned with just a few dozen instances of undersampled data in the target domain, achieves reconstruction performance comparable to that achieved by the model trained with the entire set of undersampled data. The novel FCSSL model offers a viable solution for reconstructing high-quality MR images without needing fully sampled datasets, thereby overcoming a major hurdle in scenarios where acquiring fully sampled MR data is difficult.

5.
Sci Rep ; 14(1): 18451, 2024 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-39117712

RESUMO

As a class of biologically active molecules with significant immunomodulatory and anti-inflammatory effects, anti-inflammatory peptides have important application value in the medical and biotechnology fields due to their unique biological functions. Research on the identification of anti-inflammatory peptides provides important theoretical foundations and practical value for a deeper understanding of the biological mechanisms of inflammation and immune regulation, as well as for the development of new drugs and biotechnological applications. Therefore, it is necessary to develop more advanced computational models for identifying anti-inflammatory peptides. In this study, we propose a deep learning model named DAC-AIPs based on variational autoencoder and contrastive learning for accurate identification of anti-inflammatory peptides. In the sequence encoding part, the incorporation of multi-hot encoding helps capture richer sequence information. The autoencoder, composed of convolutional layers and linear layers, can learn latent features and reconstruct features, with variational inference enhancing the representation capability of latent features. Additionally, the introduction of contrastive learning aims to improve the model's classification ability. Through cross-validation and independent dataset testing experiments, DAC-AIPs achieves superior performance compared to existing state-of-the-art models. In cross-validation, the classification accuracy of DAC-AIPs reached around 88%, which is 7% higher than previous models. Furthermore, various ablation experiments and interpretability experiments validate the effectiveness of DAC-AIPs. Finally, a user-friendly online predictor is designed to enhance the practicality of the model, and the server is freely accessible at http://dac-aips.online .


Assuntos
Anti-Inflamatórios , Aprendizado Profundo , Peptídeos , Peptídeos/química , Humanos
6.
Neural Netw ; 179: 106581, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39128276

RESUMO

Unsupervised domain adaptation (UDA) is a weakly supervised learning technique that classifies images in the target domain when the source domain has labeled samples, and the target domain has unlabeled samples. Due to the complexity of imaging conditions and the content of remote sensing images, the use of UDA to accurately extract artificial features such as buildings from high-spatial-resolution (HSR) imagery is still challenging. In this study, we propose a new UDA method for building extraction, the contrastive domain adaptation network (CDANet), by utilizing adversarial learning and contrastive learning techniques. CDANet consists of a single multitask generator and dual discriminators. The generator employs a region and edge dual-branch structure that strengthens its edge extraction ability and is beneficial for the extraction of small and densely distributed buildings. The dual discriminators receive the region and edge prediction outputs and achieve multilevel adversarial learning. During adversarial training processing, CDANet aligns the cross-domain of similar pixel features in the embedding space by constructing the regional pixelwise contrastive loss. A self-training (ST) strategy based on pseudolabel generation is further utilized to address the target intradomain discrepancy. Comprehensive experiments are conducted to validate CDANet on three publicly accessible datasets, namely the WHU, Austin, and Massachusetts. Ablation experiments show that the generator network structure, contrastive loss and ST strategy all improve the building extraction accuracy. Method comparisons validate that CDANet achieves superior performance to several state-of-the-art methods, including AdaptSegNet, AdvEnt, IntraDA, FDANet and ADRS, in terms of F1 score and mIoU.

7.
Interdiscip Sci ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39110340

RESUMO

Promoters are important cis-regulatory elements for the regulation of gene expression, and their accurate predictions are crucial for elucidating the biological functions and potential mechanisms of genes. Many previous prokaryotic promoter prediction methods are encouraging in terms of the prediction performance, but most of them focus on the recognition of promoters in only one or a few bacterial species. Moreover, due to ignoring the promoter sequence motifs, the interpretability of predictions with existing methods is limited. In this work, we present a generalized method Prompt (Promoters in multiple prokaryotes) to predict promoters in 16 prokaryotes and improve the interpretability of prediction results. Prompt integrates three methods including RSK (Regression based on Selected k-mer), CL (Contrastive Learning) and MLP (Multilayer Perception), and employs a voting strategy to divide the datasets into high-confidence and low-confidence categories. Results on the promoter prediction tasks in 16 prokaryotes show that the accuracy (Accuracy, Matthews correlation coefficient) of Prompt is greater than 80% in highly credible datasets of 16 prokaryotes, and is greater than 90% in 12 prokaryotes, and Prompt performs the best compared with other existing methods. Moreover, by identifying promoter sequence motifs, Prompt can improve the interpretability of the predictions. Prompt is freely available at https://github.com/duqimeng/PromptPrompt , and will contribute to the research of promoters in prokaryote.

8.
Neural Netw ; 179: 106578, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39111158

RESUMO

Self-supervised contrastive learning draws on power representational models to acquire generic semantic features from unlabeled data, and the key to training such models lies in how accurately to track motion features. Previous video contrastive learning methods have extensively used spatially or temporally augmentation as similar instances, resulting in models that are more likely to learn static backgrounds than motion features. To alleviate the background shortcuts, in this paper, we propose a cross-view motion consistent (CVMC) self-supervised video inter-intra contrastive model to focus on the learning of local details and long-term temporal relationships. Specifically, we first extract the dynamic features of consecutive video snippets and then align these features based on multi-view motion consistency. Meanwhile, we compare the optimized dynamic features for instance comparison of different videos and local spatial fine-grained with temporal order in the same video, respectively. Ultimately, the joint optimization of spatio-temporal alignment and motion discrimination effectively fills the challenges of the missing components of instance recognition, spatial compactness, and temporal perception in self-supervised learning. Experimental results show that our proposed self-supervised model can effectively learn visual representation information and achieve highly competitive performance compared to other state-of-the-art methods in both action recognition and video retrieval tasks.

9.
Neural Netw ; 179: 106583, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39111163

RESUMO

Entity alignment is a crucial task in knowledge graphs, aiming to match corresponding entities from different knowledge graphs. Due to the scarcity of pre-aligned entities in real-world scenarios, research focused on unsupervised entity alignment has become more popular. However, current unsupervised entity alignment methods suffer from a lack of informative entity guidance, hindering their ability to accurately predict challenging entities with similar names and structures. To solve these problems, we present an unsupervised multi-view contrastive learning framework with an attention-based reranking strategy for entity alignment, named AR-Align. In AR-Align, two kinds of data augmentation methods are employed to provide a complementary view for neighborhood and attribute, respectively. Next, a multi-view contrastive learning method is introduced to reduce the semantic gap between different views of the augmented entities. Moreover, an attention-based reranking strategy is proposed to rerank the hard entities through calculating their weighted sum of embedding similarities on different structures. Experimental results indicate that AR-Align outperforms most both supervised and unsupervised state-of-the-art methods on three benchmark datasets.

10.
Neural Netw ; 179: 106563, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39111164

RESUMO

In unsupervised scenarios, deep contrastive multi-view clustering (DCMVC) is becoming a hot research spot, which aims to mine the potential relationships between different views. Most existing DCMVC algorithms focus on exploring the consistency information for the deep semantic features, while ignoring the diverse information on shallow features. To fill this gap, we propose a novel multi-view clustering network termed CodingNet to explore the diverse and consistent information simultaneously in this paper. Specifically, instead of utilizing the conventional auto-encoder, we design an asymmetric structure network to extract shallow and deep features separately. Then, by approximating the similarity matrix on the shallow feature to the zero matrix, we ensure the diversity for the shallow features, thus offering a better description of multi-view data. Moreover, we propose a dual contrastive mechanism that maintains consistency for deep features at both view-feature and pseudo-label levels. Our framework's efficacy is validated through extensive experiments on six widely used benchmark datasets, outperforming most state-of-the-art multi-view clustering algorithms.

11.
Brief Bioinform ; 25(5)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39129361

RESUMO

Effective clustering of T-cell receptor (TCR) sequences could be used to predict their antigen-specificities. TCRs with highly dissimilar sequences can bind to the same antigen, thus making their clustering into a common antigen group a central challenge. Here, we develop TouCAN, a method that relies on contrastive learning and pretrained protein language models to perform TCR sequence clustering and antigen-specificity predictions. Following training, TouCAN demonstrates the ability to cluster highly dissimilar TCRs into common antigen groups. Additionally, TouCAN demonstrates TCR clustering performance and antigen-specificity predictions comparable to other leading methods in the field.


Assuntos
Receptores de Antígenos de Linfócitos T , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Análise por Conglomerados , Humanos , Antígenos/imunologia , Biologia Computacional/métodos , Algoritmos , Aprendizado de Máquina
12.
Ophthalmol Sci ; 4(6): 100543, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39139544

RESUMO

Purpose: We introduce a deep learning-based biomarker proposal system for the purpose of accelerating biomarker discovery in age-related macular degeneration (AMD). Design: Retrospective analysis of a large data set of retinal OCT images. Participants: A total of 3456 adults aged between 51 and 102 years whose OCT images were collected under the PINNACLE project. Methods: Our system proposes candidates for novel AMD imaging biomarkers in OCT. It works by first training a neural network using self-supervised contrastive learning to discover, without any clinical annotations, features relating to both known and unknown AMD biomarkers present in 46 496 retinal OCT images. To interpret the learned biomarkers, we partition the images into 30 subsets, termed clusters, that contain similar features. We conduct 2 parallel 1.5-hour semistructured interviews with 2 independent teams of retinal specialists to assign descriptions in clinical language to each cluster. Descriptions of clusters achieving consensus can potentially inform new biomarker candidates. Main Outcome Measures: We checked if each cluster showed clear features comprehensible to retinal specialists, if they related to AMD, and how many described established biomarkers used in grading systems as opposed to recently proposed or potentially new biomarkers. We also compared their prognostic value for late-stage wet and dry AMD against an established clinical grading system and a demographic baseline model. Results: Overall, both teams independently identified clearly distinct characteristics in 27 of 30 clusters, of which 23 were related to AMD. Seven were recognized as known biomarkers used in established grading systems, and 16 depicted biomarker combinations or subtypes that are either not yet used in grading systems, were only recently proposed, or were unknown. Clusters separated incomplete from complete retinal atrophy, intraretinal from subretinal fluid, and thick from thin choroids, and, in simulation, outperformed clinically used grading systems in prognostic value. Conclusions: Using self-supervised deep learning, we were able to automatically propose AMD biomarkers going beyond the set used in clinically established grading systems. Without any clinical annotations, contrastive learning discovered subtle differences between fine-grained biomarkers. Ultimately, we envision that equipping clinicians with discovery-oriented deep learning tools can accelerate the discovery of novel prognostic biomarkers. Financial Disclosures: Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

13.
Sensors (Basel) ; 24(15)2024 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-39124099

RESUMO

The transient stability assessment based on machine learning faces challenges such as sample data imbalance and poor generalization. To address these problems, this paper proposes an intelligent enhancement method for real-time adaptive assessment of transient stability. In the offline phase, a convolutional neural network (CNN) is used as the base classifier. A model training method based on contrastive learning is introduced, aiming to increase the spatial distance between positive and negative samples in the mapping space. This approach effectively improves the accuracy of the model in recognizing unbalanced samples. In the online phase, when real data with different distribution characteristics from the offline data are encountered, an active transfer strategy is employed to update the model. New system samples are obtained through instance transfer from the original system, and an active sampling strategy considering uncertainty is designed to continuously select high-value samples from the new system for labeling. The model parameters are then updated by fine-tuning. This approach drastically reduces the cost of updating while improving the model's adaptability. Experiments on the IEEE39-node system verify the effectiveness of the proposed method.

14.
Neural Netw ; 179: 106522, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39096752

RESUMO

Graph Neural Network (GNN) has achieved remarkable progress in the field of graph representation learning. The most prominent characteristic, propagating features along the edges, degrades its performance in most heterophilic graphs. Certain researches make attempts to construct KNN graph to improve the graph homophily. However, there is no prior knowledge to choose proper K and they may suffer from the problem of Inconsistent Similarity Distribution (ISD). To accommodate this issue, we propose Probability Graph Complementation Contrastive Learning (PGCCL) which adaptively constructs the complementation graph. We employ Beta Mixture Model (BMM) to distinguish intra-class similarity and inter-class similarity. Based on the posterior probability, we construct Probability Complementation Graphs to form contrastive views. The contrastive learning prompts the model to preserve complementary information for each node from different views. By combining original graph embedding and complementary graph embedding, the final embedding is able to capture rich semantics in the finetuning stage. At last, comprehensive experimental results on 20 datasets including homophilic and heterophilic graphs firmly verify the effectiveness of our algorithm as well as the quality of probability complementation graph compared with other state-of-the-art methods.

15.
Med Image Anal ; 97: 103250, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39096842

RESUMO

Ischemic lesion segmentation and the time since stroke (TSS) onset classification from paired multi-modal MRI imaging of unwitnessed acute ischemic stroke (AIS) patients is crucial, which supports tissue plasminogen activator (tPA) thrombolysis decision-making. Deep learning methods demonstrate superiority in TSS classification. However, they often overfit task-irrelevant features due to insufficient paired labeled data, resulting in poor generalization. We observed that unpaired data are readily available and inherently carry task-relevant cues, but are less often considered and explored. Based on this, in this paper, we propose to fully excavate the potential of unpaired unlabeled data and use them to facilitate the downstream AIS analysis task. We first analyze the utility of features at the varied grain and propose a multi-grained contrastive learning (MGCL) framework to learn task-related prior representations from both coarse-grained and fine-grained levels. The former can learn global prior representations to enhance the location ability for the ischemic lesions and perceive the healthy surroundings, while the latter can learn local prior representations to enhance the perception ability for semantic relation between the ischemic lesion and other health regions. To better transfer and utilize the learned task-related representation, we designed a novel multi-task framework to simultaneously achieve ischemic lesion segmentation and TSS classification with limited labeled data. In addition, a multi-modal region-related feature fusion module is proposed to enable the feature correlation and synergy between multi-modal deep image features for more accurate TSS decision-making. Extensive experiments on the large-scale multi-center MRI dataset demonstrate the superiority of the proposed framework. Therefore, it is promising that it helps better stroke evaluation and treatment decision-making.

16.
Brief Bioinform ; 25(4)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38975895

RESUMO

Spatial transcriptomics provides valuable insights into gene expression within the native tissue context, effectively merging molecular data with spatial information to uncover intricate cellular relationships and tissue organizations. In this context, deciphering cellular spatial domains becomes essential for revealing complex cellular dynamics and tissue structures. However, current methods encounter challenges in seamlessly integrating gene expression data with spatial information, resulting in less informative representations of spots and suboptimal accuracy in spatial domain identification. We introduce stCluster, a novel method that integrates graph contrastive learning with multi-task learning to refine informative representations for spatial transcriptomic data, consequently improving spatial domain identification. stCluster first leverages graph contrastive learning technology to obtain discriminative representations capable of recognizing spatially coherent patterns. Through jointly optimizing multiple tasks, stCluster further fine-tunes the representations to be able to capture complex relationships between gene expression and spatial organization. Benchmarked against six state-of-the-art methods, the experimental results reveal its proficiency in accurately identifying complex spatial domains across various datasets and platforms, spanning tissue, organ, and embryo levels. Moreover, stCluster can effectively denoise the spatial gene expression patterns and enhance the spatial trajectory inference. The source code of stCluster is freely available at https://github.com/hannshu/stCluster.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Perfilação da Expressão Gênica/métodos , Biologia Computacional/métodos , Algoritmos , Humanos , Animais , Software , Aprendizado de Máquina
17.
Neural Netw ; 179: 106503, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38986189

RESUMO

Fusion-style Deep Multi-view Clustering (FDMC) can efficiently integrate comprehensive feature information from latent embeddings of multiple views and has drawn much attention recently. However, existing FDMC methods suffer from the interference of view-specific information for fusion representation, affecting the learning of discriminative cluster structure. In this paper, we propose a new framework of Progressive Neighbor-masked Contrastive Learning for FDMC (PNCL-FDMC) to tackle the aforementioned issues. Specifically, by using neighbor-masked contrastive learning, PNCL-FDMC can explicitly maintain the local structure during the embedding aggregation, which is beneficial to the common semantics enhancement on the fusion view. Based on the consistent aggregation, the fusion view is further enhanced by diversity-aware cluster structure enhancement. In this process, the enhanced cluster assignments and cluster discrepancies are employed to guide the weighted neighbor-masked contrastive alignment of semantic structure between individual views and the fusion view. Extensive experiments validate the effectiveness of the proposed framework, revealing its ability in discriminative representation learning and improving clustering performance.

18.
Radiat Oncol ; 19(1): 89, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982452

RESUMO

BACKGROUND AND PURPOSE: To investigate the feasibility of synthesizing computed tomography (CT) images from magnetic resonance (MR) images in multi-center datasets using generative adversarial networks (GANs) for rectal cancer MR-only radiotherapy. MATERIALS AND METHODS: Conventional T2-weighted MR and CT images were acquired from 90 rectal cancer patients at Peking University People's Hospital and 19 patients in public datasets. This study proposed a new model combining contrastive learning loss and consistency regularization loss to enhance the generalization of model for multi-center pelvic MRI-to-CT synthesis. The CT-to-sCT image similarity was evaluated by computing the mean absolute error (MAE), peak signal-to-noise ratio (SNRpeak), structural similarity index (SSIM) and Generalization Performance (GP). The dosimetric accuracy of synthetic CT was verified against CT-based dose distributions for the photon plan. Relative dose differences in the planning target volume and organs at risk were computed. RESULTS: Our model presented excellent generalization with a GP of 0.911 on unseen datasets and outperformed the plain CycleGAN, where MAE decreased from 47.129 to 42.344, SNRpeak improved from 25.167 to 26.979, SSIM increased from 0.978 to 0.992. The dosimetric analysis demonstrated that most of the relative differences in dose and volume histogram (DVH) indicators between synthetic CT and real CT were less than 1%. CONCLUSION: The proposed model can generate accurate synthetic CT in multi-center datasets from T2w-MR images. Most dosimetric differences were within clinically acceptable criteria for photon radiotherapy, demonstrating the feasibility of an MRI-only workflow for patients with rectal cancer.


Assuntos
Aprendizado Profundo , Imageamento por Ressonância Magnética , Planejamento da Radioterapia Assistida por Computador , Neoplasias Retais , Tomografia Computadorizada por Raios X , Humanos , Tomografia Computadorizada por Raios X/métodos , Imageamento por Ressonância Magnética/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias Retais/radioterapia , Neoplasias Retais/diagnóstico por imagem , Feminino , Masculino , Pessoa de Meia-Idade , Dosagem Radioterapêutica , Órgãos em Risco/efeitos da radiação , Adulto , Idoso , Pelve/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Estudos de Viabilidade
19.
Neural Netw ; 179: 106516, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39003981

RESUMO

Temporal Knowledge Graphs (TKGs) enable effective modeling of knowledge dynamics and event evolution, facilitating deeper insights and analysis into temporal information. Recently, extrapolation of TKG reasoning has attracted great significance due to its remarkable ability to capture historical correlations and predict future events. Existing studies of extrapolation aim mainly at encoding the structural and temporal semantics based on snapshot sequences, which contain graph aggregators for the association within snapshots and recurrent units for the evolution. However, these methods are limited to modeling long-distance history, as they primarily focus on capturing temporal correlations over shorter periods. Besides, a few approaches rely on compiling historical repetitive statistics of TKGs for predicting future facts. But they often overlook explicit interactions in the graph structure among concurrent events. To address these issues, we propose a PotentiaL concurrEnt Aggregation and contraStive learnING (PLEASING) method for TKG extrapolation. PLEASING is a two-step reasoning framework that effectively leverages the historical and potential features of TKGs. It includes two encoders for historical and global events with an adaptive gated mechanism, acquiring predictions with appropriate weight of the two aspects. Specifically, PLEASING constructs two auxiliary graphs to capture temporal interaction among timestamps and correlations among potential concurrent events, respectively, enabling a holistic investigation of temporal characteristics and future potential possibilities in TKGs. Furthermore, PLEASING incorporates contrastive learning to strengthen its capacity to identify whether queries are related to history. Extensive experiments on seven benchmark datasets demonstrate the state-of-the-art performances of PLEASING and its comprehensive ability to model TKG semantics.

20.
Med Phys ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39031488

RESUMO

BACKGROUND: With the rapid advancement of medical imaging technologies, precise image analysis and diagnosis play a crucial role in enhancing treatment outcomes and patient care. Computed tomography (CT) and magnetic resonance imaging (MRI), as pivotal technologies in medical imaging, exhibit unique advantages in bone imaging and soft tissue contrast, respectively. However, cross-domain medical image registration confronts significant challenges due to the substantial differences in contrast, texture, and noise levels between different imaging modalities. PURPOSE: The purpose of this study is to address the major challenges encountered in the field of cross-domain medical image registration by proposing a spatial-aware contrastive learning approach that effectively integrates shared information from CT and MRI images. Our objective is to optimize the feature space representation by employing advanced reconstruction and contrastive loss functions, overcoming the limitations of traditional registration methods when dealing with different imaging modalities. Through this approach, we aim to enhance the model's ability to learn structural similarities across domain images, improve registration accuracy, and provide more precise imaging analysis tools for clinical diagnosis and treatment planning. METHODS: With prior knowledge that different domains of images (CT and MRI) share same content-style information, we extract equivalent feature spaces from both images, enabling accurate cross-domain point matching. We employ a structure resembling that of an autoencoder, augmented with designed reconstruction and contrastive losses to fulfill our objectives. We also propose region mask to solve the conflict between spatial correlation and distinctiveness, to obtain a better representation space. RESULTS: Our research results demonstrate the significant superiority of the proposed spatial-aware contrastive learning approach in the domain of cross-domain medical image registration. Quantitatively, our method achieved an average Dice similarity coefficient (DSC) of 85.68%, target registration error (TRE) of 1.92 mm, and mean Hausdorff distance (MHD) of 1.26 mm, surpassing current state-of-the-art methods. Additionally, the registration processing time was significantly reduced to 2.67 s on a GPU, highlighting the efficiency of our approach. The experimental outcomes not only validate the effectiveness of our method in improving the accuracy of cross-domain image registration but also prove its adaptability across different medical image analysis scenarios, offering robust support for enhancing diagnostic precision and patient treatment outcomes. CONCLUSIONS: The spatial-aware contrastive learning approach proposed in this paper introduces a new perspective and solution to the domain of cross-domain medical image registration. By effectively optimizing the feature space representation through carefully designed reconstruction and contrastive loss functions, our method significantly improves the accuracy and stability of registration between CT and MRI images. The experimental results demonstrate the clear advantages of our approach in enhancing the accuracy of cross-domain image registration, offering significant application value in promoting precise diagnosis and personalized treatment planning. In the future, we look forward to further exploring the application of this method in a broader range of medical imaging datasets and its potential integration with other advanced technologies, contributing more innovations to the field of medical image analysis and processing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA