Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Cell Physiol ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38915186

RESUMO

Members of the domain of unknown function 231 (DUF231)/trichome birefringence-like (TBL) family have been shown to be O-acetyltransferases catalyzing the acetylation of plant cell wall polysaccharides, including pectins, mannan, xyloglucan and xylan. However, little is known about the origin and evolution of plant cell wall polysaccharide acetyltransferases. Here, we investigated the biochemical functions of TBL homologs from Klebsormidium nitens, a representative of an early divergent class of charophyte green algae that are considered to be the closest living relatives of land plants, and Marchantia polymorpha, a liverwort that is an extant representative of an ancient lineage of land plants. The genomes of K. nitens and M. polymorpha harbor two and six TBL homologs, respectively. Biochemical characterization of their recombinant proteins expressed in human embryonic kidney (HEK) 293 cells demonstrated that the two K. nitens TBLs exhibited acetyltransferase activities acetylating the pectin homogalacturonan (HG) and hence were named KnPOAT1 and KnPOAT2. Among the six M. polymorpha TBLs, five of them (MpPOAT1 to 5) possessed acetyltransferase activities toward pectins and the remaining one (MpMOAT1) catalyzed 2-O- and 3-O-acetylation of mannan. While MpPOAT1,2 specifically acetylated HG, MpPOAT3,4,5 could acetylate both HG and rhamnogalacturonan-I (RG-I). Consistent with the acetyltransferase activities of these TBLs, pectins isolated from K. nitens and both pectins and mannan from M. polymorpha were shown to be acetylated. These findings indicate that the TBL genes were recruited as cell wall polysaccharide O-acetyltransferases as early as in charophyte green algae with activities toward pectins and they underwent expansion and functional diversification to acetylate various cell wall polysaccharides during evolution of land plants.

2.
Plant Cell Physiol ; 61(6): 1064-1079, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32167545

RESUMO

Xyloglucan is a major hemicellulose in plant cell walls and exists in two distinct types, XXXG and XXGG. While the XXXG-type xyloglucan from dicot species only contains O-acetyl groups on side-chain galactose (Gal) residues, the XXGG-type xyloglucan from Poaceae (grasses) and Solanaceae bears O-acetyl groups on backbone glucosyl (Glc) residues. Although O-acetyltransferases responsible for xyloglucan Gal acetylation have been characterized, the biochemical mechanism underlying xyloglucan backbone acetylation remains to be elucidated. In this study, we showed that recombinant proteins of a group of DUF231 members from rice and tomato were capable of transferring acetyl groups onto O-6 of Glc residues in cello-oligomer acceptors, indicating that they are xyloglucan backbone 6-O-acetyltransferases (XyBATs). We further demonstrated that XyBAT-acetylated cellohexaose oligomers could be readily xylosylated by AtXXT1 (Arabidopsis xyloglucan xylosyltransferase 1) to generate acetylated, xylosylated cello-oligomers, whereas AtXXT1-xylosylated cellohexaose oligomers were much less effectively acetylated by XyBATs. Heterologous expression of a rice XyBAT in Arabidopsis led to a severe reduction in cell expansion and plant growth and a drastic alteration in xyloglucan xylosylation pattern with the formation of acetylated XXGG-type units, including XGG, XGGG, XXGG, XXGG,XXGGG and XXGGG (G denotes acetylated Glc). In addition, recombinant proteins of two Arabidopsis XyBAT homologs also exhibited O-acetyltransferase activity toward cellohexaose, suggesting their possible role in mediating xyloglucan backbone acetylation in vivo. Our findings provide new insights into the biochemical mechanism underlying xyloglucan backbone acetylation and indicate the importance of maintaining the regular xyloglucan xylosylation pattern in cell wall function.


Assuntos
Acetiltransferases/metabolismo , Arabidopsis/crescimento & desenvolvimento , Glucanos/metabolismo , Proteínas de Plantas/metabolismo , Xilanos/metabolismo , Acetilação , Acetiltransferases/genética , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/metabolismo , Brachypodium/enzimologia , Brachypodium/genética , Catálise , Solanum lycopersicum/enzimologia , Solanum lycopersicum/genética , Oligossacarídeos/metabolismo , Oryza/enzimologia , Oryza/genética , Filogenia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas
3.
New Phytol ; 224(1): 466-479, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31183872

RESUMO

Mannans are an abundant cell wall polysaccharide in bryophytes, seedless vascular plants and gymnosperms. A previous study has shown that mannan acetylation in Arabidopsis and konjac is mediated by mannan O-acetyltransferases belonging to the Domain of Unknown Function (DUF) 231 family. However, little is known about the acetylation patterns of mannans in bryophytes and seedless vascular plants, and the evolutionary origin of mannan O-acetyltransferases in land plants has not yet been studied. Phylogenetic analysis of the DUF231 family revealed that DUF231 members were present in the charophycean green algae and evolved to form overlapped and divergent phylogenetic groups in different taxa of land plants. Acetyltransferase activity assays of recombinant proteins demonstrated that a number of group II DUF231 members from moss, Selaginella, pine, spruce, rice and poplar were mannan 2-O- and 3-O-acetyltransferases, whereas the two group I DUF231 members from the alga Klebsormidium nitens were not. Structural analysis of mannans from moss and Selaginella showed they were composed of mannosyl and glucosyl residues and the mannosyl residues were acetylated at O-2 and O-3. These findings indicate that although the DUF231 genes originated in algae, their recruitment as mannan O-acetyltransferases probably occurred in bryophytes, and the biochemical functions of these O-acetyltransferases are evolutionarily conserved throughout land plants.


Assuntos
Acetiltransferases/genética , Acetiltransferases/metabolismo , Embriófitas/enzimologia , Embriófitas/genética , Evolução Molecular , Mananas/metabolismo , Acetilação , Biocatálise , Genes de Plantas , Células HEK293 , Humanos , Filogenia , Espectroscopia de Prótons por Ressonância Magnética , Proteínas Recombinantes/biossíntese
4.
Planta ; 248(5): 1159-1171, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30083810

RESUMO

MAIN CONCLUSION: AXY4/XGOAT1, AXY4L/XGOAT2 and PtrXGOATs are O-acetyltransferases acetylating fucosylated galactose residues on xyloglucan and AXY9 does not directly catalyze O-acetylation of xyloglucan but exhibits weak acetylesterase activity. Xyloglucan is a major hemicellulose that cross-links cellulose in the primary walls of dicot plants and the galactose (Gal) residues on its side chains can be mono- and di-O-acetylated. In Arabidopsis thaliana, mutations of three AXY (altered xyloglucan) genes, AXY4, AXY4L and AXY9, have previously been shown to cause a reduction in xyloglucan acetylation, but their biochemical functions remain to be investigated. In this report, we demonstrated that recombinant proteins of AXY4/XGOAT1 (xyloglucan O-acetyltransferase1), AXY4L/XGOAT2 and their close homologs from Populus trichocarpa, PtrXGOATs, displayed O-acetyltransferase activities transferring acetyl groups from acetyl CoA onto xyloglucan oligomers. Structural analysis of XGOAT-catalyzed reaction products revealed that XGOATs mediated predominantly 6-O-monoacetylation and a much lesser degree of 3-O and 4-O-monoacetylation and 4,6-di-O-acetylation of Gal residues on xyloglucan side chains. XGOATs appeared to preferentially acetylate fucosylated Gal residues with little activity toward non-fucosylated Gal residues. Mutations of the conserved amino acid residues in the GDS and DXXH motifs in AXY4/XGOAT1 resulted in a drastic reduction in its ability to transfer acetyl groups onto xyloglucan oligomers. In addition, although recombinant AXY9 was unable to transfer acetyl groups from acetyl CoA onto xyloglucan oligomers, it was catalytically active as demonstrated by its weak acetylesterase activity that was also exhibited by AXY4/XGOAT1 and AXY4L/XGOAT2. Furthermore, we showed that the AXY8 fucosidase was able to hydrolyze fucosyl residues from both non-acetylated and acetylated xyloglucan oligomers. These findings provide biochemical evidence that AXY4/XGOAT1, AXY4L/XGOAT2 and PtrXGOATs are xyloglucan O-acetyltransferases catalyzing acetyl transfer onto fucosylated Gal residues on xyloglucan side chains and the defucosylation of these acetylated side chains by apoplastic AXY8 generates side chains with acetylated, non-fucosylated Gal residues.


Assuntos
Acetiltransferases/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Galactose/metabolismo , Glucanos/metabolismo , Proteínas de Membrana/metabolismo , Populus/enzimologia , Xilanos/metabolismo , Acetilação , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Células HEK293 , Humanos , Proteínas de Membrana/genética , Filogenia , Populus/metabolismo , Proteínas Recombinantes , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
5.
Planta ; 247(6): 1489-1498, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29569182

RESUMO

MAIN CONCLUSION: Rice xylan is predominantly monoacetylated at O-2 and O-3, and 14 rice DUF231 proteins were demonstrated to be xylan acetyltransferases. Acetylated xylans are the principal hemicellulose in the cell walls of grass species. Because xylan acetylation impedes the conversion of cellulosic biomass into biofuels, knowledge on acetyltransferases catalyzing xylan acetylation in grass species will be instrumental for a better utilization of grass biomass for biofuel production. Xylan in rice (Oryza sativa) is predominantly monoacetylated at O-2 and O-3 with a total degree of acetylation of 0.19. In this report, we have characterized 14 rice DUF231 proteins (OsXOAT1 to OsXOAT14) that are phylogenetically grouped together with Arabidopsis xylan acetyltransferases ESK1 and its close homologs. Complementation analysis demonstrated that the expression of OsXOAT1 to OsXOAT7 in the Arabidopsis esk1 mutant was able to rescue its defects in 2-O- and 3-O-monoacetylation and 2,3-di-O-acetylation. Activity assay of recombinant proteins revealed that all 14 OsXOATs exhibited acetyltransferase activities capable of transferring acetyl groups from acetyl-CoA to the xylohexaose acceptor with 10 of them having high activities. Structural analysis of the OsXOAT-catalyzed products showed that the acetylated structural units consisted mainly of 2-O- and 3-O-monoacetylated xylosyl residues with a minor amount of 2,3-di-O-acetylated xylosyl units, which is consistent with the acetyl substitution pattern of rice xylan. Further kinetic studies revealed that OsXOAT1, OsXOAT2, OsXOAT5, OsXOAT6 and OsXOAT7 had high affinity toward the xylohexaose acceptor. Our results provide biochemical evidence indicating that OsXOATs are acetyltransferases involved in xylan acetylation in rice.


Assuntos
Acetiltransferases/metabolismo , Oryza/enzimologia , Xilanos/metabolismo , Acetilação , Acetiltransferases/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Parede Celular/metabolismo , Cinética , Mutação , Oryza/genética
6.
Plant Cell Physiol ; 58(12): 2126-2138, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29059346

RESUMO

Xylan is a major hemicellulose in the secondary walls of vessels and fibers, and its acetylation is essential for normal secondary wall assembly and properties. The acetylation of xylan can occur at multiple positions of its backbone xylosyl residues, including 2-O-monoacetylation, 3-O-monoacetylation, 2,3-di-O-acetylation and 3-O-acetylation of 2-O-glucuronic acid (GlcA)-substituted xylosyl residues, but the biochemical mechanism controlling the regiospecific acetylation of xylan is largely unknown. Here, we present biochemical characterization of a group of Arabidopsis thaliana DUF231-containing proteins, namely TBL28, ESK1/TBL29, TBL30, TBL3, TBL31, TBL32, TBL33, TBL34 and TBL35, for their roles in catalyzing the regiospecific acetylation of xylan. Acetyltransferase activity assay of recombinant proteins demonstrated that all of these proteins possessed xylan acetyltransferase activities catalyzing the transfer of acetyl groups from acetyl-CoA onto xylooligomer acceptors albeit with differential specificities. Structural analysis of their reaction products revealed that TBL28, ESK1, TBL3, TBL31 and TBL34 catalyzed xylan 2-O- and 3-O-monoacetylation and 2,3-di-O-acetylation with differential positional preference, TBL30 carried out 2-O- and 3-O-monoacetylation, TBL35 catalyzed 2,3-di-O-acetylation, and TBL32 and TBL33 mediated 3-O-acetylation of 2-O-GlcA-substituted xylosyl residues. Furthermore, mutations of the conserved GDS and DXXH motifs in ESK1 were found to result in a complete loss of its acetyltransferase activity. Together, these results establish that these nine DUF231-containing proteins are xylan acetyltransferases mediating the regiospecific acetylation of xylan and that the conserved GDS and DXXH motifs are critical for their acetyltransferase activity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Xilanos/metabolismo , Acetilação , Acetiltransferases/genética , Acetiltransferases/metabolismo , Motivos de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Parede Celular/genética , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Complexo de Golgi/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Plantas Geneticamente Modificadas , Xilanos/química
7.
Biotechnol Biofuels ; 10: 311, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29299061

RESUMO

BACKGROUND: Domain of Unknown Function 231-containing proteins (DUF231) are plant specific and their function is largely unknown. Studies in the model plants Arabidopsis and rice suggested that some DUF231 proteins act in the process of O-acetyl substitution of hemicellulose and esterification of pectin. However, little is known about the function of DUF231 proteins in woody plant species. RESULTS: This study provides evidence supporting that one member of DUF231 family proteins in the woody perennial plant Populus deltoides (genotype WV94), PdDUF231A, has a role in the acetylation of xylan and affects cellulose biosynthesis. A total of 52 DUF231-containing proteins were identified in the Populus genome. In P. deltoides transgenic lines overexpressing PdDUF231A (OXPdDUF231A), glucose and cellulose contents were increased. Consistent with these results, the transcript levels of cellulose biosynthesis-related genes were increased in the OXPdDUF231A transgenic lines. Furthermore, the relative content of total acetylated xylan was increased in the OXPdDUF231A transgenic lines. Enzymatic saccharification assays revealed that the rate of glucose release increased in OXPdDUF231A transgenic lines. Plant biomass productivity was also increased in OXPdDUF231A transgenic lines. CONCLUSIONS: These results suggest that PdDUF231A affects cellulose biosynthesis and plays a role in the acetylation of xylan. PdDUF231A is a promising target for genetic modification for biofuel production because biomass productivity and compositional quality can be simultaneously improved through overexpression.

8.
Plant Sci ; 243: 120-30, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26795157

RESUMO

Xylan is one of the major polymers in lignocellulosic biomass and about 60% of its xylosyl residues are acetylated at O-2 and/or O-3. Because acetylation of cell wall polymers contributes to biomass recalcitrance for biofuel production, it is important to investigate the biochemical mechanism underlying xylan acetylation, the knowledge of which could be applied to custom-design biomass composition tailored for biofuel production. In this report, we investigated the functions of Arabidopsis TRICHOME BIREFRINGENCE-LIKE 34 (TBL34) and TBL35, two DUF231-containing proteins, in xylan acetylation. The TBL34 gene was found to be specifically expressed in xylem cells in stems and root-hypocotyls, and both TBL34 and TBL35 were shown to be localized in the Golgi, where xylan biosynthesis occurs. Chemical analysis revealed that simultaneous mutations of TBL34 and TBL35 caused a mild decrease in xylan acetyl content and a specific reduction in xylan 3-O-monoacetylation and 2,3-di-O-acetylation. Furthermore, simultaneous mutations of TBL34, TBL35 and ESKIMO1 (ESK1) resulted in severely collapsed xylem vessels with altered secondary wall structure, and an extremely retarded plant growth. These findings indicate that TBL34 and TBL35 are putative acetyltransferases required for xylan 3-O-monoacetylation and 2,3-di-O-acetylation and that xylan acetylation is essential for normal secondary wall deposition and plant growth.


Assuntos
Acetiltransferases/genética , Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Xilanos/metabolismo , Acetilação , Acetiltransferases/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação para Baixo , Regulação da Expressão Gênica de Plantas
9.
Plant Cell Physiol ; 57(1): 35-45, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26556650

RESUMO

Xylan, a major constituent of secondary cell walls, is made of a linear chain of ß-1,4-linked xylosyl residues that are often substituted with glucuronic acid/methylglucuronic acid side chains and acetylated at O-2 and O-3. Previous studies have shown that ESK1, an Arabidopsis DUF231 protein, is an acetyltransferase catalyzing 2-O- and 3-O-monoacetylation of xylan. However, the esk1 mutation only causes a partial loss of xylan 2-O- and 3-O-monoacetylation, suggesting that additional xylan acetyltransferase activities are involved. In this report, we demonstrated the essential roles of two other Arabidopsis DUF231 genes, TBL3 and TBL31, in xylan acetylation. The expression of both TBL3 and TBL31 was shown to be induced by overexpression of the secondary wall master transcriptional regulator SND1 (secondary wall-associated NAC domain protein1) and down-regulated by simultaneous mutations of SND1 and its paralog NST1, indicating their involvement in secondary wall biosynthesis. ß-Glucurondase (GUS) reporter gene analysis showed that TBL3 and TBL31 were specifically expressed in the xylem and interfascicular fibers in stems and the secondary xylem in root hypocotyls. Expression of fluorescent protein-tagged TBL3 and TBL31 in protoplasts revealed their localization in the Golgi, where xylan biosynthesis occurs. Although mutation of either TBL3 or TBL31 alone did not cause any apparent alterations in cell wall composition, their simultaneous mutations were found to result in a reduction in xylan acetylation. Further structural analysis demonstrated that the tbl3 tbl31 double mutant had a specific reduction in 3-O-acetylation of xylan. In addition, the tbl3 tbl31 esk1 triple mutant displayed a much more drastic decrease in 3-O-acetylation of xylan, indicating their functional redundancy in xylan 3-O-acetylation. These findings indicate that TBL3 and TBL31 are secondary wall-associated DUF231 genes specifically involved in xylan 3-O-acetylation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Membrana/metabolismo , Xilanos/metabolismo , Acetilação , Acetiltransferases/genética , Acetiltransferases/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Parede Celular/metabolismo , Regulação para Baixo , Regulação da Expressão Gênica de Plantas , Genes Reporter , Complexo de Golgi/metabolismo , Proteínas de Membrana/genética , Mutação , Domínios Proteicos , Protoplastos , Xilema/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA