Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(30): e2319574121, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39024113

RESUMO

Regulated cell cycle progression ensures homeostasis and prevents cancer. In proliferating cells, premature S phase entry is avoided by the E3 ubiquitin ligase anaphasepromoting complex/cyclosome (APC/C), although the APC/C substrates whose degradation restrains G1-S progression are not fully known. The APC/C is also active in arrested cells that exited the cell cycle, but it is not clear whether APC/C maintains all types of arrest. Here, by expressing the APC/C inhibitor, EMI1, we show that APC/C activity is essential to prevent S phase entry in cells arrested by pharmacological cyclin-dependent kinases 4 and 6 (CDK4/6) inhibition (Palbociclib). Thus, active protein degradation is required for arrest alongside repressed cell cycle gene expression. The mechanism of rapid and robust arrest bypass from inhibiting APC/C involves CDKs acting in an atypical order to inactivate retinoblastoma-mediated E2F repression. Inactivating APC/C first causes mitotic cyclin B accumulation which then promotes cyclin A expression. We propose that cyclin A is the key substrate for maintaining arrest because APC/C-resistant cyclin A, but not cyclin B, is sufficient to induce S phase entry. Cells bypassing arrest from CDK4/6 inhibition initiate DNA replication with severely reduced origin licensing. The simultaneous accumulation of S phase licensing inhibitors, such as cyclin A and geminin, with G1 licensing activators disrupts the normal order of G1-S progression. As a result, DNA synthesis and cell proliferation are profoundly impaired. Our findings predict that cancers with elevated EMI1 expression will tend to escape CDK4/6 inhibition into a premature, underlicensed S phase and suffer enhanced genome instability.


Assuntos
Quinase 4 Dependente de Ciclina , Quinase 6 Dependente de Ciclina , Humanos , Quinase 6 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Ciclossomo-Complexo Promotor de Anáfase/genética , Linhagem Celular Tumoral , Fase S/efeitos dos fármacos , Piridinas/farmacologia , Piperazinas/farmacologia , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Fatores de Transcrição E2F/metabolismo , Fatores de Transcrição E2F/genética , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Ciclinas/metabolismo , Ciclinas/genética , Proteínas F-Box
2.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38928036

RESUMO

Paclitaxel induces multipolar spindles at clinically relevant doses but does not substantially increase mitotic indices. Paclitaxel's anti-cancer effects are hypothesized to occur by promoting chromosome mis-segregation on multipolar spindles leading to apoptosis, necrosis and cyclic-GMP-AMP Synthase-Stimulator of Interferon Genes (cGAS-STING) pathway activation in daughter cells, leading to secretion of type I interferon (IFN) and immunogenic cell death. Eribulin and vinorelbine have also been reported to cause increases in multipolar spindles in cancer cells. Recently, suppression of Anaphase-Promoting Complex/Cyclosome-Cell Division Cycle 20 (APC/C-CDC20) activity using CRISPR/Cas9 mutagenesis has been reported to increase sensitivity to Kinesin Family 18a (KIF18a) inhibition, which functions to suppress multipolar mitotic spindles in cancer cells. We propose that a way to enhance the effectiveness of anti-cancer agents that increase multipolar spindles is by suppressing the APC/C-CDC20 to delay, but not block, anaphase entry. Delaying anaphase entry in genomically unstable cells may enhance multipolar spindle-induced cell death. In genomically stable healthy human cells, delayed anaphase entry may suppress the level of multipolar spindles induced by anti-cancer drugs and lower mitotic cytotoxicity. We outline specific combinations of molecules to investigate that may achieve the goal of enhancing the effectiveness of anti-cancer agents.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase , Antineoplásicos , Fuso Acromático , Humanos , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Antineoplásicos/farmacologia , Fuso Acromático/efeitos dos fármacos , Fuso Acromático/metabolismo , Proteínas Cdc20/metabolismo , Proteínas Cdc20/genética , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Mitose/efeitos dos fármacos
3.
Biochimie ; 221: 75-80, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38307244

RESUMO

Alterations in cell cycle regulation contribute to Zika virus (ZIKV)-associated pathogenesis and may have implications for the development of therapeutic avenues. As a matter of fact, ZIKV alters cell cycle progression at multiple stages, including G1, S, G2, and M phases. During a cell cycle, the progression of mitosis is particularly controlled to avoid any abnormalities in cell division. In this regard, the critical metaphase-anaphase transition is triggered by the activation of anaphase-promoting complex/cyclosome (APC/C) by its E3 ubiquitin ligase subunit Cdc20. Cdc20 recognizes substrates by interacting with a destruction box motif (D-box). Recently, the ZIKV nonstructural protein 5 (NS5), one of the most highly conserved flavivirus proteins, has been shown to localize to the centrosome in each pole and to spindle fibers during mitosis. Inducible expression of NS5 reveals an interaction of this viral factor with centrosomal proteins leading to an increase in the time required to complete mitosis. By analyzing the NS5 sequence, we discovered the presence of a D-box. Taken together, these data support the idea that, in addition to its role in viral replication, NS5 plays a critical role in the control of the cell cycle of infected cells and, more specifically, in the regulation of the mitotic spindle. Here we propose that the NS5 protein may interfere with the metaphase-anaphase progression, and thus cause the observed delay in mitosis via the regulation of APC/C.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase , Mitose , Proteínas não Estruturais Virais , Infecção por Zika virus , Zika virus , Humanos , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteínas Cdc20/metabolismo , Ciclo Celular , Centrossomo/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Zika virus/fisiologia , Zika virus/metabolismo , Infecção por Zika virus/metabolismo , Infecção por Zika virus/virologia , Infecção por Zika virus/patologia
4.
Acta Pharmaceutica Sinica B ; (6): 1021-1034, 2019.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-774925

RESUMO

Polo-like kinase (PLK1) has been identified as a potential target for cancer treatment. Although a number of small molecules have been investigated as PLK1 inhibitors, many of which showed limited selectivity. PLK1 harbors a regulatory domain, the Polo box domain (PBD), which has a key regulatory function for kinase activity and substrate recognition. We report on 3-bromomethyl-benzofuran-2-carboxylic acid ethyl ester (designated: MCC1019) as selective PLK1 inhibitor targeting PLK1 PBD. Cytotoxicity and fluorescence polarization-based screening were applied to a library of 1162 drug-like compounds to identify potential inhibitors of PLK1 PBD. The activity of compound MC1019 against the PLK1 PBD was confirmed using fluorescence polarization and microscale thermophoresis. This compound exerted specificity towards PLK1 over PLK2 and PLK3. MCC1019 showed cytotoxic activity in a panel of different cancer cell lines. Mechanistic investigations in A549 lung adenocarcinoma cells revealed that MCC1019 induced cell growth inhibition through inactivation of AKT signaling pathway, it also induced prolonged mitotic arrest-a phenomenon known as mitotic catastrophe, which is followed by immediate cell death apoptosis and necroptosis. MCC1019 significantly inhibited tumor growth in a murine lung cancer model without affecting body weight or vital organ size, and reduced the growth of metastatic lesions in the lung. We propose MCC1019 as promising anti-cancer drug candidate.

5.
Annals of Coloproctology ; : 139-145, 2017.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-49452

RESUMO

PURPOSE: The anaphase-promoting complex (APC) is a multiprotein complex with E3 ubiquitin ligase activity and is required for ubiquitination of securin and cyclin-B. Several APC-targeting molecules are reported to be oncogenes. Dysregulation of APC may be associated with tumorigenesis. This study examines the relationship between APC expression and clinicopathological factors and evaluates the possibility of an aberrant APC function in colorectal carcinomas (CRCs). METHODS: To determine whether the loss of APC7 expression is related to tumorigenesis, we used tissue micro-arrays in 114 resected CRCs to scrutinize the expressions of APC7 and Ki-67 immunohistochemistry and to find relations with clinocopathologic parameters. The expression of APC7 was defined as positive for summed scores of staining intensities from 0 to 3+. RESULTS: Forty-four cases (67.7%) of colon cancer and 38 cases (77.6%) of rectal cancer showed immunopositive reactions to APC. The grade of APC expression was not statistically correlated with tumor location, age, T or TNM stage, or differentiation. However, the expression of APC did correlate with the expression of Ki-67 and to the tumor recurrent. Higher APC expression showed the better 5-year overall survival rate in 74% of grades 2, 3 groups (high expression) than 57% of grades 0, 1 groups (lower expression) respectively (P = 0.042). CONCLUSION: Positive APC expression may be a good prognostic factor for patients with CRC, and the loss of APC expression in tumor tissue may be related with the risk for recurrence and a poor survival rate compared to high APC expression. Further study of APC in controlling the cell cycle as aberrant function in CRC is needed.


Assuntos
Humanos , Adenocarcinoma , Ciclossomo-Complexo Promotor de Anáfase , Carcinogênese , Ciclo Celular , Neoplasias do Colo , Neoplasias Colorretais , Imuno-Histoquímica , Oncogenes , Neoplasias Retais , Recidiva , Securina , Taxa de Sobrevida , Ubiquitina , Ubiquitina-Proteína Ligases , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA