Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 188
Filtrar
1.
Macromol Rapid Commun ; : e2400302, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877645

RESUMO

Polyamide 6 (PA6) fiber has the advantages of high strength and good wear resistance. However, it is still challenging to effectively load inorganic antibacterial agents into polymer substrates without antimicrobial activity. In this work, graphene oxide is used as a carrier, which is modified with an aminosilane coupling agent (AEAPTMS) to enhance the compatibility and antimicrobial properties of the inorganic material, as well as to improve its thermal stability in a high-temperature melting environment. Cuprous oxide-loaded aminated grapheme (Cu2O-GO-NH2) is constructed by in situ growth method, and further PA6/Cu2O-GO-NH2 fibers are prepared by in situ polymerization. The composite fiber has excellent washing resistance. After 50 times of washing, its bactericidal rates against Bacillus subtilis and Escherichia coli are 98.85% and 99.99%, respectively. In addition, the enhanced compatibility of Cu2O-GO-NH2 with the PA6 matrix improves the orientation and crystallinity of the composite fibers. Compared with PA6/Cu2O-GO fibers, the fracture strength of PA6/Cu2O-GO-NH2 fibers increases from 3.0 to 4.2 cN/dtex when the addition of Cu2O-GO-NH2 is 0.2 wt%. Chemical modification and in situ concepts help to improve the compatibility of inorganic antimicrobial agents with organic polymers, which can be applied to the development of medical textiles.

2.
Biopolymers ; : e23608, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38923469

RESUMO

The paper reports on the preparation of cellulose nanocrystals/reduced graphene oxide matrix loaded with cuprous oxide nanoparticles (CNC/rGO-Cu2O) through a simple solvothermal method and its application for 4-nitrophenol reduction to 4-aminophenol using sodium borohydride. The CNC/rGO-Cu2O nanocomposite was formed chemically by first mixing CNC and graphene oxide (GO) followed by complexation of the negatively charged functional groups of CNC/GO with Cu2+ ions and subsequent heating at 100°C. This resulted in the simultaneous reduction of GO to rGO and the formation of Cu2O nanoparticles. The as-elaborated nanocomposite was firstly characterized using different techniques such as atomic force microscopy, scanning electron microscopy, transmission electron microscopy, UV-Vis spectrophotometry, Raman spectroscopy and x-ray photoelectron spectroscopy. Then, it was successfully applied for efficient catalytic reduction of 4-nitrophenol to 4-aminophenol using sodium borohydride: the reduction was completed in about 6 min. After eight times use, the catalyst still maintained good catalytic performance. Compared to CNC/rGO, rGO/Cu2O and free Cu2O nanoparticles, the CNC/rGO-Cu2O nanocomposite exhibits higher catalytic activity even at lower copper loading.

3.
J Environ Manage ; 362: 121327, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38824892

RESUMO

In this study, nanoscale cupric oxide-decorated activated carbon (nCuO@AC) was synthesized by impregnation-calcination and employed to assist the decomposition of H2O2 for effective sterilization with Escherichia coli as target bacteria. Characteristic technologies demonstrated that copper oxide particles of 50-100 nm were uniformly distributed on AC surface. Owing to electron transfer from hydroxyl and aldehyde to CuO on AC, surface-bonded Cu(II) was partially reduced to Cu(I) in the nCuO matrix. The resultant Cu(I) expedited the decomposition of H2O2 and converted it into ·OH radicals which were identified by quenching experiment and electron paramagnetic resonance test. Due to oxidation attack of generated ·OH, the nCuO@AC-H2O2 system achieved a much higher inactivation rate of 6.0 log within 30 min as compared to those of 2.1 and 1.3 log in the nCuO@AC and nCuO-H2O2 systems. It also exhibited excellent pH adaptability and high inactivation efficiency under neutral conditions. After four cycles, the nCuO@AC-H2O2 system could still inactivate 5.5 log bacteria, indicating excellent stability and reusability of nCuO@AC. Spent nCuO@AC could be regenerated by eluting surficial copper oxides with hydrochloric acid, and re-coating nCuO particles through impregnation-calcination with a regeneration rate of 96.6%. Our results demonstrated that nCuO@AC was an efficient and prospective catalyst to assist the decomposition of H2O2 for effective inactivation of bacteria in water.


Assuntos
Carvão Vegetal , Cobre , Escherichia coli , Peróxido de Hidrogênio , Escherichia coli/efeitos dos fármacos , Peróxido de Hidrogênio/química , Cobre/química , Carvão Vegetal/química , Carbono/química , Oxirredução
4.
Gels ; 10(5)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38786238

RESUMO

Traditional anti-corrosion and anti-fouling coatings struggle against the harsh marine environment. Our study tackled this by introducing a novel dual-layer hydrogel (A-H DL) coating system. This system combined a Cu2O-SiO2-acrylic resin primer for anchoring and controlled copper ion release with a dissipative double-network double-anchored hydrogel (DNDAH) boasting superior mechanical strength and anti-biofouling performance. An acrylamide monomer was copolymerized and cross-linked with a coupling agent to form the first irreversible network and first anchoring, providing the DNDAH coating with mechanical strength and structural stability. Alginate gel microspheres (AGMs) grafted with the same coupling agent formed the second reversible network and second anchoring, while coordinating with Cu2+ released from the primer to form a system buffering Cu2+ release, enabling long-term antibacterial protection and self-healing capabilities. FTIR, SEM, TEM, and elemental analyses confirmed the composition, morphology, and copper distribution within the A-H DL coating. A marine simulation experiment demonstrated exceptional stability and anti-fouling efficacy. This unique combination of features makes A-H DL a promising solution for diverse marine applications, from ship hulls to aquaculture equipment.

5.
Talanta ; 277: 126321, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38805945

RESUMO

In this article, ferric ion-doped floral graphite carbon nitride (Fe-CN-3, energy donor) was used to construct the substrate of the immunosensor and copper oxide nanocubes (Cu2O, energy acceptor) were taken as an efficient ECL quenching probe. A sandwich quench electrochemiluminescence (ECL) immunosensor for soluble cytokeratin 19 fragment (Cyfra21-1) detection was preliminarily developed based on a novel resonant energy transfer donor-acceptor pair. Fe-CN-3, a carbon nitride that combines the advantages of metal ion doping as well as morphology modulation, is used in ECL luminophores to provide more excellent ECL performance, which makes a significant contribution to the application and development of carbon nitride in the field of ECL biosensors. The regular shape, high specific surface area and excellent biocompatibility of the quencher Cu2O nanocubes facilitate the labeling of secondary antibodies and the construction of sensors. Meanwhile, as an energy acceptor, the UV absorption spectrum of Cu2O can overlap efficiently with the energy donor's ECL emission spectrum, making it prone to the occurrence of ECL-RET and thus obtaining an excellent quenching effect. These merits of the donor-acceptor pair enable the sensor to have a wide detection range of 0.00005-100 ng/mL and a low detection limit of 17.4 fg/mL (S/N = 3), which provides a new approach and theoretical basis for the clinical detection of lung cancer.


Assuntos
Antígenos de Neoplasias , Técnicas Biossensoriais , Cobre , Técnicas Eletroquímicas , Grafite , Queratina-19 , Medições Luminescentes , Cobre/química , Queratina-19/análise , Queratina-19/imunologia , Técnicas Eletroquímicas/métodos , Humanos , Grafite/química , Técnicas Biossensoriais/métodos , Medições Luminescentes/métodos , Imunoensaio/métodos , Antígenos de Neoplasias/análise , Antígenos de Neoplasias/imunologia , Limite de Detecção , Compostos de Nitrogênio/química , Nitrilas/química
6.
Chemosphere ; 355: 141820, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38561158

RESUMO

Organic solvent nanofiltration (OSN) is an incipient technology in the field of organic liquid-liquid separation. The incomplete separations and complexity involved in these, forces many organic liquids to be released as effluents and the adverse effects of these on environment is enormous and irreparable. The work prominences on the complete separation of industrially significant cyclohexanone: cyclohexanol (keto-alcohol oil) and heptane: toluene mixtures. The separations of these above-mentioned organic liquid mixtures were carried out using the fabricated Lewis acid modified graphitic carbon nitride (Cu2O@g-C3N4) incorporated polyvinylidene difluoride (PVDF) composite membranes. These fabricated membranes showed a separation factor of 18.16 and flux of 1.62 Lm-2h-1 for cyclohexanone: cyclohexanol mixture and separation of heptane and toluene mixture (with heptane flux of 1.52 Lm-2h-1) showed a separation factor of 9.9. The selectivity and productivity are based on the polarity and size of the organic liquids. The role of Cu2O@g-C3N4 is influencing the pore size distribution, increased divergence from solubility parameters, polarity, solvent uptake and porosity of the composite membranes. The developed composite membranes are thus envisioned to be apt for a wide range of liquid-liquid separations due to its implicit nature.


Assuntos
Cicloexanóis , Cicloexanonas , Heptanos , Solventes , Tolueno
7.
Ying Yong Sheng Tai Xue Bao ; 35(3): 721-730, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38646760

RESUMO

Metal nanoparticles could be accumulated in soils, which threatens the ecological stability of crops. Investigating the effects of cuprous oxide nanoparticles (Cu2O-NPs) on photosystem Ⅱ (PSⅡ) of wheat seedling leaves holds considerable importance in comprehending the implications of Cu2O-NPs on crop photosynthesis. Following the hydroponic method, we investigated the effects of 0, 10, 50, 100, and 200 mg·L-1 Cu2O-NPs on chlorophyll fluorescence induction kinetics and photosynthetic-related genes in wheat seedlings of "Zhoumai 18". The results showed that, with the increases of Cu2O-NPs concentrations, chlorophyll contents in wheat leaves decreased, and the standardization of the OJIP curve showed a clearly K-phase (ΔK>0). Cu2O-NPs stress increased the parameters of active PSⅡ reaction centers, including the absorption flux per active RC (ABS/RC), the trapping flux per active RC (TRo/RC), the electron transport flux per active RC (ETo/RC), and the dissipation flux per active RC (DIo/RC). Cu2O-NPs stress decreased the parameters of PSⅡ energy distribution ratio including the maximum quantum yield of PSⅡ (φPo), the quantum yield of electron transport from QA (φEo), and the probability that a trapped exciton moved an electron further than QA (Ψo), while increased the quantum ratio for heat dissipation (φDo). Moreover, there was a decrease in photosynthetic quantum yield Y(Ⅱ), photochemical quenching coefficient (qP), net photosynthetic rate (Pn), stomatal conductance (gs), intercellular CO2 concentration (Ci), and transpiration rate (Tr) of leaves with the increases of Cu2O-NPs concentration. Under Cu2O-NPs stress, the expression levels of genes which included PSⅡ genes (PsbD, PsbP, Lhcb1), Rubisco large subunit genes (RbcL), cytochrome b6/f complex genes (PetD, Rieske), and ATP synthase genes (AtpA, AtpB, AtpE, AtpI) were downregulated. These results indicated that Cu2O-NPs stress altered the activity and structure of PSⅡ in wheat seedlings, affected the activity of PSⅡ reaction centers, performance parameters of PSⅡ donor and acceptor sides. PSⅡ related genes were downregulated and exhibited significant concentration effects.


Assuntos
Clorofila , Cobre , Nanopartículas Metálicas , Fotossíntese , Complexo de Proteína do Fotossistema II , Plântula , Triticum , Triticum/metabolismo , Triticum/genética , Cobre/toxicidade , Clorofila/metabolismo , Plântula/metabolismo , Plântula/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/metabolismo , Fotossíntese/efeitos dos fármacos , Fluorescência , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Cinética
8.
ACS Appl Mater Interfaces ; 16(14): 18008-18018, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38556992

RESUMO

Nanostructured electrode materials become a vital component for future electrode materials because of their short electron and ion transport distances for fast charge and discharge processes and sufficient space between particles for volume expansion. So, achieving a smaller size of the nanomaterial with stable structure and high electrode performance is always the pursuit. Herein, the hybrid electrode material system hydrogen-substituted graphdiyne (HsGDY)/Cu2O-quantum dots (QDs) composed of an active carbon substrate and vibrant metal oxide QD load was established by HsGDY and cuprous oxide. The HsGDY frame with conjugated structure not only delivers impressive capacity by a self-exchange mechanism but also characterizes a matrix to forge strong connections with numerous active Cu2O-QDs for the prevention of aggregation, leading to a homogeneous storage and transport of charge in a bulk material of crisscross structural pores. QD-based electrode materials would exhibit desired capacities by their large surface area, abundant active surface atoms, and the short diffusion pathway. The hybrid system of HsGDY/Cu2O-QDs delivers an ultrahigh capacity of 1230 mA h g-1 with loading density reaching up to 1 mg cm-2. In the meantime, the electrode exhibits a long cycle stability of over 8000 cycles. The synergistic effect endows the hybrid system electrode with an approximately theoretical energy density, suggesting the great potential of such carbon/QD hybrid material system applied for high-performance batteries.

9.
Colloids Surf B Biointerfaces ; 238: 113914, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38663310

RESUMO

Combining with various antibacterial mechanisms is the preferred strategy to fabricate coatings with effective antibacterial performance. Herein, Cu2O nanoparticles and dimethyloctadecyl [3-(trimethoxysilyl) propyl] ammonium chloride, a kind of quaternary ammonium salt (QAS), were simultaneously incorporated into a moisture-curable acrylic resin in order to achieve both contact-killing and release-killing abilities for antibacterial coatings. The surface morphology, surface composition and basic properties of the coatings were thoroughly characterized. The antibacterial performance of the coatings was determined by in-vitro bacteriostatic test. Under the constant total mass fraction of antibacterial agents, both Cu2O and QAS content possessed the highest value on the coating surface at Cu2O/QAS mass ratio of 1:1, and correspondingly, the coatings reached sterilizing rate above 99 % against both E. coli and S. loihica, indicating the existence of synergistic effect between Cu2O and QAS. The synergistic antibacterial mechanism of the coatings involved two aspects. Firstly, the combination of contact-killing and release-killing biocides resulted in high bactericidal and antibiofilm activity against different bacteria. Further, the grafting of QAS molecules on the surface of Cu2O particles brought about the spontaneous migration of nanoparticles to the coating surface. The interaction between Cu2O and QAS also inhibited the phase separation of QAS and prolonged the release of Cu2+ at the same time. The coatings, therefore, exhibited stable antibacterial performance at varied service conditions.


Assuntos
Antibacterianos , Cobre , Escherichia coli , Testes de Sensibilidade Microbiana , Compostos de Amônio Quaternário , Propriedades de Superfície , Cobre/química , Cobre/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Compostos de Amônio Quaternário/química , Compostos de Amônio Quaternário/farmacologia , Escherichia coli/efeitos dos fármacos , Tamanho da Partícula , Nanopartículas/química , Nanopartículas Metálicas/química , Resinas Acrílicas/química , Resinas Acrílicas/farmacologia , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia
10.
Adv Mater ; 36(28): e2313212, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38670140

RESUMO

Cancer stem cells (CSCs) are one of the determinants of tumor heterogeneity and are characterized by self-renewal, high tumorigenicity, invasiveness, and resistance to various therapies. To overcome the resistance of traditional tumor therapies resulting from CSCs, a strategy of double drug sequential therapy (DDST) for CSC-enriched tumors is proposed in this study and is realized utilizing the developed double-layered hollow mesoporous cuprous oxide nanoparticles (DL-HMCONs). The high drug-loading contents of camptothecin (CPT) and all-trans retinoic acid (ATRA) demonstrate that the DL-HMCON can be used as a generic drug delivery system. ATRA and CPT can be sequentially loaded in and released from CPT3@ATRA3@DL-HMCON@HA. The DDST mechanisms of CPT3@ATRA3@DL-HMCON@HA for CSC-containing tumors are demonstrated as follows: 1) the first release of ATRA from the outer layer induces differentiation from CSCs with high drug resistance to non-CSCs with low drug resistance; 2) the second release of CPT from the inner layer causes apoptosis of non-CSCs; and 3) the third release of Cu+ from DL-HMCON itself triggers the Fenton-like reaction and glutathione depletion, resulting in ferroptosis of non-CSCs. This CPT3@ATRA3@DL-HMCON@HA is verified to possess high DDST efficacy for CSC-enriched tumors with high biosafety.


Assuntos
Camptotecina , Cobre , Células-Tronco Neoplásicas , Humanos , Porosidade , Camptotecina/química , Camptotecina/farmacologia , Animais , Cobre/química , Linhagem Celular Tumoral , Células-Tronco Neoplásicas/efeitos dos fármacos , Tretinoína/química , Tretinoína/farmacologia , Nanopartículas/química , Camundongos , Antineoplásicos/química , Antineoplásicos/farmacologia , Portadores de Fármacos/química , Apoptose/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Liberação Controlada de Fármacos
11.
Food Chem ; 450: 139261, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38657344

RESUMO

This study employed an innovative copper oxide/cuprous oxide (CuO/Cu2O) polyhedron­cadmium sulphide quantum dots (CdS QDs) double Z-scheme heterostructure as a matrix for the cathodic PEC determination of mercury ions (Hg2+). First, the CuO/Cu2O polyhedral composite was prepared by calcining a copper-based metal organic framework (Cu-MOF). Subsequently, the amino-modified CuO/Cu2O was integrated with mercaptopropionic acid (MPA)-capped CdS QDs to form a CuO/Cu2O polyhedron-CdS QDs double Z-scheme heterostructure, producing a strong cathodic photocurrent. Importantly, this heterostructure exhibited a specifically reduced photocurrent for Hg2+ when using CdS QDs as Hg2+-recognition probe. This was attributed to the extreme destruction of the double Z-scheme heterostructure and the in situ formation of the CuO/Cu2O-CdS/HgS heterostructure. Besides, p-type HgS competed with the matrix for electron acceptors, further decreasing the photocurrent. Consequently, Hg2+ was sensitively assayed, with a low detection limit (0.11 pM). The as-prepared PEC sensor was also used to analyse Hg2+ in food and the environment.


Assuntos
Compostos de Cádmio , Cobre , Técnicas Eletroquímicas , Mercúrio , Estruturas Metalorgânicas , Pontos Quânticos , Sulfetos , Pontos Quânticos/química , Cobre/química , Mercúrio/análise , Mercúrio/química , Sulfetos/química , Compostos de Cádmio/química , Técnicas Eletroquímicas/instrumentação , Estruturas Metalorgânicas/química , Contaminação de Alimentos/análise , Eletrodos , Limite de Detecção
12.
Nanomaterials (Basel) ; 14(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38470782

RESUMO

Cuprous oxide (Cu2O) has great potential in photodynamic therapy for implant-associated infections due to its good biocompatibility and photoelectric properties. Nevertheless, the rapid recombination of electrons and holes weakens its photodynamic antibacterial effect. In this work, a new nanosystem (Cu2O@rGO) with excellent photodynamic performance was designed via the in situ growth of Cu2O on reduced graphene oxide (rGO). Specifically, rGO with lower Fermi levels served as an electron trap to capture photoexcited electrons from Cu2O, thereby promoting electron-hole separation. More importantly, the surface of rGO could quickly transfer electrons from Cu2O owing to its excellent conductivity, thus efficiently suppressing the recombination of electron-hole pairs. Subsequently, the Cu2O@rGO nanoparticle was introduced into poly-L-lactic acid (PLLA) powder to prepare PLLA/Cu2O@rGO porous scaffolds through selective laser sintering. Photochemical analysis showed that the photocurrent of Cu2O@rGO increased by about two times after the incorporation of GO nanosheets, thus enhancing the efficiency of photogenerated charge carriers and promoting electron-hole separation. Moreover, the ROS production of the PLLA/Cu2O@rGO scaffold was significantly increased by about two times as compared with that of the PLLA/Cu2O scaffold. The antibacterial results showed that PLLA/Cu2O@rGO possessed antibacterial rates of 83.7% and 81.3% against Escherichia coli and Staphylococcus aureus, respectively. In summary, this work provides an effective strategy for combating implant-related infections.

13.
Small ; 20(32): e2400592, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38501796

RESUMO

Here, the molecule-modified Cu-based array is first constructed as the self-supporting tandem catalyst for electrocatalytic CO2 reduction reaction (CO2RR) to C2 products. The modification of cuprous oxide nanowire array on copper mesh (Cu2O@CM) with cobalt(II) tetraphenylporphyrin (CoTPP) molecules is achieved via a simple liquid phase method. The systematical characterizations confirm that the formation of axial coordinated Co-O-Cu bond between Cu2O and CoTPP can significantly promote the dispersion of CoTPP molecules on Cu2O and the electrical properties of CoTPP-Cu2O@CM heterojunction array. Consequently, as compared to Cu2O@CM array, the optimized CoTPP-Cu2O@CM sample as electrocatalyst can realize the 2.08-fold C2 Faraday efficiency (73.2% vs 35.2%) and the 2.54-fold current density (‒52.9 vs ‒20.8 mA cm-2) at ‒1.1 V versus RHE in an H-cell. The comprehensive performance is superior to most of the reported Cu-based materials in the H-cell. Further study reveals that the CoTPP adsorption on Cu2O can restrain the hydrogen evolution reaction, improve the coverage of *CO intermediate, and maintain the existence of Cu(I) at low potential.

14.
Nanomaterials (Basel) ; 14(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38334571

RESUMO

This work reports on the properties of heterojunctions consisting of n-type Ga2O3 layers, deposited using ultrasonic spray pyrolysis at high temperature from water-based solution, combined with p-type NiO and Cu2O counterparts, deposited by radio frequency and reactive, direct-current magnetron sputtering, respectively. After a comprehensive investigation of the properties of the single layers, the fabricated junctions on indium tin oxide (ITO)-coated glass showed high rectification, with an open circuit voltage of 940 mV for Ga2O3/Cu2O and 220 mV for Ga2O3/NiO under simulated solar illumination. This demonstrates in praxis the favorable band alignment between the sprayed Ga2O3 and Cu2O, with small conduction band offset, and the large offsets anticipated for both energy bands in the case of Ga2O3/NiO. Large differences in the ideality factors between the two types of heterojunctions were observed, suggestive of distinctive properties of the heterointerface. Further, it is shown that the interface between the high-temperature-deposited Ga2O3 and the ITO contact does not impede electron transport, opening new possibilities for the design of solar cell and optoelectronic device architectures.

15.
Heliyon ; 10(3): e25195, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38352799

RESUMO

Cuprous oxide/copper/cupric oxide nanoparticles were synthesized through a hybrid process involving anodic dissolution and a controlled redox reaction between NaOH and glucose in the solution. The study demonstrates the structural manipulation of the material by varying the reaction components within the solution. Morphology, structural analyses using SEM (Scanning Electron Microscope), EDX (Energy-dispersive X-ray spectroscopy), TEM (Transmission Electron Microscope), FTIR (Fourier Transform Infrared Spectroscopy), XRD (X-ray diffraction), and XPS (X-ray photoelectron spectroscopy) unveiled the tunability of the material's structure based on the reaction components. Nitrogen adsorption analysis employing the Brunauer-Emmett-Teller (BET) equation confirmed the material's porosity, while Dynamic Light Scattering (DLS) measurements provided insights into the materials' hydrodynamic size and zeta potential. The results demonstrated that by increasing the glucose/NaOH ratio during the reaction, the different structures and morphologies of the distinct products were obtained from the clustering of small nanoparticles to cubic shape and flower-like structure. Antibacterial activity tests conducted on various bacterial strains showed a correlation between the morphology and structure of the material and its antibacterial properties. The highest substantial antibacterial efficacy against all tested bacterial strains at a dosage of 100 µg/L was obtained for the samples with clustering morphology, whereas the remaining materials showed no discernible antibacterial effect against one of the studied bacteria. The results also demonstrated that the sample with a clustering structure exhibited superior antibacterial properties when dispersed in water containing dimethylsulfoxide.

16.
J Colloid Interface Sci ; 661: 271-278, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38301465

RESUMO

The photocatalytic performance of ceria-based materials can be tuned by adjusting the surface structures with decorating the transition-metal, which are considered as the important active sites. Herein, cuprous oxide-metallic copper composite-doped ceria nanorods were assembled through a simple hydrothermal reduction method. The photocatalytic ammonia synthesis rates exhibit an inverted "V-shaped" trend with increasing Cu0/CuxO mole ratio. The best ammonia production rate, approximately 900 or 521 µmol·gcal-1·h-1 under full-spectra or visible light, can be achieved when the Cu0/CuxO ratio is approximately 0.16, and this value is 8 times greater than that of the original sample. The absorption edge of the as-prepared samples shifted towards visible wavelengths, and they also had appropriate ammonia synthesis levels. This research provides a strategy for designing noble metal-free photocatalysts through introducing the metal/metallic oxide compositesto the catalysts.

17.
Small Methods ; 8(5): e2300910, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38415973

RESUMO

Rational morphology control of inorganic microarchitectures is important in diverse fields, requiring precise regulation of nucleation and growth processes. While wet chemical methods have achieved success regarding the shape-controlled synthesis of micro/nanostructures, accurately controlling the growth behavior in real time remains challenging. Comparatively, the electrodeposition technique can immediately control the growth behavior by tuning the overpotential, whereas it is rarely used to design complex microarchitectures. Here, the electrochemical design of complex Cu2O microarchitectures step-by-step by precisely controlling the growth behavior is demonstrated. The growth modes can be switched between the thermodynamic and kinetic modes by varying the overpotential. Cl- ions preferably adhered to {100} facets to modulate growth rates of these facets is proved. The discovered growth modes to prepare Cu2O microarchitectures composed of multiple building units inaccessible with existing methods are employed. Polyvinyl alcohol (PVA) additives can guarantee all pre-electrodeposits simultaneously evolve into uniform microarchitectures, instead of forming undesired microstructures on bare electrode surfaces in following electrodeposition processes is discovered. The designed Cu2O microarchitectures can be converted into noble metal microstructures with shapes unchanged, which can be used as surface-enhanced Raman scattering substrates. An electrochemical avenue toward rational design of complex inorganic microarchitectures is opened up.

18.
Materials (Basel) ; 17(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38204113

RESUMO

Metal oxides can be used as antimicrobial agents, especially since they can be fabricated into various forms such as films, masks, and filters. In particular, the durability of antimicrobial agents and the duration of their antimicrobial activity are important factors that determine their suitability for a specific purpose. These factors are related to the morphology and size of particles. The metal oxide Cu2O is often oxidized to CuO in various conditions, which reduces its antimicrobial activity. This study focused on the oxidation of nanoparticles of Cu2O with three morphologies, namely, spherical, octahedral, and cubic morphologies, in excessively humid and excessive-thermal environments for a specific duration and the antimicrobial activity of the NPs. Cu2O nanoparticles were prepared using the chemical reduction method, and their morphology could be varied by adjusting the molar ratio of OH- to Cu2+ and changing the reducing agent. It was found that cubic Cu2O was the most stable against oxidation and had the smallest reduction in antimicrobial activity. This study examined the antimicrobial activity and the oxidation stability of Cu2O NPs with different morphologies but similar particle sizes.

19.
Chemistry ; 30(10): e202302961, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38014860

RESUMO

The single-functionality of traditional chemodynamic therapy (CDT) reagents usually limits the therapeutic efficacy of cancer treatment. Synergistic nanocomposites that involve cascade reaction provide a promising strategy to achieve satisfactory anticancer effects. Herein, a cuprous-based nanocomposite (CCS@GOx@HA) is fabricated, which owns the tumor targeting ability and can undergo tumor microenvironment responsive cascade reaction to enhance the tumor therapeutic efficiency significantly. Surface modification of nanocomposite with hyaluronic acid enables the targeted delivery of the nanocomposite to cancer cells. Acid-triggered decomposition of nanocomposite in cancer cell results in the release of Cu+ , Se2- and GOx. The Cu+ improves the Fenton-like reaction with endogenous H2 O2 to generate highly toxic • OH for CDT. While GOx can not only catalyze the in situ generation of endogenous H2 O2 , but also accelerate the consumption of intratumoral glucose to reduce nutrient supply in tumor site. In addition, Se2- further improves the therapeutic effects of CDT by upregulating the reactive oxygen species (ROS) in tumor cells. Meanwhile, the surface modification endows the nanocomposite the good water dispersibility and biocompatibility. Moreover, in vitro and in vivo experiments demonstrate satisfactory anti-cancer therapeutic performance by the synergistic cascade function of CCS@GOx@HA than CDT alone.


Assuntos
Nanocompostos , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Catálise , Glucose , Ácido Hialurônico , Nanocompostos/uso terapêutico , Peróxido de Hidrogênio , Linhagem Celular Tumoral , Microambiente Tumoral
20.
Nanomaterials (Basel) ; 13(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38133039

RESUMO

Cuprous oxide (Cu2O) has been intensively in the limelight as a promising photocathode material for photoelectrochemical (PEC) water splitting. The state-of-the-art Cu2O photocathode consists of a back contact layer for transporting the holes, an overlayer for accelerating charge separation, a protection layer for prohibiting the photocorrosion, and a hydrogen evolution reaction (HER) catalyst for reducing the overpotential of HER, as well as a Cu2O layer for absorbing sunlight. In this review, the fundamentals and recent research progress on these components of efficient and durable Cu2O photocathodes are analyzed in detail. Furthermore, key strategies on the development of Cu2O photocathodes for the practical PEC water-splitting system are suggested. It provides the specific guidelines on the future research direction for the practical application of a PEC water-splitting system based on Cu2O photocathodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA