Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 443
Filtrar
1.
Epigenetics Chromatin ; 17(1): 24, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103936

RESUMO

BACKGROUND: Diesel exhaust particles (DEP), which contain hazardous compounds, are emitted during the combustion of diesel. As approximately one-third of the vehicles worldwide use diesel, there are growing concerns about the risks posed by DEP to human health. Long-term exposure to DEP is associated with airway hyperresponsiveness, pulmonary fibrosis, and inflammation; however, the molecular mechanisms behind the effects of DEP on the respiratory tract are poorly understood. Such mechanisms can be addressed by examining transcriptional and DNA methylation changes. Although several studies have focused on the effects of short-term DEP exposure on gene expression, research on the transcriptional effects and genome-wide DNA methylation changes caused by long-term DEP exposure is lacking. Hence, in this study, we investigated transcriptional and DNA methylation changes in human adenocarcinoma alveolar basal epithelial A549 cells caused by prolonged exposure to DEP and determined whether these changes are concordant. RESULTS: DNA methylation analysis using the Illumina Infinium MethylationEPIC BeadChips showed that the methylation levels of DEP-affected CpG sites in A549 cells changed in a dose-dependent manner; the extent of change increased with increasing dose reaching the statistical significance only in samples exposed to 30 µg/ml DEP. Four-week exposure to 30 µg/ml of DEP significantly induced DNA hypomethylation at 24,464 CpG sites, which were significantly enriched for DNase hypersensitive sites, genomic regions marked by H3K4me1 and H3K27ac, and several transcription factor binding sites. In contrast, 9,436 CpG sites with increased DNA methylation levels were significantly overrepresented in genomic regions marked by H3K27me3 as well as H3K4me1 and H3K27ac. In parallel, gene expression profiling by RNA sequencing demonstrated that long-term exposure to DEP altered the expression levels of 2,410 genes, enriching 16 gene sets including Xenobiotic metabolism, Inflammatory response, and Senescence. In silico analysis revealed that the expression levels of 854 genes correlated with the methylation levels of the DEP-affected cis-CpG sites. CONCLUSIONS: To our knowledge, this is the first report of genome-wide transcriptional and DNA methylation changes and their associations in A549 cells following long-term exposure to DEP.


Assuntos
Metilação de DNA , Transcriptoma , Emissões de Veículos , Humanos , Metilação de DNA/efeitos dos fármacos , Emissões de Veículos/toxicidade , Células A549 , Transcriptoma/efeitos dos fármacos , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/efeitos dos fármacos , Ilhas de CpG , Material Particulado/toxicidade , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/metabolismo
2.
Ecotoxicol Environ Saf ; 284: 116869, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39178759

RESUMO

BACKGROUND: Diesel exhaust particles (DEPs), a predominant component of ambient particulate matter (PM), are classified as ultrafine particles with the capacity to penetrate the cerebral blood-brain barrier (BBB). This penetration is implicated in the pathogenesis of central nervous system (CNS) disorders. The integrity of the BBB is inextricably linked to cerebrovascular homeostasis and the development of neurodegenerative disease, highlighting the importance of studying the effects and mechanisms of DEPs on BBB function damage. METHODS AND RESULTS: Utilizing mouse cerebral microvascular endothelial cells (bEnd.3 cells) as an in vitro model of the BBB, we explored the detrimental effects of DEPs exposure on BBB permeability and integrity, with particular focus on inflammation, cell apoptosis, and miRNA expression profiles. Our findings revealed that exposure to DEPs at varying concentrations for 48 h resulted in the inhibition of bEND.3 cell proliferation, induction of cell apoptosis, and an upregulation in the secretion of inflammatory cytokines/chemokines and adhesion molecules. The BBB integrity was further compromised, as evidenced by a decrease in trans-epithelial electrical resistance(TEER), a reduction in cytoskeletal F-actin, , and diminished tight junction (TJ) protein expression. Microarray analysis revealed that 23 miRNAs were upregulated and 11 were downregulated in response to a 50 µg/mL DEPs treatment, with miR-466d-3p being notably differentially expressed. Wnt3 was identified as a target of miR-466d-3p, with the Wnt signaling pathway being significantly enriched. We validated that miR-466d-3p expression was downregulated, and the protein expression levels of Wnt/ß-catenin and Wnt/PCP signaling components were elevated. The modulation of the Wnt signaling pathway by miR-466d-3p was demonstrated by the transfection of miR-466d-3p mimic, which resulted in a downregulation of Wnt3 and ß-catenin protein expression, and the mRNA level of Daam1, as well as an enhancement of TJ proteins ZO-1 and Claudin-5 expression. CONCLUSIONS: Our study further confirmed that DEPs can induce the disruption of BBB integrity through inflammatory processes. We identified alterations in the expression profile of microRNAs (miRNAs) in endothelial cells, with miR-466d-3p emerging as a key regulator of tight junction (TJ) proteins, essential for maintaining BBB integrity. Additionally, our findings primarily demonstrated that the Wnt/ ß-catenin and Wnt/PCP signaling pathway can be activated by DEPs and are regulated by miR-466d-3p. Under the combined effects of Wnt/PCP and inflammation, there is an ultimate increase in BBB hyperpermeability. METHODS AND RESULTS: Employing mouse cerebral microvascular endothelial cells (bEnd.3 cells) as an in vitro model of the BBB, we investigated the adverse effects of DEPs exposure on BBB permeability and integrity, with particular focus on inflammation, cell apoptosis, and miRNA expression profiles. Our findings revealed that exposure to DEPs at varying concentrations for 48 h resulted in the inhibition of bEND.3 cell proliferation, induction of cell apoptosis, and an increase in the release of inflammatory cytokines/chemokines and adhesion molecules. The BBB integrity was further compromised, as evidenced by a decrease in trans-epithelial electrical resistance(TEER), a reduction in cytoskeletal F-actin, loss of intercellular junctional organization, and diminished tight junction (TJ) protein expression. Microarray analysis disclosed that 23 miRNAs were upregulated and 11 were downregulated in bEND.3 cells treated with 50 µg/mL DEPs compared to the controls. In particular, miR-466d-3p was identified as a significantly differentially expressed miRNA. Wnt3 was predicted to be a target of miR-466d-3p, and the Wnt signaling pathway was identified as one of the most significantly enriched pathways. We validated that miR-466d-3p expression was downregulated, and the protein expression levels of Wnt/ß-catenin and Wnt/PCP signaling components were elevated. The modulation of the Wnt signaling pathway by miR-466d-3p was demonstrated by the transfection of miR-466d-3p mimic, which resulted in a downregulation of Wnt3 and ß-catenin protein expression, and the mRNA level of Daam1, as well as an enhancement of TJ proteins ZO-1 and Claudin-5 expression. CONCLUSIONS: Our study further confirmed that DEPs can induce the disruption of BBB integrity by inflammation. We identified changes in the expression profile of microRNAs (miRNAs) in endothelial cells, with miR-466d-3p emerging as a regulator of tight junction (TJ) proteins, which are critical for maintaining BBB integrity. Additionally, our findings primarily demonstrated that the Wnt/ ß-catenin and Wnt/PCP signaling pathway can be activated by DEPs and is regulated by miR-466d-3p, and under the combined effects of Wnt/PCP and inflammation ultimately led to hyperpermeability BBB.

3.
Alzheimers Dement ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39132765

RESUMO

INTRODUCTION: Chronic air pollution (AirPoll) is associated with accelerated cognitive decline and risk of Alzheimer's disease (AD). Correspondingly, wild-type and AD-transgenic rodents exposed to AirPoll have increased amyloid peptides and behavioral impairments. METHODS: We examined the γ-secretase modulator GSM-15606 for potential AirPoll protection by its attenuating of amyloid beta (Aß)42 peptide production. Male and female wild-type mice were fed GSM-15606 during an 8-week inhalation exposure to AirPoll subfractions, ambient nanoparticulate matter (nPM), and diesel exhaust particles (DEP). RESULTS: GSM-15606 decreased Aß42 during nPM and DEP exposure without changing beta- or gamma-secretase activity or BACE1 and PS1 protein levels. DEP increased lateral ventricle volume by 25%. DISCUSSION: These enzyme responses are relevant to AD drug treatments, as well as to the physiological functions of the Aß42 peptide. GSM-15606 attenuation of Aß42 may benefit human exposure to AirPoll. HIGHLIGHTS: Gamma-secretase modulator (GSM-15606) attenuates the amyloidogenic amyloid beta (Aß)42 peptide during exposure to air pollution, which may be a mechanism by which air pollution increases Alzheimer's disease (AD) risk. AD drug treatments may also consider Aß homeostasis among the chronic effects of GSM-15606 and other amyloid reduction treatments on secretase enzymes.

4.
Front Toxicol ; 6: 1412864, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39118833

RESUMO

Introduction: Air pollution from diesel combustion is linked in part to the generation of diesel exhaust particles (DEP). DEP exposure induces various processes, including inflammation and oxidative stress, which ultimately contribute to a decline in lung function. Cyclic AMP (cAMP) signaling is critical for lung homeostasis. The impact of DEP on cAMP signaling is largely unknown. Methods: We exposed human bronchial epithelial (BEAS-2B) cells to DEP for 24-72 h and evaluated mitochondrial bioenergetics, markers of oxidative stress and inflammation and the components of cAMP signaling. Mitochondrial bioenergetics was measured at 72 h to capture the potential and accumulative effects of prolonged DEP exposure on mitochondrial function. Results: DEP profoundly altered mitochondrial morphology and network integrity, reduced both basal and ATP-linked respiration as well as the glycolytic capacity of mitochondria. DEP exposure increased gene expression of oxidative stress and inflammation markers such as interleukin-8 and interleukin-6. DEP significantly affected mRNA levels of exchange protein directly activated by cAMP-1 and -2 (Epac1, Epac2), appeared to increase Epac1 protein, but left phospho-PKA levels unhanged. DEP exposure increased A-kinase anchoring protein 1, ß2-adrenoceptor and prostanoid E receptor subtype 4 mRNA levels. Interestingly, DEP decreased mRNA levels of adenylyl cyclase 9 and reduced cAMP levels stimulated by forskolin (AC activator), fenoterol (ß2-AR agonist) or PGE2 (EPR agonist). Discussion: Our findings suggest that DEP induces mitochondrial dysfunction, a process accompanied by oxidative stress and inflammation, and broadly dampens cAMP signaling. These epithelial responses may contribute to lung dysfunction induced by air pollution exposure.

5.
Toxics ; 12(8)2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39195662

RESUMO

The overlap between the geographic distribution of COVID-19 outbreaks and pollution levels confirmed a correlation between exposure to atmospheric particulate matter (PM) and the SARS-CoV-2 pandemic. The RAS system is essential in the pathogenesis of inflammatory diseases caused by pollution: the ACE/AngII/AT1 axis activates a pro-inflammatory pathway, which is counteracted by the ACE2/Ang(1-7)/MAS axis, which activates an anti-inflammatory and protective pathway. However, ACE2 is also known to act as a receptor through which SARS-CoV-2 enters host cells to replicate. Furthermore, in vivo systems have demonstrated that exposure to PM increases ACE2 expression. In this study, the effects of acute and sub-acute exposure to ultrafine particles (UFP), originating from different anthropogenic sources (DEP and BB), on the levels of ACE2, ACE, COX-2, HO-1, and iNOS in the lungs and other organs implicated in the pathogenesis of COVID-19 were analyzed in the in vivo BALB/c male mice model. Exposure to UFP alters the levels of ACE2 and/or ACE in all examined organs, and exposure to sub-acute DEP also results in the release of s-ACE2. Furthermore, as evidenced in this and our previous works, COX-2, HO-1, and iNOS levels also demonstrated organ-specific alterations. These proteins play a pivotal role in the UFP-induced inflammatory and oxidative stress responses, and their dysregulation is linked to the development of severe symptoms in individuals infected with SARS-CoV-2, suggesting a heightened vulnerability or a more severe clinical course of the disease. UFP and SARS-CoV-2 share common pathways; therefore, in a "risk stratification" concept, daily exposure to air pollution may significantly increase the likelihood of developing a severe form of COVID-19, explaining, at least in part, the greater lethality of the virus observed in highly polluted areas.

6.
Environ Geochem Health ; 46(8): 269, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954139

RESUMO

In the confined space of the underground coal mine, which is dominated by transportation lanes, explosion-proof diesel-powered trackless rubber-wheeled vehicles are becoming the main transportation equipment, and the exhaust gas produced by them is hazardous to the health of workers and pollutes the underground environment. In this experiment, a similar test platform is built to study the effects of wind speed, vehicle speed, and different wind directions on the diffusion characteristics of exhaust gas. In this paper, CO and SO2 are mainly studied. The results show that the diffusion of CO and SO2 gas is similar and the maximum SO2 concentration only accounts for 11.4% of the CO concentration. Exhaust gas is better diluted by increasing the wind speed and vehicle speed, respectively. Downwind is affected by the reverse wind flow and diffuses to the driver's position, which is easy to cause occupational diseases. When the wind is a headwind, the exhaust gases spread upwards and make a circumvention movement, gathering at the top. When the wind speed and vehicle speed are both 0.6 m/s, the CO concentration corresponds to the change trend of the Lorentz function when the wind is downwind and the CO concentration corresponds to the change trend of the BiDoseResp function when the wind is headwind. The study of exhaust gas diffusion characteristics is of great significance for the subsequent purification of the air in the restricted mine space and the protection of the workers' occupational health.


Assuntos
Minas de Carvão , Espaços Confinados , Emissões de Veículos , Vento , Emissões de Veículos/análise , Dióxido de Enxofre/análise , Monóxido de Carbono/análise , Difusão , Monitoramento Ambiental/métodos , Poluentes Atmosféricos/análise , Poluentes Ocupacionais do Ar/análise , Exposição Ocupacional/análise
7.
Sci Total Environ ; 947: 174535, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38972403

RESUMO

The role and mechanisms of DEP exposure on thyroid injury are not yet clear. This study explores thyroid damage induced by in vivo DEP exposure using a mouse model. This study has observed alterations in thyroid follicular architecture, including rupture, colloid overflow, and the formation of voids. Additionally, there was a significant decrease in the expression levels of proteins involved in thyroid hormone synthesis, such as thyroid peroxidase and thyroglobulin, their trend of change is consistent with the damage to the thyroid structure. Serum levels of triiodothyronine and tetraiodothyronine were raise. However, the decrease in TSH expression suggests that the function of the HPT axis is unaffected. To delve deeper into the intrinsic mechanisms of thyroid injury, we performed KEGG pathway enrichment analysis, which revealed notable alterations in the cell adhesion signaling pathway. Our immunofluorescence results show that DEP exposure impairs thyroid adhesion, and integrin α3ß1 plays an important role. CD151 binds to α3ß1, promoting multimolecular complex formation and activating adhesion-dependent small GTPases. Our in vitro model has confirmed the pivotal role of integrin α3ß1 in thyroid cell adhesion, which may be mediated by the CD151/α3ß1/Rac1 pathway. In summary, exposure to DEP disrupts the structure and function of the thyroid, a process that likely involves the regulation of cell adhesion through the CD151/α3ß1/Rac1 pathway, leading to glandular damage.


Assuntos
Integrina alfa3beta1 , Glândula Tireoide , Emissões de Veículos , Animais , Camundongos , Glândula Tireoide/efeitos dos fármacos , Emissões de Veículos/toxicidade , Integrina alfa3beta1/metabolismo , Adesão Celular/efeitos dos fármacos , Poluentes Atmosféricos/toxicidade , Material Particulado/toxicidade , Células Epiteliais da Tireoide/efeitos dos fármacos , Células Epiteliais da Tireoide/metabolismo , Transdução de Sinais
8.
Sci Rep ; 14(1): 14187, 2024 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902328

RESUMO

Mononuclear phagocytes (MNP), including macrophages and dendritic cells form an essential component of primary responses to environmental hazards and toxic exposures. This is particularly important in disease conditions such as asthma and allergic airway disease, where many different cell types are present. In this study, we differentiated CD34+ haematopoietic stem cells towards different populations of MNP in an effort to understand how different cell subtypes present in inflammatory disease microenvironments respond to the common allergen house dust mite (HDM). Using single cell mRNA sequencing, we demonstrate that macrophage subtypes MCSPP1+ and MLCMARCO+ display different patterns of gene expression after HDM challenge, noted especially for the chemokines CXCL5, CXCL8, CCL5 and CCL15. MLCCD206Hi alternatively activated macrophages displayed the greatest changes in expression, while neutrophil and monocyte populations did not respond. Further work investigated how pollutant diesel exhaust particles could modify these transcriptional responses and revealed that CXC but not CC type chemokines were further upregulated. Through the use of diesel particles with adsorbed material removed, we suggest that soluble pollutants on these particles are the active constituents responsible for the modifying effects on HDM. This study highlights that environmental exposures may influence tissue responses dependent on which MNP cell type is present, and that these should be considerations when modelling such events in vitro. Understanding the nuanced responsiveness of different immune cell types to allergen and pollutant exposure also contributes to a better understanding of how these exposures influence the development and exacerbation of human disease.


Assuntos
Pyroglyphidae , Animais , Pyroglyphidae/imunologia , Humanos , Fagócitos/metabolismo , Fagócitos/imunologia , Macrófagos/metabolismo , Macrófagos/imunologia , Alérgenos/imunologia , Emissões de Veículos/toxicidade , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos
9.
Cell Physiol Biochem ; 58(3): 273-287, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38881348

RESUMO

BACKGROUND/AIMS: Inhaled particulate air pollution is associated with cardiotoxicity with underlying mechanisms including oxidative stress and inflammation. Carnosol, commonly found in rosemary and sage, is known to possess a broad range of therapeutic properties such as antioxidant, anti-inflammatory and antiapoptotic. However, its cardioprotective effects on diesel exhaust particles (DEPs)-induced toxicity have not been studied yet. Hence, we evaluated the potential ameliorative effects of carnosol on DEPs-induced heart toxicity in mice, and the underlying mechanisms involved. METHODS: Mice were intratracheally instilled with DEPs (1 mg/kg) or saline, and 1 hour prior to instillation they were given intraperitoneally either carnosol (20 mg/kg) or saline. Twenty-four hours after the DEPs instillation, multiple parameters were evaluated in the heart by enzyme-linked immunosorbent assay, colorimetric assay, Comet assay and Western blot technique. RESULTS: Carnosol has significantly reduced the elevation in the plasma levels of lactate hydrogenase and brain natriuretic peptide induced by DEPs. Likewise, the augmented cardiac levels of proinflammatory cytokines, lipid peroxidation, and total nitric oxide in DEPs-treated groups were significantly normalized with the treatment of carnosol. Moreover, carnosol has markedly reduced the heart mitochondrial dysfunction, as well as DNA damage and apoptosis of mice treated with DEPs. Similarly, carnosol significantly reduced the elevated expressions of phosphorylated nuclear factor-кB (NF-кB) and mitogen-activated protein kinases (MAPKs) in the hearts. Furthermore, the treatment with carnosol has restored the decrease in the expression of sirtuin-1 in the hearts of mice exposed to DEPs. CONCLUSION: Carnosol significantly attenuated DEP-induced cardiotoxicity in mice by suppressing inflammation, oxidative stress, DNA damage, and apoptosis, at least partly via mechanisms involving sirtuin-1 activation and the inhibition of NF-кB and MAPKs activation.


Assuntos
Abietanos , Cardiotoxicidade , NF-kappa B , Estresse Oxidativo , Emissões de Veículos , Animais , Camundongos , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Emissões de Veículos/toxicidade , Abietanos/farmacologia , Abietanos/uso terapêutico , Masculino , Cardiotoxicidade/etiologia , Cardiotoxicidade/metabolismo , Cardiotoxicidade/prevenção & controle , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/patologia , Estresse Nitrosativo/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Inflamação/induzido quimicamente , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Cardiotônicos/farmacologia , Cardiotônicos/uso terapêutico , Sirtuína 1/metabolismo , Sirtuína 1/genética , Dano ao DNA/efeitos dos fármacos
10.
Nanotoxicology ; 18(4): 335-353, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38907733

RESUMO

Air pollution is an environmental factor associated with an increased risk of neurodegenerative diseases, such as Alzheimer's and Parkinson's, characterized by decreased cognitive abilities and memory. The limited models of sporadic Alzheimer's disease fail to replicate all pathological hallmarks of the disease, making it challenging to uncover potential environmental causes. Environmentally driven models of Alzheimer's disease are thus timely and necessary. We used live-cell confocal fluorescent imaging combined with high-resolution stimulated emission depletion (STED) microscopy to follow the response of retinoic acid-differentiated human neuroblastoma SH-SY5Y cells to nanomaterial exposure. Here, we report that exposure of the cells to some particulate matter constituents reproduces a neurodegenerative phenotype, including extracellular amyloid beta-containing plaques and decreased neurite length. Consistent with the existing in vivo research, we observed detrimental effects, specifically a substantial reduction in neurite length and formation of amyloid beta plaques, after exposure to iron oxide and diesel exhaust particles. Conversely, after exposure to engineered cerium oxide nanoparticles, the lengths of neurites were maintained, and almost no extracellular amyloid beta plaques were formed. Although the exact mechanism behind this effect remains to be explained, the retinoic acid differentiated SH-SY5Y cell in vitro model could serve as an alternative, environmentally driven model of neurodegenerative diseases, including Alzheimer's disease.


Assuntos
Peptídeos beta-Amiloides , Neuritos , Material Particulado , Proteínas tau , Humanos , Material Particulado/toxicidade , Neuritos/efeitos dos fármacos , Peptídeos beta-Amiloides/metabolismo , Linhagem Celular Tumoral , Proteínas tau/metabolismo , Placa Amiloide , Doença de Alzheimer/induzido quimicamente , Tretinoína/farmacologia , Nanopartículas/química , Nanopartículas/toxicidade
11.
Environ Pollut ; 358: 124415, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38908672

RESUMO

Air pollution is a prominent cause of cardiopulmonary illness, but uncertainties remain regarding the mechanisms mediating those effects as well as individual susceptibility. Macrophages are highly responsive to particles, and we hypothesized that their responses would be dependent on their genetic backgrounds. We conducted a genome-wide analysis of peritoneal macrophages harvested from 24 inbred strains of mice from the Hybrid Mouse Diversity Panel (HMDP). Cells were treated with a DEP methanol extract (DEPe) to elucidate potential pathways that mediate acute responses to air pollution exposures. This analysis showed that 1247 genes were upregulated and 1383 genes were downregulated with DEPe treatment across strains. Pathway analysis identified oxidative stress responses among the most prominent upregulated pathways; indeed, many of the upregulated genes included antioxidants such as Hmox1, Txnrd1, Srxn1, and Gclm, with NRF2 (official gene symbol: Nfe2l2) being the most significant driver. DEPe induced a Mox-like transcriptomic profile, a macrophage subtype typically induced by oxidized phospholipids and likely dependent on NRF2 expression. Analysis of individual strains revealed consistency of overall responses to DEPe and yet differences in the degree of Mox-like polarization across the various strains, indicating DEPe × genetic interactions. These results suggest a role for macrophage polarization in the cardiopulmonary toxicity induced by air pollution.


Assuntos
Poluentes Atmosféricos , Transcriptoma , Emissões de Veículos , Animais , Camundongos , Emissões de Veículos/toxicidade , Transcriptoma/efeitos dos fármacos , Poluentes Atmosféricos/toxicidade , Material Particulado/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos Peritoneais/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo
12.
Chemosphere ; 362: 142564, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38885762

RESUMO

Atmospheric pollution has been demonstrated to be associated with ocular surface diseases characterized by corneal epithelial damage, including impaired barrier function and squamous metaplasia. However, the specific mechanisms underlying the impact of atmospheric pollution on corneal damage are still unknow. To address this gap in knowledge, we conducted a study using a whole-body exposure system to investigate the detrimental effects of traffic-related air pollution, specifically diesel exhaust (DE), on corneal epithelium in C57BL/6 mice over a 28-day period. Following DE exposure, the pathological alterations in corneal epithelium, including significant increase in corneal thickness and epithelial stratification, were observed in mice. Additionally, exposure to DE was also shown to disrupt the barrier functions of corneal epithelium, leading to excessive proliferation of basal cells and even causing squamous metaplasia in corneal epithelium. Further studies have found that the activation of yes-associated protein (YAP), characterized by nuclear translocation, may play a significant role in DE-induced corneal squamous metaplasia. In vitro assays confirmed that DE exposure triggered the YAP/ß-catenin pathway, resulting in squamous metaplasia and destruction of barrier functions. These findings provide the preliminary evidence that YAP activation is one of the mechanisms of the damage to corneal epithelium caused by traffic-related air pollution. These findings contribute to the knowledge base for promoting eye health in the context of atmospheric pollution.


Assuntos
Poluentes Atmosféricos , Epitélio Corneano , Metaplasia , Camundongos Endogâmicos C57BL , Emissões de Veículos , Proteínas de Sinalização YAP , Emissões de Veículos/toxicidade , Animais , Epitélio Corneano/efeitos dos fármacos , Epitélio Corneano/patologia , Camundongos , Poluentes Atmosféricos/toxicidade , Masculino , beta Catenina/metabolismo , Proliferação de Células/efeitos dos fármacos
13.
J Appl Toxicol ; 44(8): 1269-1278, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38705171

RESUMO

In urban areas, inhalation of fine particles from combustion sources such as diesel engines causes adverse health effects. For toxicity testing, a substantial amount of particulate matter (PM) is needed. Conventional sampling involves collection of PM onto substrates by filtration or inertial impaction. A major drawback to those methodologies is that the extraction process can modify the collected particles and alter their chemical composition. Moreover, prior to toxicity testing, PM samples need to be resuspended, which can alter the PM sample even further. Lastly, the choice of the resuspension medium may also impact the detected toxicological responses. In this study, we compared the toxicity profile of PM obtained from two alternative sampling systems, using in vitro toxicity assays. One system makes use of condensational growth before collection in water in an impinger - BioSampler (CG-BioSampler), and the other, a Dekati® Gravimetric Impactor (DGI), is based on inertial impaction. In addition, various methods for resuspension of DGI collected PM were compared. Tested endpoints included cytotoxicity, formation of cellular reactive oxygen species, and genotoxicity. The alternative collection and suspension methods affected different toxicological endpoints. The water/dimethyl sulfoxide mixture and cell culture medium resuspended particles, along with the CG-BioSampler sample, produced the strongest responses. The water resuspended sample from the DGI appeared least toxic. CG-BioSampler collected PM caused a clear increased response in apoptotic cell death. We conclude that the CG-BioSampler PM sampler is a promising alternative to inertial impaction sampling.


Assuntos
Material Particulado , Emissões de Veículos , Material Particulado/toxicidade , Humanos , Emissões de Veículos/toxicidade , Emissões de Veículos/análise , Células A549 , Tamanho da Partícula , Poluentes Atmosféricos/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Testes de Toxicidade/métodos , Monitoramento Ambiental/métodos , Suspensões
14.
Bull Environ Contam Toxicol ; 112(5): 76, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38733550

RESUMO

Traffic-related particulate matter emissions have been considerably reduced due to stringent regulations in Europe. However, emission of diesel-powered vehicles still poses a significant environmental threat, affecting rural ecosystems and agriculture. Several studies have reported that polycyclic aromatic hydrocarbons (PAHs), a group of potentially toxic organic compounds, can accumulate in crops and vegetables. In our study, white mustard (Sinapis alba L.) plants were experimentally treated with an extract of diesel exhaust. PAH concentrations were measured in the different plant compartments (stems, leaves and seeds), bioconcentration factors (BCFs) were also calculated. Significant accumulation was measured in the leaves and seeds, stems showed lower accumulation potential. All plant matrices showed high tendency to accumulate higher molecular weight PAHs, BCF was the highest in the 6-ring group. The fact that considerable accumulation was experienced in the seeds might show the risk of cultivating crops nearby roads highly impacted by traffic-related emissions.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Hidrocarbonetos Policíclicos Aromáticos , Sementes , Sementes/química , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Poluentes Atmosféricos/análise , Sinapis , Emissões de Veículos/análise , Material Particulado/análise
15.
Sci Rep ; 14(1): 10503, 2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714844

RESUMO

Diesel exhaust particles (DEPs) are very small (typically < 0.2 µm) fragments that have become major air pollutants. DEPs are comprised of a carbonaceous core surrounded by organic compounds such as polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs. Inhaled DEPs reach the deepest sites in the respiratory system where they could induce respiratory/cardiovascular dysfunction. Additionally, a previous study has revealed that a portion of inhaled DEPs often activate immune cells and subsequently induce somatic inflammation. Moreover, DEPs are known to localize in lymph nodes. Therefore, in this study we explored the effect of DEPs on the lymphatic endothelial cells (LECs) that are a constituent of the walls of lymph nodes. DEP exposure induced cell death in a reactive oxygen species (ROS)-dependent manner. Following exposure to DEPs, next-generation sequence (NGS) analysis identified an upregulation of the integrated stress response (ISR) pathway and cell death cascades. Both the soluble and insoluble components of DEPs generated intracellular ROS. Three-dimensional Raman imaging revealed that DEPs are taken up by LECs, which suggests internalized DEP cores produce ROS, as well as soluble DEP components. However, significant cell death pathways such as apoptosis, necroptosis, ferroptosis, pyroptosis, and parthanatos seem unlikely to be involved in DEP-induced cell death in LECs. This study clarifies how DEPs invading the body might affect the lymphatic system through the induction of cell death in LECs.


Assuntos
Células Endoteliais , Espécies Reativas de Oxigênio , Emissões de Veículos , Emissões de Veículos/toxicidade , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Humanos , Material Particulado/toxicidade , Apoptose/efeitos dos fármacos , Poluentes Atmosféricos/toxicidade , Morte Celular/efeitos dos fármacos
16.
Food Chem Toxicol ; 189: 114746, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38768936

RESUMO

Diesel exhaust particle (DEP) exposure induces a variety of toxicological effects through oxidative stress and inflammation responses. This research investigated the mechanisms underlying DEP-induced GC-1spg cells oxidative stress by examining ROS accumulation, antioxidant defense systems activation, mitochondrial dysfunction, and the Nrf2/Keap1/HO-1 pathway response. Subsequently, we further evaluated the ATP levels, ATP5α synthase activity and ATP5α synthase S-sulfhydrated modification in DEP-exposed GC-1 spg cells. The results showed that DEP exposure significantly inhibited cell proliferation and viability, increased intracellular ROS production, decreased MMP, down-regulated antioxidant capacity, activated the Nrf2/Keap1/HO-1 pathway. However, DEP-induced oxidative stress was partially alleviated by GSH and exogenous H2S. In addition, DEP exposure induced ATP depletion and ATP5α synthase inactivity in GC-1 spg cells, accompanied by ATP5α synthase S-sulfhydrated modification. In conclusion, our research showed that DEP may incapacitate mitochondria through oxidative stress injury, leading to GC-1 spg cells oxidative stress. This process may be associated with the reduction of ATP5α1 S-sulfhydrated modification. It provides a new perspective for the research of the mechanism related to male reproductive toxicity due to air pollution.


Assuntos
Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Material Particulado , Emissões de Veículos , Estresse Oxidativo/efeitos dos fármacos , Emissões de Veículos/toxicidade , Animais , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Camundongos , Material Particulado/toxicidade , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Proliferação de Células/efeitos dos fármacos
17.
Artigo em Inglês | MEDLINE | ID: mdl-38644649

RESUMO

Inhaled air pollutants (AirP) comprise extraordinarily diverse particles, volatiles, and gases from traffic, wildfire, cigarette smoke, dust, and various other sources. These pollutants contain numerous toxic components, which collectively differ in relative levels of components, but broadly share chemical classes. Exposure and health outcomes from AirP are complex, depending on pollutant source, duration of exposure, and socioeconomic status. We discuss examples in the current literature on organ responses to AirP, with a focus on lung, arteries, and brain. Some transcriptional responses are shared. It is well accepted that AirP contributes to Alzheimer's disease and other neurodegenerative conditions in the Gero-Exposome. However, we do not know which chemical compounds initiate these changes and how activation of these transcriptional pathways is further modified by genetics and prenatal development.


Assuntos
Poluentes Atmosféricos , Humanos , Poluentes Atmosféricos/efeitos adversos , Expossoma , Idoso , Envelhecimento/fisiologia , Exposição por Inalação/efeitos adversos , Poluição do Ar/efeitos adversos , Exposição Ambiental/efeitos adversos
18.
Gene ; 918: 148459, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38608794

RESUMO

BACKGROUND: Genetic diversity among species influences the disease severity outcomes linked to air pollution. However, the mechanism responsible for this variability remain elusive and needs further investigation. OBJECTIVE: To investigate the genetic factors and pathways linked with differential susceptibility in mouse strains associated with diesel exhaust exposure. METHODS: C57BL/6 and Balb/c mice were exposed to diesel exhaust (DE) for 5 days/week for 30 min/day for 8 weeks. Body weight of mice was recorded every week and airway hyperresponsiveness towards DE exposure was recorded after 24 h of last exposure. Mice were euthanised to collect BALF, blood, lung tissues for immunobiochemical assays, structural integrity and genetic studies. RESULTS: C57BL/6 mice showed significantly decreased body weight in comparison to Balb/c mice (p < 0.05). Both mouse strains showed lung resistance and damage to elastance upon DE exposure compared to respective controls (p < 0.05) with more pronounced effects in C57BL/6 mice. Lung histology showed increase in bronchiolar infiltration and damage to the wall in C57BL/6 mice (p < 0.05). DE exposure upregulated pro-inflammatory and Th2 cytokine levels in C57BL/6 in comparison to Balb/c mice. C57BL/6 mice showed increase in Caspase-1 and ASC expression confirming activation of downstream pathway. This showed significant activation of inflammasome pathway in C57BL/6 mice with ∼2-fold increase in NLRP3 and elevated IL-1ß expression. Gasdermin-D levels were increased in C57BL/6 mice demonstrating induction of pyroptosis that corroborated with IL-1ß secretion (p < 0.05). Genetic variability among both species was confirmed with sanger's sequencing suggesting presence of SNPs in 3'UTRs of IL-1ß gene influencing expression between mouse strains. CONCLUSIONS: C57BL/6 mice exhibited increased susceptibility to diesel exhaust in contrast to Balb/c mice via activation of NLRP3-related pyroptosis. Differential susceptibility between strains may be attributed via SNPs in the 3'UTRs of the IL-1ß gene.


Assuntos
Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR , Pneumonia , Piroptose , Emissões de Veículos , Animais , Emissões de Veículos/toxicidade , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Camundongos , Pneumonia/genética , Pneumonia/metabolismo , Pneumonia/patologia , Pneumonia/induzido quimicamente , Pulmão/patologia , Pulmão/metabolismo , Pulmão/efeitos dos fármacos , Suscetibilidade a Doenças , Inflamassomos/metabolismo , Inflamassomos/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
19.
Environ Int ; 187: 108682, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38669721

RESUMO

Concentrations of particulate matter (PM10, PM2.5), ultrafine (UFP), particle number (PNC), black carbon (BC), nitrogen dioxide (NO2) and nitrogen oxides (NOX) were measured in train carriages on diesel and bi-mode trains on inter-city and long-distance journeys in the United Kingdom (UK) using a high-quality mobile measurement system. Air quality on 15 different routes was measured using highly-time resolved data on a total of 119 journeys during three campaigns in winter 2020 and summer 2021; this included 13 different train classes. Each journey was sampled 4-10 times with approximatively 11,000 min of in-train concentrations in total. Mean-journey concentrations were 7.552 µg m-3 (PM10); 3.936 µg m-3 (PM2.5); 333-11,300 # cm-3 (PNC); 225-9,131 # cm-3 (UFP); 0.6-11 µg m-3 (BC); 28-201 µg m-3 (NO2); and 130-3,456 µg m-3 (NOX). The impact of different factors on in-train concentrations was evaluated. The presence of tunnels was the factor with the largest impact on the in-train particle concentrations with enhancements by a factor of 40 greater than baseline for BC, and a factor 6 to 7 for PM and PNC. The engine fuel mode was the factor with the largest impact on NO2 with enhancements of up to 14-times larger when the train run on diesel compared to the times running on electric on hybrid trains. Train classes with an age < 10 years observed the lowest in-train PM, BC and NOX concentrations reflecting improvements in aspects of rail technology in recent years. Air quality on UK diesel trains is higher than ambient concentrations but has lower PM2.5 and PNC than most other transport modes, including subway systems, diesel and petrol cars. This paper adds significantly to the evidence on exposure to poor air quality in transport micro-environments and provides the industry and regulatory bodies with reference-grade measurements on which to establish in-train air quality guidelines.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Monitoramento Ambiental , Material Particulado , Emissões de Veículos , Reino Unido , Poluentes Atmosféricos/análise , Material Particulado/análise , Emissões de Veículos/análise , Poluição do Ar/estatística & dados numéricos , Poluição do Ar/análise , Monitoramento Ambiental/métodos , Ferrovias , Óxidos de Nitrogênio/análise , Dióxido de Nitrogênio/análise , Gasolina/análise
20.
Toxics ; 12(4)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38668513

RESUMO

Diesel exhaust particles (DEPs) contribute to air pollution exposure-related adverse health impacts. Here, we examined in vitro, and in vivo toxicities of DEPs from a Caterpillar C11 heavy-duty diesel engine emissions using ultra-low-sulfur diesel (ULSD) and biodiesel blends (20% v/v) of canola (B20C), soy (B20S), or tallow-waste fry oil (B20T) in ULSD. The in vitro effects of DEPs (DEPULSD, DEPB20C, DEPB20S, and DEPB20T) in exposed mouse monocyte/macrophage cells (J774A.1) were examined by analyzing the cellular cytotoxicity endpoints (CTB, LDH, and ATP) and secreted proteins. The in vivo effects were assessed in BALB/c mice (n = 6/group) exposed to DEPs (250 µg), carbon black (CB), or saline via intratracheal instillation 24 h post-exposure. Bronchoalveolar lavage fluid (BALF) cell counts, cytokines, lung/heart mRNA, and plasma markers were examined. In vitro cytotoxic potencies (e.g., ATP) and secreted TNF-α were positively correlated (p < 0.05) with in vivo inflammatory potency (BALF cytokines, lung/heart mRNA, and plasma markers). Overall, DEPULSD and DEPB20C appeared to be more potent compared to DEPB20S and DEPB20T. These findings suggested that biodiesel blend-derived DEP potencies can be influenced by biodiesel sources, and inflammatory process- was one of the potential underlying toxicity mechanisms. These observations were consistent across in vitro and in vivo exposures, and this work adds value to the health risk analysis of cleaner fuel alternatives.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA