Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gait Posture ; 113: 46-52, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38843706

RESUMO

BACKGROUND: A bone-anchored limb (BAL) is an alternative to a traditional socket-type prosthesis for people with transfemoral amputation. Early laboratory-based evidence suggests improvement in joint and limb loading mechanics during walking with a BAL compared to socket prosthesis use. However, changes in cumulative joint and limb loading measures, which may be predictive of degenerative joint disease progression, remain unknown. RESEARCH QUESTION: Do cumulative total limb and hip joint loading during walking change using a BAL for people with unilateral transfemoral amputation, compared to prior socket prosthesis use? METHODS: A case-series cohort of eight participants with prior unilateral transfemoral amputation who underwent BAL hardware implantation surgery were retrospectively analyzed (4 M/4 F; BMI: 27.7 ± 3.1 kg/m2; age: 50.4 ± 10.2 years). Daily step count and whole-body motion capture data were collected before (using socket prosthesis) and one-year after BAL hardware implantation. Cumulative total limb and hip joint loading and between-limb loading symmetry metrics were calculated during overground walking at both time points and compared using Cohen's d effect sizes. RESULTS: One year after BAL hardware implantation, participants demonstrated bilateral increases in cumulative total limb loading (amputated: d = -0.65; intact: d = -0.72) and frontal-plane hip moment (amputated: d = -1.29; intact: d = -1.68). Total limb loading and hip joint loading in all planes remained asymmetric over time, with relative overloading of the intact limb in all variables of interest at the one-year point. SIGNIFICANCE: Despite increases in cumulative total limb and hip joint loading, between-limb loading asymmetries persist. Habitual loading asymmetry has been implicated in contributing to negative long-term joint health and onset or progression of degenerative joint diseases. Improved understanding of methods to address habitual loading asymmetries is needed to optimize rehabilitation and long-term joint health as people with transfemoral amputation increase physical activity when using a BAL.

2.
Front Sports Act Living ; 6: 1271987, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38650839

RESUMO

Purpose: Excessive mechanical stress accumulates and causes knee injury. Meniscal extrusion is a key factor in detecting the reaction to cumulative mechanical stress. The accumulation of stress strongly depends on environmental conditions such as flat ground or uphill/downhill, and accumulates in knee compartments; only a few studies have reported the effects of different environments on lateral and medial meniscus extrusion. This study aimed to investigate the effects of cumulative uphill/downhill stress on the meniscal extrusion in each compartment. Methods: A total of 30 healthy volunteers with 30 affected knees were involved in this cohort study (mean age, 22.0 ± 1.1 years; men, n = 14). The participants were divided into flat-walking, uphill/downhill-walking, and uphill/downhill-jogging groups and their numbers of steps taken were recorded during the effort. Moreover, medial and lateral meniscal extrusions during walking were evaluated using ultrasound three times, before and after efforts (T1) and (T2), and one day after efforts (T3), respectively. Results: In the flat-walking group, no significant differences were observed between the follow-up periods. Conversely, in the uphill/downhill-walking and jogging groups, the medial meniscus extrusion at T2 was significantly higher than that at T1. Conversely, the medial meniscus extrusion at T3 was significantly lower than that at T2. By contrast, the lateral meniscus did not show any difference between the follow-up periods in any group. Conclusion: Temporary extrusion of the meniscus occurred after uphill/downhill tasks in healthy volunteers, and its reaction was observed only in the medial meniscus.

3.
J Med Ultrason (2001) ; 50(2): 229-236, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36800121

RESUMO

PURPOSE: The cumulative knee adduction moment (KAM) is a key parameter evaluated for the prevention of overload knee injuries on the medial compartment. Medial meniscus extrusion (MME), typical in hoop dysfunctions, is a measure for the cumulative mechanical stress in individual knees; however, its correlation with cumulative KAM is unknown. The aim of this study was to investigate the effect of temporary overload stress on MME and its correlation with cumulative KAM. METHODS: Thirteen healthy asymptomatic volunteers (13 knees) were recruited for a cohort study (mean age, 23.1 ± 3.3 years; males: n = 8). The cumulative KAM was calculated using a three-dimensional motion analysis system, in addition to the number of steps taken while jogging uphill or downhill. MME was evaluated using ultrasound performed in the standing position. The evaluations were performed four times: at baseline (T0), before and after (T1 and T2, respectively) jogging uphill or downhill, and 1 day after (T3) jogging. Additionally, the Δ-value was calculated using the change of meniscus after efforts as the difference in MME between T1 and T2. RESULTS: The MME in T2 was significantly greater than those in T0 and T1. Conversely, the MME in T3 was significantly lesser than that in T2. No significant difference was found between those in T0 and T1, and T3. ΔMME exhibited a significant positive correlation with the cumulative KAM (r = 0.68, p = 0.01), but not for peak KAM. CONCLUSION: The temporary reaction of MME observed in ultrasound correlates with the cumulative stress of KAM.


Assuntos
Meniscos Tibiais , Osteoartrite do Joelho , Masculino , Humanos , Adulto Jovem , Adulto , Meniscos Tibiais/diagnóstico por imagem , Corrida Moderada , Estudos de Coortes , Voluntários Saudáveis
4.
Bone Rep ; 14: 101012, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33786342

RESUMO

Most information about distal radius microstructure is based on the non-dominant forearm, with little known about the factors that contribute to bilateral asymmetries in the general population, or what factors may influence bilateral changes over time. Here, we analyzed bilateral high resolution peripheral quantitative computed tomography (HRpQCT) data collected over a 12-month period as part of a clinical trial that prescribed a well-controlled, compressive loading task to the nondominant forearm. Baseline data from 102 women age 21-40, and longitudinal data from 66 women who completed the 12-month trial, were examined to determine factors responsible for side-to-side asymmetries in bone structure and change in structure over time. Cross-sectionally, the dominant radius had 2.4%-2.7% larger cross-sectional area, trabecular area, and bone mineral content than the nondominant radius, but no other differences were noted. Those who more strongly favored their dominant arm had significantly more, thinner, closely spaced trabecular struts in their dominant versus nondominant radius. Individuals assigned to a loading intervention had significant bilateral gains in total bone mineral density (2.0% and 1.2% in the nondominant versus dominant sides), and unilateral gains in the nondominant (loaded) cortical area (3.1%), thickness (3.0%), bone mineral density (1.7%) and inner trabecular density (1.3%). Each of these gains were significantly predicted by loading dose, a metric that included bone strain, number of cycles, and strain rate. Within individuals, change was negatively associated with age, meaning that women closer to age 40 experienced less of a gain in bone versus those closer to age 21. We believe that dominant/nondominant asymmetries in bone structure reflect differences in habitual loads during growth and past ability to adapt, while response to loading reflects current individual physiologic capacity to adapt.

5.
Front Sports Act Living ; 2: 575596, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33345140

RESUMO

Running is a popular way to become or stay physically active and to maintain and improve one's musculoskeletal load tolerance. Despite the health benefits, running-related injuries affect millions of people every year and have become a substantial public health issue owing to the popularity of running. Running-related injuries occur when the musculoskeletal load exceeds the load tolerance of the human body. Therefore, it is crucial to provide runners with a good estimate of the cumulative loading during their habitual training sessions. In this study, we validated a wearable system to provide an estimate of the external load on the body during running and investigated how much of the cumulative load during a habitual training session is explained by GPS-based spatiotemporal parameters. Ground reaction forces (GRF) as well as 3D accelerations were registered in nine habitual runners while running on an instrumented treadmill at three different speeds (2.22, 3.33, and 4.44 m/s). Linear regression analysis demonstrated that peak vertical acceleration during running explained 80% of the peak vertical GRF. In addition, accelerometer-based as well as GPS-based parameters were registered during 498 habitual running session of 96 runners. Linear regression analysis showed that only 70% of the cumulative load (sum of peak vertical accelerations) was explained by duration, distance, speed, and the number of steps. Using a wearable device offers the ability to provide better estimates of cumulative load during a running program and could potentially serve as a better guide to progress safely through the program.

6.
Ergonomics ; 62(10): 1339-1348, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31343393

RESUMO

Repetitive movement is common in many occupational contexts. Therefore, cumulative load is a widely recognised risk factor for lowback injury. This study quantified the effect of force weighting factors on cumulative load estimates and injury prediction during cyclic loading. Forty-eight porcine cervical spine motion segments were assigned to experimental groups that differed by average peak compression magnitude (30%, 50% and 70% of predicted tolerance) and amplitude variation (consistent, variable). Cyclic loading was performed at a frequency of 0.5 Hz until fatigue failure occurred. Weighting factors were determined and applied instantaneously. Inclusion of weighting factors resulted in statistically similar cumulative load estimates at injury between variable and consistent loading (p > .071). Further, survivorship was generally greater when the peak compression magnitude was consistent compared to variable. These results emphasise the importance of weighting factors as an equalisation tool for the evaluation of cumulative low back loading exposures in occupational contexts. Practitioner summary: Weighting factors can equalise the risk of injury based on compression magnitude. When weighted, the cumulative compression was similar between consistent and variable cyclic loading protocols, despite being significantly different when unweighted and having similar injury rates. Therefore, assessing representative occupational exposures without evaluating task performance variability may underestimate injury risk. Abbreviations: FSU: functional spinal unit; UCT: ultimate compression tolerance.


Assuntos
Vértebras Cervicais/fisiologia , Força Compressiva , Disco Intervertebral/fisiologia , Estresse Mecânico , Suporte de Carga , Animais , Fenômenos Biomecânicos , Modelos Animais , Suínos
7.
Int J Public Health ; 64(7): 1069-1074, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31253994

RESUMO

OBJECTIVES: Adversity experience, in both childhood and adulthood, has been associated with the development of depression. However, it is currently unclear how variation in timing and duration of adversity across childhood and young adulthood affects the extent of depression symptomology. METHODS: Data were analyzed from 2610 individuals from the National Longitudinal Study of Adolescent to Adult Health in the USA. Adversity in childhood and adulthood was evaluated using instruments similar to the adverse childhood experiences questionnaire, and associations were assessed by Poisson regression. RESULTS: Any adversity experience was associated with significantly elevated depression symptoms in young adulthood. Individuals who experienced adversity during both childhood and adulthood had significantly higher depression symptoms than those experiencing adversity during only childhood or adulthood, suggesting a potential dose-response relationship between duration of adversity experience and depression symptomology. CONCLUSIONS: These results suggest that any adversity experience increases depression symptoms in young adulthood and that cumulative adversity is particularly detrimental. While long-term interventions to reduce adversity exposure would be most efficacious, interventions to reduce adversity at any period would still be beneficial.


Assuntos
Experiências Adversas da Infância/estatística & dados numéricos , Depressão/epidemiologia , Adolescente , Fatores Etários , Feminino , Humanos , Estudos Longitudinais , Masculino , Fatores de Risco , Fatores Sexuais , Estados Unidos/epidemiologia , Adulto Jovem
8.
J Biomech ; 88: 48-54, 2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-30904332

RESUMO

During repetitive movement, low-back loading exposures are inherently variable in magnitude. The current study aimed to investigate how variation in successive compression exposures influences cumulative load tolerance in the spine. Forty-eight porcine cervical spine units were randomly assigned to one of six combinations of mean peak compression force (30%, 50%, 70% of the predicted tolerance) and loading variation (consistent peak amplitude, variable peak amplitude). Following preload and passive range-of-motion tests, specimens were positioned in a neutral posture and then cyclically loaded in compression until failure occurred or the maximum 12 h duration was reached. Specimens were dissected to classify macroscopic injury and measurements of cumulative load, cycles, and height loss sustained at failure were calculated. Statistical comparisons were made between loading protocols within each normalized compression group. A significant loading variation × compression interaction was demonstrated for cumulative load (p = 0.026) and cycles to failure (p = 0.021). Cumulative compression was reduced under all normalized compression loads (30% p = 0.016; 50% p = 0.030; 70% p = 0.020) when variable loading was incorporated. The largest reduction was by 33% and occurred in the 30% compression group. The number of sustained cycles was reduced by 31% (p = 0.017), 72% (p = 0.030), and 76% (p = 0.009) under normalized compression loads of 30%, 50%, and 70%, respectively. These findings suggest that variation in compression exposures interact to reduce cumulative compression tolerance of the spine and could elevate low-back injury risk during time-varying repetitive tasks.


Assuntos
Vértebras Cervicais/lesões , Vértebras Cervicais/fisiologia , Animais , Fenômenos Biomecânicos , Humanos , Movimento , Postura , Pressão , Suínos , Suporte de Carga
9.
Int Biomech ; 6(1): 66-74, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34042006

RESUMO

Cumulative load reflects the total accumulated load across a loading exposure. Estimated cumulative load can identify individuals with or at risk for pathology. However, there is no research into the accuracy of the estimated cumulative load. This study determined: (1) which impulses, from a 500 revolution bicycling activity, accurately estimate cumulative pedal reaction force; and (2) how many impulses are required to accurately estimate cumulative pedal reaction force over 500 revolutions. Twenty-four healthy adults (mean 23.4 [SD 3.1] years; 11 men) participated. Participants performed three bicycling bouts of 10-min in duration and were randomized to one of two groups (group 1 = self-selected power and prescribed cadence of 80 revolutions per minute; group 2 = prescribed power of 100 W and self-selected cadence). The first 10 revolutions (2%) of the normal pedal reaction force (PRFN) and resultant pedal reaction force (PRFR), and the first five revolutions (1%) of the anterior-posterior reaction force (PRFAP) over-estimated cumulative load. The PRFN, PRFAP, and PRFR required 80 revolutions (16%), 320 revolutions (64%) and 65 revolutions (13%), respectively, to accurately estimate cumulative load across 500 cycles. These findings highlight that the context and amount of data collected are important in producing accurate estimates of cumulative load.

10.
Hum Factors ; 60(1): 57-67, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28967807

RESUMO

Objective The aim of this study was to explore whether the Variable Lifting Index (VLI) can be corrected for cumulative mass and thus test its efficacy in predicting the risk of low-back pain (LBP). Background A validation study of the VLI method was published in this journal reporting promising results. Although several studies highlighted a positive correlation between cumulative load and LBP, cumulative mass has never been considered in any of the studies investigating the relationship between manual material handling and LBP. Method Both VLI and cumulative mass were calculated for 2,374 exposed subjects using a systematic approach. Due to high variability of cumulative mass values, a stratification within VLI categories was employed. Dummy variables (1-4) were assigned to each class and used as a multiplier factor for the VLI, resulting in a new index (VLI_CMM). Data on LBP were collected by occupational physicians at the study sites. Logistic regression was used to estimate the risk of acute LBP within levels of risk exposure when compared with a control group formed by 1,028 unexposed subjects. Results Data showed greatly variable values of cumulative mass across all VLI classes. The potential effect of cumulative mass on damage emerged as not significant ( p value = .6526). Conclusion When comparing VLI_CMM with raw VLI, the former failed to prove itself as a better predictor of LBP risk. Application To recognize cumulative mass as a modifier, especially for lumbar degenerative spine diseases, authors of future studies should investigate potential association between the VLI and other damage variables.


Assuntos
Fenômenos Biomecânicos/fisiologia , Remoção , Dor Lombar/prevenção & controle , National Institute for Occupational Safety and Health, U.S./normas , Doenças Profissionais/prevenção & controle , Medição de Risco/métodos , Adulto , Humanos , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA