Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Parasit Vectors ; 17(1): 277, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943202

RESUMO

BACKGROUND: Chicken coccidiosis is a protozoan disease that leads to considerable economic losses in the poultry industry. Live oocyst vaccination is currently the most effective measure for the prevention of coccidiosis. However, it provides limited protection with several drawbacks, such as poor immunological protection and potential reversion to virulence. Therefore, the development of effective and safe vaccines against chicken coccidiosis is still urgently needed. METHODS: In this study, a novel oral vaccine against Eimeria tenella was developed by constructing a recombinant Lactobacillus plantarum (NC8) strain expressing the E. tenella RON2 protein. We administered recombinant L. plantarum orally at 3, 4 and 5 days of age and again at 17, 18 and 19 days of age. Meanwhile, each chick in the commercial vaccine group was immunized with 3 × 102 live oocysts of coccidia. A total of 5 × 104 sporulated oocysts of E. tenella were inoculated in each chicken at 30 days. Then, the immunoprotection effect was evaluated after E. tenella infection. RESULTS: The results showed that the proportion of CD4+ and CD8+ T cells, the proliferative ability of spleen lymphocytes, inflammatory cytokine levels and specific antibody titers of chicks immunized with recombinant L. plantarum were significantly increased (P < 0.05). The relative body weight gains were increased and the number of oocysts per gram (OPG) was decreased after E. tenella challenge. Moreover, the lesion scores and histopathological cecum sections showed that recombinant L. plantarum can significantly relieve pathological damage in the cecum. The ACI was 170.89 in the recombinant L. plantarum group, which was higher than the 150.14 in the commercial vaccine group. CONCLUSIONS: These above results indicate that L. plantarum expressing RON2 improved humoral and cellular immunity and enhanced immunoprotection against E. tenella. The protective efficacy was superior to that of vaccination with the commercial live oocyst vaccine. This study suggests that recombinant L. plantarum expressing the RON2 protein provides a promising strategy for vaccine development against coccidiosis.


Assuntos
Galinhas , Coccidiose , Eimeria tenella , Lactobacillus plantarum , Doenças das Aves Domésticas , Proteínas de Protozoários , Vacinas Protozoárias , Vacinação , Animais , Eimeria tenella/imunologia , Eimeria tenella/genética , Coccidiose/prevenção & controle , Coccidiose/veterinária , Coccidiose/imunologia , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/parasitologia , Vacinas Protozoárias/imunologia , Vacinas Protozoárias/genética , Vacinas Protozoárias/administração & dosagem , Lactobacillus plantarum/genética , Lactobacillus plantarum/imunologia , Administração Oral , Proteínas de Protozoários/imunologia , Proteínas de Protozoários/genética , Vacinação/veterinária , Anticorpos Antiprotozoários/sangue , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética
2.
Front Immunol ; 12: 800965, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925386

RESUMO

Avian influenza viruses can be efficiently transmitted through mucous membranes, and conventional vaccines are not effective in protecting against mucosal infection by influenza viruses. To induce multiple immune responses in an organism, we constructed a recombinant Lactobacillus plantarum expressing the influenza virus antigen HA1 with the adjuvant dendritic cell-targeting peptide (DCpep). The recombinant L. plantarum strains NC8Δ-pWCF-HA1 and NC8Δ-pWCF-HA1-DCpep were used to immunize mice via oral administration, and the humoral, cellular and mucosal immune responses were evaluated. In addition, the serum levels of specific antibodies and hemagglutination inhibition (HI) levels were also measured. Our results showed that recombinant L. plantarum activated dendritic cells in Peyer's patches (PPs), increased the numbers of CD4+IFN-γ+ and CD8+IFN-γ+ cells in the spleen and mesenteric lymph nodes (MLNs), and affected the ability of CD4+ and CD8+ cells to proliferate in the spleen and MLNs. Additionally, recombinant L. plantarum increased the number of B220+IgA+ cells in PPs and the level of IgA in the lungs and different intestinal segments. In addition, specific IgG, IgG1 and IgG2a antibodies were induced at high levels in the mice serum, specific IgA antibodies were induced at high levels in the mice feces, and HI potency was significantly increased. Thus, the recombinant L. plantarum strains NC8Δ-pWCF-HA1 and NC8Δ-pWCF-HA1-DCpep have potential as vaccine candidates for avian influenza virus.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vacinas contra Influenza/imunologia , Lactobacillus plantarum , Animais , Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Vacinas Sintéticas/imunologia
3.
Poult Sci ; 99(6): 2967-2975, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32475431

RESUMO

Avian coccidiosis causes significant economic losses on the global poultry breeding industry. Exploration of new-concept vaccines against coccidiosis has gradually become a research hotspot. In this study, an Enterococcus faecalis strain (MDXEF-1) showing excellent performance isolated from chicken intestinal tract was used as a vector to deliver Eimeria target protein. The plasmid pTX8048-SP-DCpep-NAΔ3-1E-CWA harboring dendritic cell-targeting peptide (DCpep) fusion with Eimeria tenella NAΔ3-1E gene (3-1E protein-coding gene without start codon ATG and terminator codon TAA) was electrotransformed into MDXEF-1 to generate the recombinant bacteria MDXEF-1/pTX8048-SP-DCpep-NAΔ3-1E-CWA in which NAΔ3-1E protein was covalently anchored to the surface of bacteria cells by cell wall anchor (CWA) sequence. The expression of target fusion protein DCpep-NAΔ3-1E-CWA was detected by Western blot. Each chicken was immunized 3 times at 2-wk intervals with live E. faecalis expressing DCpep-NAΔ3-1E fusion protein (DCpep-NAΔ3-1E group), live E. faecalis expressing NAΔ3-1E protein (NAΔ3-1E group), and live E. faecalis containing empty vector only. The 3 immunized groups were then challenged with homologous E. tenella sporulated oocyst after immunizations, and the immune response and protective efficacy in each group were evaluated. The results showed that serum IgG levels, secretory IgA levels in cecal lavage, proportion of CD4+ and CD8α+ cells in peripheral blood, and mRNA expression levels of IL-2 and IFN-γ in the spleen were significantly higher in chickens in the DCpep-NAΔ3-1E group than in chickens of the NAΔ3-1E group (P < 0.05). Oral immunization to chickens with live E. faecalis expressing DCpep-NAΔ3-1E offered more protective efficacy against homologous challenge including significant improved body weight gain, increased oocyst decrease ratio, and reduced average lesion scores in cecum compared with chickens with live E. faecalis expressing NAΔ3-1E protein. These results suggest that recombinant E. faecalis expressing dendritic cell-targeting peptide fusion with E. tenella 3-1E protein could be a potential approach for prevention of Eimeria infection.


Assuntos
Galinhas , Coccidiose/veterinária , Eimeria tenella/imunologia , Imunização/veterinária , Doenças das Aves Domésticas/prevenção & controle , Vacinas Protozoárias/farmacologia , Animais , Coccidiose/imunologia , Coccidiose/prevenção & controle , Células Dendríticas , Enterococcus faecalis/genética , Enterococcus faecalis/fisiologia , Imunidade Celular , Imunidade Humoral , Microrganismos Geneticamente Modificados/genética , Microrganismos Geneticamente Modificados/fisiologia , Peptídeos/metabolismo , Doenças das Aves Domésticas/imunologia , Proteínas de Protozoários/administração & dosagem , Proteínas de Protozoários/farmacologia , Vacinas Protozoárias/administração & dosagem , Proteínas Recombinantes , Organismos Livres de Patógenos Específicos
4.
Vet Microbiol ; 223: 9-20, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30173758

RESUMO

H9N2 avian influenza viruses are of significance in poultry and public health for the past two decades. Vaccination plays an important role in preventing the infection in domestic poultry. Current H9N2 vaccines have not yet offered ideal protection and eliminated shedding of G57 genotype viruses responsible for H9N2 outbreaks during 2010-2013. Targeted vaccination is a promising strategy to improve vaccine effectiveness. Such a vaccine strategy can be achieved if it is targeted to dendritic cells (DCs) that directly elicit mucosal and adaptive immune responses against microbe challenge. For this purpose, we develop a DC-targeted mucosal vaccine for the oral delivery of the HA protein fused to a DCpep by using Lactobacillus plantarum as an antigen delivery system against G57 virus infection. It showed that Lactobacillus plantarum expressing HA-DCpep confers efficient protection against G57 H9N2 infection, due to have the potential to activate DCs by the TLR-induced NF-κB pathway, to promote DC migration by the CCR7-CCL19/CCL21 axis, thereby enhancing the presentation of immunogen to T and B lymphocytes, resulting in skewing T cells polarization towards Th1, Th2 and Treg cells and evoking more efficient mucosal and adaptive immunity responses. The presented oral mucosal vaccine strategy illustrates the feasibility and efficacy of antigen targeting to DCs through genetic fusion of vaccines to DC-targeting peptides and aids in the design and selection of indications that could be used with this oral vaccine platform against influenza.


Assuntos
Imunidade Humoral , Vírus da Influenza A Subtipo H9N2/imunologia , Vacinas contra Influenza/administração & dosagem , Influenza Aviária/prevenção & controle , Lactobacillus plantarum , Doenças das Aves Domésticas/prevenção & controle , Imunidade Adaptativa , Administração Oral , Animais , Células Dendríticas/imunologia , Estudos de Viabilidade , Feminino , Genótipo , Imunidade nas Mucosas , Vírus da Influenza A Subtipo H9N2/genética , Vacinas contra Influenza/imunologia , Influenza Aviária/virologia , Camundongos Endogâmicos BALB C , Aves Domésticas , Doenças das Aves Domésticas/virologia , Organismos Livres de Patógenos Específicos , Vacinação/veterinária
5.
Appl Microbiol Biotechnol ; 102(19): 8403-8417, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30022263

RESUMO

Transmissible gastroenteritis coronavirus (TGEV) is one of the most severe threats to the swine industry. In this study, we constructed a suite of recombinant Lactobacillus plantarum with surface displaying the spike (S) protein coming from TGEV and fused with DC cells targeting peptides (DCpep) to develop an effective, safe, and convenient vaccine against transmissible gastroenteritis. Our research results found that the recombinant Lactobacillus plantarum (NC8-pSIP409-pgsA-S-DCpep) group expressing S fused with DCpep could not only significantly increase the percentages of MHC-II+CD80+ B cells and CD3+CD4+ T cells but also the number of IgA+ B cells and CD3+CD4+ T cells of ileum lamina propria, which elevated the specific secretory immunoglobulin A (SIgA) titers in feces and IgG titers in serum. Taken together, these results suggest that NC8-pSIP409-pgsA-S-DCpep expressing the S of TGEV fused with DCpep could effectively induce immune responses and provide a feasible original strategy and approach for the design of TGEV vaccines.


Assuntos
Proteínas de Bactérias/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Lactobacillus plantarum/imunologia , Vírus da Gastroenterite Transmissível/imunologia , Animais , Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , Gastroenterite Suína Transmissível/imunologia , Imunoglobulina A Secretora/imunologia , Imunoglobulina G/imunologia , Suínos , Linfócitos T/imunologia , Vacinas Virais/imunologia
6.
Appl Microbiol Biotechnol ; 102(19): 8307-8318, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30056514

RESUMO

The highly infectious porcine transmissible gastroenteritis virus (TGEV), which belongs to the coronaviruses (CoVs), causes diarrhea and high mortality rates in piglets, resulting in severe economic losses in the pork industry worldwide. In this study, we used Lactobacillus plantarum (L. plantarum) to anchor the expression of TGEV antigen (S) to dendritic cells (DCs) via dendritic cell-targeting peptides (DCpep). The results show that S antigen could be detected on the surface of L. plantarum by different detection methods. Furthermore, flow cytometry and ELISA techniques were used to measure the cellular, mucosal, and humoral immune responses of the different orally gavaged mouse groups. The obtained results demonstrated the significant effect of the constructed L. plantarum expressing S-DCpep fusion proteins in inducing high expression levels of B7 molecules on DCs, as well as high levels of IgG, secretory IgA, and IFN-γ and IL-4 cytokines compared with the other groups. Accordingly, surface expression of DC-targeted antigens successfully induced cellular, mucosal, and humoral immunity in mice and could be used as a vaccine.


Assuntos
Antígenos de Bactérias/imunologia , Lactobacillus plantarum/imunologia , Vírus da Gastroenterite Transmissível/imunologia , Animais , Anticorpos Antivirais/imunologia , Células Dendríticas/imunologia , Imunidade Humoral/imunologia , Imunização/métodos , Imunoglobulina A Secretora/imunologia , Camundongos , Suínos , Vacinação/métodos , Vacinas Virais/imunologia
7.
Virus Res ; 247: 84-93, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29288673

RESUMO

Porcine epidemic diarrhea virus (PEDV) is one of the most important causative pathogens of swine diarrhea, which is widely prevalent throughout the world and is responsible for significant economic losses in the commercial pig industry, both domestic and abroad. The spike (S) protein in the PEDV capsid structure can carry the major B lymphocyte epitope, which induces production of neutralizing antibodies and provides immunoprotective effects. Moreover, the conserved region encoded by the S gene can be considered a target for establishing a new diagnostic method and is a new candidate for vaccine design. In this study, use of anchorin pgsA' allowed the fusion protein of S-DCpep to express on the surface of recombinant Lactobacillus plantarum (NC8-pSIP409-pgsA'-S-DCpep) NC8 strain. Mice were immunized by lavage administration of the recombinant NC8-pSIP409-pgsA'-S-DCpep, which was observed to induce DC activation and high production of sIgA and IgG antibodies in experimental animals, while also eliciting production of significantly more IgA+B220+ B cells. More importantly, secretion of cytokines IFN-γ, IL-4 and IL-17 in mice that were vaccinated with NC8-pSIP409-pgsA'-S-DCpep was remarkably increased. The results of our study suggest that NC8-pSIP409-pgsA'-S-DCpep potently triggers cellular and humoral immune responses. The obtained experimental results can provide a theoretical basis that lays the foundation for production of a novel oral vaccine against PED.


Assuntos
Anticorpos Antivirais/biossíntese , Lactobacillus plantarum/genética , Peptídeos/imunologia , Vírus da Diarreia Epidêmica Suína/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas Virais/administração & dosagem , Administração Oral , Animais , Linfócitos B/imunologia , Linfócitos B/virologia , Proliferação de Células , Feminino , Expressão Gênica , Imunogenicidade da Vacina , Imunoglobulina A/biossíntese , Imunoglobulina G/biossíntese , Interferon gama/genética , Interferon gama/imunologia , Interleucina-17/genética , Interleucina-17/imunologia , Interleucina-4/genética , Interleucina-4/imunologia , Lactobacillus plantarum/metabolismo , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos BALB C , Peptídeos/genética , Vírus da Diarreia Epidêmica Suína/genética , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Vacinação , Vacinas Virais/biossíntese , Vacinas Virais/genética
8.
Vet Parasitol ; 236: 7-13, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28288769

RESUMO

The coccidiosis caused by Eimeria tenella (coccidian) and other species is a serious parasitic disease that affects the global poultry breeding industry. Lactobacillus strains exhibit a number of properties that make them attractive candidates as delivery vehicles for presentation to the mucosa of compounds with pharmaceutical interest, particularly vaccines. Here, the recombinant Lactobacillus plantarum (co-expressing SO7 and DCpep gene) was constructed, and its efficacy against E. tenella challenge was evaluated in this study. Broiler chickens were orally immunized with live recombinant L. plantarum NC8-pSIP409-SO7-DCpep for two weeks and were then challenged with 5×104E.tenella sporulated oocysts per chicken. During the experiment, body weight gains, cecum lesion scores, fecal oocyst shedding and antibody responses in serum and intestinal washes were assessed as measures of protective immunity. The results indicated that chickens immunized with live recombinant L. plantarum can increase body weight gains and serum antibody responses compared to the control groups. Meanwhile, fecal oocyst shedding in the immunized group was significantly reduced (p<0.01). Moreover, recombinant L. plantarum can significantly relieve pathological damage in cecum, according to lesion scores and histopathologic cecum sections (p<0.01). Therefore, these results indicate that recombinant L. plantarum NC8-pSIP409-SO7-DCpep could become a promising oral vaccine candidate against E. tenella infection.


Assuntos
Galinhas , Coccidiose/veterinária , Eimeria tenella/imunologia , Doenças das Aves Domésticas/imunologia , Vacinas Protozoárias/imunologia , Animais , Anticorpos Antiprotozoários/sangue , Ceco/fisiologia , Coccidiose/imunologia , Coccidiose/parasitologia , Coccidiose/prevenção & controle , Fezes/parasitologia , Lactobacillus plantarum/genética , Organismos Geneticamente Modificados/genética , Doenças das Aves Domésticas/parasitologia , Doenças das Aves Domésticas/prevenção & controle , Proteínas de Protozoários/imunologia , Vacinas Protozoárias/genética , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Aumento de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA