Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Invest Dermatol ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38908781

RESUMO

Merkel cell carcinoma (MCC) is an aggressive skin cancer with a high mortality rate. MC polyomavirus (MCPyV) causes 80% of MCCs, encoding the viral oncogenes small T (sT) and truncated large T antigens (tLT). These proteins impair the Rb1-dependent G1/S checkpoint blockade and subvert the host cell epigenome to promote cancer. Whole proteome analysis and proximal interactomics identified a tLT-dependent deregulation of DNA damage response (DDR). Our investigation revealed a previously unreported interaction between tLT and the histone methyltransferase EHMT2, to our knowledge. T Antigens knockdown reduced DDR protein levels and increased levels of the DNA damage marker γH2Ax. EHMT2 normally promotes H3K9 methylation and DDR signaling. Given that inhibition of EHMT2 did not significantly change the MCC cells proteome, tLT-EHMT2 interaction could affect the DDR. With tLT, we report that EHMT2 gained DNA damage repair proximal interactors. EHMT2 inhibition rescued proliferation in MCC cells depleted for their T antigens, suggesting impaired DDR and/or lack of checkpoint efficiency. Combined tLT and EHMT2 inhibition led to altered DDR, evidenced by multiple signaling alterations. Here we show that tLT hijacks multiple components of the DNA damage machinery to enhance tolerance to DNA damage in MCC cells, which could explain the genetic stability of these cancers.

2.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-594442

RESUMO

Aminoacyl-tRNA synthetase catalyzing the first reaction of protein biosynthesis. In mammalian cells, eight aminoacyl-tRNA synthetases (aaRSs) and three auxiliary protein factors form a macromolecular aminoacyl-tRNA synthetases complex (aaRS complex). The three nonsynthetase protein factors, namely, p43, p38, and p18 were found to be involved in many other important life activities besides their roles in the complex. The auxiliary factor p43 was the precursor of endothelial monocyte activating polypeptideⅡ (EMAPⅡ), which involved in angiogenesis and apoptosis. The auxiliary factor p38 was crucial for the development of lung, and its abnormal accumulation in neuron would be related to the Parkinson’s disease. The auxiliary factor p38 and p18 could promote the repair of DNA damage via different pathways in a highly organized way. All these breakthroughs enhance our understanding about the interaction between the aaRS complex and the macromolecular signaling network and promote the studies on this field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...